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GEOMETRIC INEQUALITIES IN NORMED SPACES

S. BUSENBERG AND M. MARTELLI

1. Introduction. In a recent paper [4] of S. Busenberg, D. Fisher
and M. Martelli, it was shown that the period T of any periodic solution
of the first order system

(1.1) X' = f(x)

where f : E — E is Lipschitz continuous with constant L and E is a
normed space, satisfies the inequality

(1.2) TL > 6.

This result refines an earlier estimate of A. Lasota and J. Yorke
[11], who showed that TL > 4. Inequality (1.2) is optimal in the
stated generality, since Busenberg, Fisher and Martelli [5] provided an
example where TL = 6 in L*(Q) where @ is the unit square in R2.
In general, the best lower bound for the product T'L seems to depend
strongly on the geometry of the underlying space. In fact, in the same
paper, the three authors gave a simple proof of the better lower bound

(1.3) TL > 27

in spaces with the norm defined via an inner product. Inequality (1.3)
was first proved by J. Yorke [15]. In [3] Busenberg and Martelli give an
alternate proof of (1.3) which relies on corresponding inequalities for
difference equations in Hilbert spaces. They also show in [6] that (1.3)
is optimal in every Hilbert space of dimension larger than or equal to
two.

Ideas and techniques developed to prove (1.2), (1.3), and to provide
the example mentioned above, can be applied to a number of classical
problems of geometrical nature to yield different proofs and/or new
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results which extend and sharpen the existing results. The purpose of
this paper is to present these geometric applications.

In Section 2 we give the necessary background by restating without
proof the fundamental inequalities on which (1.2) and (1.3) are based
(see Propositions 2.1 and 2.3) and we obtain, in Hilbert and normed
spaces, new geometric inequalities (Propositions 2.2 and 2.4) which,
besides being interesting in their own right, also greatly simplify the
proofs of certain results of Sections 3 and 4.

Section 3 is devoted to extensions of the classical result of Fenchel
[9] on the total curvature of closed, smooth curves in R3. We give
a simple proof of this result, based on Proposition 2.1. We extend
Fenchel’s Theorem to any finite or infinite dimensional Hilbert space
H, using again the same proposition and a simple geometric idea of
Horn [10]. We also prove a theorem on closed curves contained in the
unit sphere S of H, from which Fenchel’s result can be derived as a
corollary.

The final section contains inequalities on sums of distances between
unit vectors in normed spaces. Interesting and special cases of these
inequalities were obtained previously by Chakerian and Klamkin [7].
Using Proposition 2.3, Proposition 2.4 and a result on the number of
disjoint Hamiltonian cycles of a complete graph G, we provide, via
an elementary argument, a sharp lower bound (see (4.6)) for the total
length of all the edges of G. This last result improves an inequality
concerning convex sets which was conjectured by B. Grinbaum and
established by Andrew and Ghandehari [1].

2. Preliminary results in Hilbert and Banach spaces. Assume
that vi,...,vy are N vectors in a Hilbert space H. Denote by 6; the
angle between v; and v; 1, with vy = vy.

Proposition 2.1. Assume that the vectors vi,...,vy are all
different from zero and that

(2.1) vi+ve+---+vy =0.
Then

(2.2) 01 +602+---+0n >27
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with equality if and only if all vectors belong to the same plane and the
path

N
T= U{tvi“ +(1—¢t)v;}, VN1 = VI,
i—1

0 <t <1, is the boundary of a convex polygon.

Proof. See [3]. o

The above Proposition can be extended to the case when the vectors
do not add up to the zero vector. To give this extension, we need the
definition of the convex hull of a set.

Given any set A, H D A, the convex hull of A, written co(A), is
the set of all convex finite linear combinations of elements of A (i.e.,
the coefficients must be positive and their sum must be 1). It is not a
trivial matter to show that the convex hull of a compact set in a finite
dimensional normed space is closed (see Valentine [14]). In infinite
dimension the result is false as the following example shows.

Example. Let H = (2, the Hilbert space of square summable
sequences of real numbers, and let A be the set

1
A={vi=(1,00,...), v2=(0,3,0,0,...),
1
vs = (0,0,5,0,...),...(0,0,0,..)}.

Then A is a compact sequence, and all points of co(A) have all but
finitely many coordinates different from zero. The point

=1
W:an—n"n
1

is in the closure of co(A) and all coordinates of w are different from
Z€ro.

