ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 22, Number 3, Summer 1992
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WILLIAM ULLERY

1. Introduction. Suppose R is a commutative ring with 1 and G is a
torsion abelian group. Suppose further that H is a group such that the
group algebras R(G) and R(H) are R-isomorphic. The theme of this
paper is to determine conditions under which such an R-isomorphism
implies isomorphism of the groups G and H.

Of course, one cannot always expect isomorphism of R(G) and R(H)
to imply that the torsion groups G and H are isomorphic. For example
if R is the field of complex numbers, it is known that the isomorphism
class of R(G) is completely determined by |G| (see [2]). The basic
philosophy of the proof of this result is that the presence in R of
invertible rational primes p, for which the p-component G, of G is
nontrivial, introduces idempotents into R(G). These idempotents, in
turn, tend to obscure the structure of G.

Returning to the general case, denote by inv (R) the set of rational
primes p which invert in R (i.e., such that p -1 is a unit) and set
Gr =1{Gp : p € inv(R)}. We call G R-favorable if G is the trivial
subgroup of G. In view of the above example, we restrict our attention
to the case when G is R-favorable.

Consider first the special case in which R is a field of characteristic
p # 0. In this case, an R-favorable torsion group G is a p-group. If
R(G) = R(H) for some group H, it is known that G = H if G is
totally projective [4], an N-group [7, 8], or an elementary A-group [8].
Recently, all of these cases were extended to the class of A, (u)-groups
[9], where n is a positive integer and p is a limit ordinal. The precise
definition of the classes A, (u) is unimportant in the present context.
However, we mention the facts that the totally projective groups and
N-groups are examples of elementary A-groups, and an elementary A-
group is an A; (u)-group for a suitable ordinal u. These examples lead
us to state the following.

Received by the editors on May 2, 1990.

Copyright ©1992 Rocky Mountain Mathematics Consortium

1111



1112 W. ULLERY

Problem 1. Suppose R is a field of characteristic p # 0 and G is a
p-group. If H is a group such that R(G) = R(H), is G isomorphic to
H?

It has been conjectured (see [1, Conjecture B, p. 174]) that the answer
to Problem 1 is “Yes” in all possible cases. We also remark that the
positive solutions in the above mentioned special cases rely heavily on
group-theoretic techniques.

Suppose now that R has characteristic 0. In this case, if G is an R-
favorable torsion group, R(G) = R(H) is known to imply that G = H if
R is an integral domain [3] and, more generally, if R is indecomposable
[6]. We remark that the proofs of these results, in contrast to the
characteristic p case, rely heavily on ring-theoretic techniques. We now
state a second problem.

Problem 2. Suppose R is a commutative ring with 1 and of
characteristic 0. If G and H are R-favorable torsion groups and if
R(G) 2 R(H), is G isomorphic to H?

In the next section of this paper, we show that Problems 1 and 2
are actually equivalent (Theorem 2.3). Thus, for example, one cannot
obtain a positive result in the characteristic p case and, at the same
time, a counterexample in characteristic 0. So that we do not leave the
impression that Theorem 2.3 is merely a case of ignotum per ignotius,
we obtain another class of rings R for which Problem 2 has a positive
answer. Precisely, if the additive group of R is assumed to be torsion-
free (in which case R is necessarily of characteristic 0), it is shown
that the isomorphism class of R(G) determines the isomorphism class
of G, provided of course that G is R-favorable (Theorem 3.2). Finally,
in the last section, we construct a ring R of characteristic 0, whose
additive subgroup has nontrivial p-torsion for all primes p, but for
which Problem 2 has an affirmative answer (Example 4.6). Thus, it
is shown that the hypothesis of torsion-free R in Theorem 3.2 is not
necessary.

In the sequel, all rings considered will be commutative with 1 and
R will always denote such a ring. Moreover, all groups considered are
abelian and will be written multiplicatively (with the exception of the
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additive groups of rings). If G is an arbitrary abelian group, and if p is
a prime number, GG, denotes the p-component of the torsion subgroup
of G, and Gr = II{G, : p € inv (R)}.

2. The problems are equivalent. We begin with two lemmas
which are generalizations of Lemmas 2 and 3 in [2]. W. May proved
these under the assumption that the ring R is an algebraically closed
field. However, as we shall see, the hypothesis that R is algebraically
closed is not necessary provided that R contains sufficiently many roots
of unity. As a reference for the character theory used in the proof of
our first lemma, we refer the reader to [1, Section 3.2].

Lemma 2.1. Suppose H is a subgroup of a torsion group G of
finite index n. Suppose further that R is an integral domain such that
for all primes p with G, nontrivial, p € inv(R) and R contains a
primitive pF-th root of unity for all positive integers k. Then R(G)
and R(H)™ = R(H) x --- x R(H) (n factors) are isomorphic as
R(H)-algebras. Moreover, the isomorphism can be chosen so that
a € R(H) C R(G) corresponds to (a,...,a) € R(H)".