Going back to the extension of Proposition 2.1, we assume that the
vectors vy, ... , vy are of unit length and that dis (0, co(vy,... ,vy)) =
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r. Then the induction argument used in [3] to establish (2.2) yields the
following more general version of Proposition 2.1.

Proposition 2.1'. Let vq,...,vy be unit vectors in H. Assume
that dis (0, co(vy,... ,vN)) = r. Denote by 0; the angle between v; and
Vit 1= 1,2, e ,N, VN41 = V1. Then
(2.3) 01 +65+ - +60y >4cos '

Proposition 2.2 below establishes an inequality on the lower bound
of the maximum distance between any vector of H and a set of unit
vectors.

Proposition 2.2. Letvy,...,vy be N unit vectors in H and assume
that dis (0, co(vy,...,vN)) =r. Then for any vector w we have
(2.4) max{||w—v;||:i=1,2,... , N} >1—r

Proof. There is a vector v € co(vy,...,vy) such that

N N
vl =, V:Ziaivia a; > 0, ZZ a; = 1.
1 1

Assume that max{||lw —v;||:i=1,2,... ,N} <1—r. Then
N
L= > aillvi — wl]> > 1+ [|w|* — 2(v, w).
1 3
Since
L [[wll* = 2(v,w) > 1+ |w|[* = 2r[|w|| = 1 - *

we reach a contradiction. O
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We now extend the previous results to normed spaces. Since we do not
have an inner product compatible with the norm, we need to modify,
in a suitable manner, the statement and the proof of Proposition 2.1
and Proposition 2.2.

Proposition 2.3. Let vy,...,vny be N nonzero vectors in a normed
space E, such that

(2.5) Vi+ve+---+vy=0.
Define

L =min{k : ||vi1 — vil| < k||vi]|, i=1,2,... ,N; VN1 = V1}.
Then

if N is even and
N_ if N is odd.

N2-1

e

(2.6) L> {

Proof. See [5, 8|. o

The following definition is needed below in Proposition 2.4 and in
Section 4. Let vi,...,vy be N vectors in E. For every subset of
indices ji,J2,...,Jp of 1,2,..., N, consider the convex hull of the
corresponding vectors. Denote this set by C(j1,j2,...,Jp). Let x be
any vector belonging to C(ji, jz,... ,Jjp). Define

d(j1, 72, > Jp) = min  max{||[x—vj|l:i=1,2,... ,p}
x€C(j1,72;--- dp
and set
2.7 0= d(J1, 925+ s Jp)-
(2.7) pemax d(G g2, dp)
Proposition 2.4. Letvy,...,vy be N vectors in E. Then for every

vector w € E we have

(2.8) d>min{|lw—v;||:i=1,2,... ,N} —d(w,co(vy,...,VN)).
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In particular, if vi,...,VN are unit vectors whose conver hull is at
distance r from the origin, then

(2.9) §>1—r.

Proof. By the triangular inequality, it is enough to show that for every
vector v € co(vy,...,vy) we have min{||v—wv;|| : i =1,2,... ,N} <.
Consider the N disks D;, i = 1,2,...,N of radius 6, D, = {v € E :
[|[v.— vi|]| < §}. The definition of § implies that the intersection of
all these disks and co(vy,...,vy) is not empty. Moreover, for every
subset of indices ji,j2,...,Jp of 1,2,..., N, the intersection of the
corresponding disks and C(j1, j2, . .. , jp) is not empty. By an induction
argument, we obtain that co(vy,...,vy) is contained in the union of
the D;’s. Hence, each vector v € co(vy,...,vy) belongs to one of the
disks D;, i =1,2,..., N, and the result follows. a

3. Geometric applications in Hilbert spaces. In 1929, W.
Fenchel [9] proved that the total curvature of a closed smooth curve in
R3 is never smaller than 27 and it is equal to 27 if and only if the curve
is simple, plane and convex. This beautiful result was later obtained
in a different manner by T. Levi Civita [12] and K. Borsuk [2]. A very
elegant geometric proof was obtained by R. Horn [10], who reports that
elementary proofs of it have appeared in the lecture notes of A. Morse,
A.S. Besicovitch, and H. Flanders.

We now derive Fenchel’s theorem from an elementary geometric result
which is established via Proposition 2.1.

Recall first that a closed curve x : [a,b] — R? is simple if x :
[a,b) — R? is injective, and observe that the total curvature of a
smooth closed curve is the length of its tangent indicatrix when the
curve is parameterized using the arc length as a parameter. Moreover,
the curve is simple, plane and convex if and only if its tangent indicatrix
is a (simple) great circle [10]. Therefore, Fenchel’s theorem can be
reformulated in the following manner.
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Theorem 3.1. Let S? be the unit sphere of R® and z : [a,b] — S?
be at least C*. Assume that z[a] = z[b] and

(3.1) /bz(t) dt — 0.

Then .
/ [z’ (¢)||dt > 27

with equality if and only if the image T of z is a (simple) great circle.

As we mentioned previously, the convex hull of a compact set in
a finite dimensional normed space is closed. Therefore, equality (3.1)
implies that the convex hull of ', co(T"), must contain the origin. In fact,
if this were not the case, then we could separate the origin from co(T")
with a plane « and by selecting in R? a basis containing the unit vector
v perpendicular to « in the direction of co(T"), we would obtain that
the integral of the v component of z(t) is not zero, contradicting (3.1).
This observation leads us to the geometric result of which Fenchel’s
theorem is a special case.

Theorem 3.2. Let S? be the unit sphere of R® and let z : [a,b] — S*
be simple, closed and at least Ct. Assume that 0 € co(T'), where
I' = Rangez. Then

b
(3.3) / 12/ (8)|| dt > 2
with equality if and only if T is a great circle.

Proof. Since 0 € co(T"), we can assume without loss of generality that
there are N vectors wi,ws,..., Wy on I', and N nonzero constants
ai,as,--..,an, such that

N

E AW = 0.
(2

1

Let v; = a;w;, i@ = 1,2,...,N. Inequality (3.3) now follows from
Proposition 2.1, since the measure in radians of each angle 6;, i =
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1,2,..., N, is smaller than or equal to the length of the arc of I joining
w; with w41, Wy = Wi,

If 0, + 62 +--- + 0y = 2w, then, by Proposition 2.1, the vectors
w;, i = 1,2,..., N, belong to a plane. Assuming that equality holds
in (3.3), we obtain that each 6; is equal to the length of the arc of I’
joining w; with w;;1, Wny1 = wi. Since the curve I' is simple and at
least of class C'!, it must be a great circle. i

Theorem 3.3 below extends the above result and Fenchel’s theorem
to any Hilbert space H, and it could be proved in essentially the same
manner. However, we prefer to present here a different proof based on
an elegant geometric idea of Horn [10] and Proposition 2.1.

Theorem 3.3. Let S be the unit sphere of H and let z : [a,b] — S be
simple, closed and at least C' except possibly at finitely many points.
Assume that 0 € co(T'), where I' = Rangez. Then

(3.4) L(T) :/ |12/ (t)]| dt > 2n.

Moreover, if equality holds in (3.4) and

b
(3.5) / a(t)dt = 0,
then T' is a great circle.

Proof. We shall first replace I' with a curve which is symmetric with
respect to the origin and has the same length as I'. Let P and @ be
two points of I which divide it in two arcs of equal length. If P and @
are symmetric with respect to the origin, then we form the new curve
A by selecting one of the arcs in which T is divided by the two points
and adding to it its symmetric image with respect to 0. Obviously,
L(A) = L(T') and A is symmetric with respect to the origin. If P and
Q@ are not symmetric with respect to the origin, choose the unit vector
w which contains the middle point of the segment joining P with Q.
By (3.5) one of the two arcs intersects the subspace orthogonal to w.
Let ® be the union of this arc and its symmetric image with respect
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to w. The closed curve @ intersects the subspace orthogonal to w in
at least two points symmetric with respect to 0, and which divide I' in
two arcs of equal length. From this point on, we proceed as above.

Therefore, to establish inequality (3.4) we can assume, without loss
of generality, that I' is symmetric with respect to the origin. The C*
character of the parametrization z may be lost at a few points, but this
is obviously of no concern.

We now select on I' pairs of antipodal points P;, P/ so that the
distance between each point P; and its next P;y; along I', is small.
Denoting by v; the unit vector ending at P; and by 6; the angle
between v; and v;;1, we see that 6; is smaller than the length of the
arc of T joining P; with P;y;. Thus, the inequality (3.4) follows from

Proposition 2.1. If
0o+ 01+ -+ Oan_1 = 2m,

then the points Py, P;,...,Pony_1 belong to the same plane and the
curve ® is a great circle. The geometric construction we have used
requires now P and @ to be symmetric with respect to the origin and
the selected arc of T' to be a half circle. Therefore, using (3.5), we
obtain that I is a great circle. O

Let us now examine the case when the distance between co(T") and
the origin is 7 > 0. Using Proposition 2.1’ and the same argument as in
the above proof, we establish the following generalization of Fenchel’s
result.

Theorem 3.4. Let S be the unit sphere of H and z : [a,b] --+ S
be at least C1. Assume that zla] = z[b] and dis (0,co(T')) = r, where
I' = Rangez. Then

b
(3.6) L(T) = / 12/ ()|| dt > 4 cos= 7.
We close this section with an extension of a result due to Chakerian-

Klamkin [7], who proved it in the case when » = 0 and H is finite
dimensional.
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Theorem 3.5. Let K be a closed curve of length T(K) contained in
the unit ball of a Hilbert space H. If K intersects the unit sphere S in
a set of points whose convex hull is at distance r from the origin, then

(3.7) T(K) > 4(1 - 1)

Proof. This result can be considered as a special case of Corollary
4.1, which is derived from Theorem 4.2 and which establishes inequality
(3.7) in normed spaces. In this case, the proof depends on Proposition
2.4. Another proof, independent of Proposition 2.4, is provided here,
using Theorem 4.1 below.

Let g : [0, T(K)] — H be a parametrization of K using the arc length
as a parameter. Then the constant L of inequality (4.1) is equal to 1.
Moreover, by Proposition 2.2, the constant M of (4.3) satisfies the
inequality M > 1 — r. Hence, T(K) > 4(1 — r). O

4. Geometric applications in normed spaces. We start this
section with an application of Proposition 2.3. The result provides a
lower bound on the period T of periodic orbits in E.

Theorem 4.1. Let E be a normed space and let g : R — E be
continuous and periodic of period T > 0. Suppose there exists § > 0,
L >0, such that for h € [0,6)

(4.1) lg(t +h) — g(t)]| < Lh.
Then
(4.2) LT >4M
where
1 [T
(4.3) M = tlgfg};] {Hg(t) - T/o g(s)ds }

Proof. Since the function
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satisfies all the assumptions of the theorem and has mean value zero,
we may assume, without loss of generality, that

T
ds=0, M= 1 = llg(0)]l.
| e ma [[g()] = 180

We now define Mf(t) = g(t). Then

T
f(s)ds=0 1= f(¢)|| = ||If(0
| t@ds =0, 1= max )] = 1£0)]

and we can apply to f Theorem 3.1 of [3] whose proof is based on
Proposition 2.3 and which provides the desired estimate LT > 4M.
]

We now establish the results which were announced at the end of the
previous section.

Theorem 4.2. Let vy,...,vy be N wvectors of E and let § =
max{d(j1,j2,...,Jp)} (see (2.7)). Denote by P the polygonal path
P(lvza' e aN) = [Vl,Vz] Uu---u [VN—lva] U [vNavl]} where [XaY] is
the line segment joining x with y. Let T(P) be the length of the path.
Then

(4.4) T(P) > 4.

Proof. Let ji, j2, ... ,jq be a subset of indices of 1, 2,... , N such that
0 =d(j1,J2,. .- ,jq). Parametrize the polygonal path P(j1,3j2,...,Jq)
using the arc length as a parameter. Then, using the notations of
Theorem 4.1, we have L = 1 and M > §. By the triangular inequality
and Theorem 4.1, we have T'(P) > T(P(j1,72,--- »Jq)) = 46. O

Corollary 4.1. Let K be a closed curve of length T(K) contained in
the unit ball of a normed space E. If K intersects the unit sphere S in
a set of points whose convex hull is at distance r from the origin, then

(4.5) T(K) > 4(1 — 7).
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Proof. For every € > 0, we may assume that there are N unit
vectors vi,...,Vy, whose end points belong to the curve K and
whose convex hull is at distance at most r + £ from the origin. By
the triangle inequality, Theorem 4.2 and Proposition 2.4, we have
T(K) > 4(1 —r — ¢). Since this is true for every ¢, the result follows.
O

In 1973, D. Chakerian and M.S. Klamkin [7] proved that the length
T(K) of a closed curve K contained in the unit ball of the Euclidean
space R™, and such that the origin is contained in the convex hull of the
intersection of K with the unit sphere S of R"”, satisfies the inequality
T(K) > 4. Corollary 4.1 improves their result in two ways. It extends
it to normed spaces, and it relaxes the constraint that the distance of
the convex hull from the origin be zero.

Our next goal is to provide a lower bound on the sum of distances
between finitely many vectors. The result is obtained using some ideas
from graph theory, which will be presented first. Recall that a graph is
complete when no edges can be added to the graph without repetitions.
Therefore, the number of edges of a complete graph with n vertices is
(n—1)n/2.

A Hamiltonian cycle is a cycle which passes through all vertices
exactly once. We shall say that two Hamiltonian cycles are disjoint
if they do not have any edges in common. It is obvious that a complete
graph always has a Hamiltonian cycle. What is less obvious is how
many disjoint Hamiltonian cycles there are in a complete graph.

It turns out that the answer to the above question becomes easier if
we double all edges of the graph. More precisely, we have

Proposition 4.1. Let G be a graph with n + 1 vertices and assume
that G has been obtained from a complete graph H by doubling all edges
of H. Then G has exactly n disjoint Hamiltonian cycles.

Proof. Let Vi,Va,...,Vy,, Vip1 be the n + 1 vertices of G. Arrange
them counterclockwise on the unit circle with V,,;; at the center
(see Figure 1). Consider the Hamiltonian cycle which starts at V41
and goes on to Vi, V5, V,, V3, Vi 1,..., Vi1 moving from V; one step
counterclockwise, then two steps clockwise, followed by three steps
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FIGURE 1. A Hamiltonian cycle of the graph G.

counterclockwise, four steps clockwise, etc., until all vertices have been
reached, at which point we return to V,;;. The theorem follows by
considering all Hamiltonian cycles obtained in the manner described
above, by selecting any one of the n vertices V1, V5, ... ,V,, of G as the
vertex connected directly to Vi, 11. O
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We are now ready to obtain a lower bound on the sum of distances of
vectors. A weaker version of this result was announced without proof
in [18]. It extends a similar inequality obtained by Chakerian and
Klamkin [7] in the case when r = 0 and E is a Minkowski plane, and
it contains Griinbaum’s conjecture (see [1]) as a special case.

Theorem 4.3. Let vy,vsa,...,vy be N wvectors and let 6 =
max{d(j1,j2,-.-,Jp) : P € (1,2,... ,N)}. Then
N
(4.6) Do Vi vill 2 2(N - 1)
1<i<j

Proof. Construct the complete graph H whose vertices are the end
points of the vectors vi,vs, ..., vy and notice that the left hand side
of (4.6) is the sum of the lengths of all edges of H. Let G be the
graph obtained from H by doubling all edges. Then, according to
Proposition 4.1, G has N — 1 disjoint Hamiltonian cycles. Each cycle
can be considered as a closed curve whose length, according to Theorem
4.2, is bounded below by 4§. Therefore, the global length of all edges
of G is at least 4(N — 1)é. Inequality (4.6) follows immediately since
the edges of H are counted twice in G.

Remark . After this paper was accepted for publication, the authors
were made aware of the paper of A.D. Andrew and M.A. Ghandehari
[1], in which the inequality

(4.7) Z |vi —v;|| > 2(N = 1)min{||v —v;|]|: ¢ =1,2,... ,N}
1<j

is established, where v € co(vy, va,...,vy). Inequality (4.7) resolves
the following conjecture of B. Griinbaum: Given a set A of N points in
a real normed space E, and a point v € co(A), the sum of all distances
between pairs of points of A, is at least 2(IN — 1) times the minimum
distance from v to the points of A. It is easily seen that (4.7) is a
consequence of (4.6) since 6 > min{||v —v;||:i=1,2,... ,N}.

Acknowledgments. The authors would like to thank R. Graham
for helping them to simplify the proof of Proposition 4.1 and M.A.
Ghandehari for bringing to their attention inequality (4.7).
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