Proof. Select a finite subgroup G of G such that G = G; H and set
H, = Gy N H. Observe that |G1/H;| = n.

We claim that R(G1) =& R(H;)" as R(H;)-algebras. To see this, let
F be the quotient field of R, set m = |Hi|, and let X7, ..., X,, denote
the distinct characters of Hy; over F. For 1 < ¢ < m, set

ei = (1/m)Y {Xi(h™")-h:he H}.

Then, {ei,...,en} is a complete set of pairwise orthogonal primitive
idempotents for F(Hy). For 1 <i<mand 1 <j <mn, set

eij = (1/mn) Y {Xij(97")-g:9€ G},

where X1, ..., X;, are the distinct characters of G; over F' extending
X;. Thus, each e;; is a primitive idempotent of F(G1) with e; = > {e;; :
1 < j < n}. By our hypotheses on R, it is evident that each e; and
e;; are actually elements of R(H;) and R(G1), respectively. Moreover,
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each element of R(H7) - e; (respectively, R(G) - e;;) can be written
uniquely in the form re; (respectively, re;;) for some r € R. Thus, it is
easily checked that the correspondence re;; — re; is an isomorphism of
R(H,)-algebras from R(G1) - e;; onto R(H;) - e;. Now, for 1 <j <n,
set

fj:Z{eijzlﬁigm}.

Then fi,..., f, are pairwise orthogonal idempotents of R(G) with
YA{fi 1 < j < n} =1 Consequently, R(G1) - f; = R(H.) as
R(Hy)-algebras. From this, it easily follows that R(Gy) = R(Hp)"
as R(Hj)-algebras, and the claim is established.

Finally, by applying ®pg(u,)R(H) to both sides of the isomorphism
R(Gy) & R(H,)"™, we obtain R(G) = R(H)™ as R(H;)-algebras.
Moreover, it is not difficult to see that the isomorphism is constructed
so that & € R(H) C R(G) is carried to (a,...,a) € R(H)"™. Therefore,
the isomorphism is also an R(H)-algebra isomorphism. o

Lemma 2.2. Suppose that G and H are p-groups, R is an integral
domain with p € inv (R), and that R contains a primitive pF-th root of
unity for every positive integer k. If |G| = |H|, then R(G) = R(H) as
R-algebras.

Proof. It suffices to show that R(G) = R(K) where K is a direct sum
of cyclic groups of order p. Select a smooth chain G; < Gg < --- <
G; < -+ (i < A) of subgroups of G = U;<)\G; such that

(A) [Gi| =p.

(B) For each ordinal i < A, |Gi+1/G;| = p.

Let L be a direct sum of cyclic groups of order p with |L| > |G|. Select
a smooth chain K7 < K3 < -+ < K; < --- (i < A) of subgroups of L
satisfying:

(A) |Kil =p.

(B') For each ordinal i < A, |K;41/K;| = p.

By (A) and (A’), there is an isomorphism vy : R(G1) — R(K3).
Suppose 1 < ¢ < A and, by induction, for each j < i, an isomorphism

¥; + R(Gj) — R(Kj) has been constructed such that i, extends
Y for each k& < j. We show how to construct an isomorphism
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¥; : R(G;) — R(K;) which extends each ;.

If 7 is a limit ordinal, the construction of such a v; is easily obtained
by taking unions and using the smoothness of the sequences of G;’s
and K;’s. Now suppose i is isolated. Say ¢ = j 4+ 1. By Lemma 2.1 and
by (B) and (B'), there exist isomorphisms g; : R(G;) — R(G;)? and
k; : R(K;)P — R(K;), where gj(a) = («,...,a) for all a € R(G;) and
kj(,B, ce. ,,8) = forall g € R(K]) Let f = H¢] : R(G])p — R(Kj)p,
where [[9; = 9¥; x---x1; (p factors). Setting ¢; = kjofog; : R(G;) —
R(K;) yields an isomorphism extending 1);.

Therefore, by taking K = U;<,K;, we obtain an isomorphism 9 :
R(G) — R(K). Moreover, since K is a subgroup of L, K is also a
direct sum of cyclic groups of order p. o

In [6] it was shown that if F' is a field of characteristic p and if G
and H are abelian groups with F(G) = F(H) as F-algebras, then
F(G/Gp) & F(H/Hp). This means that if G is a torsion group,
then F(G,) = F(H,), whenever F(G) = F(H). Using this fact in
conjunction with Lemma 2.2, we obtain the main result of this section.

Theorem 2.3. Problems 1 and 2 are equivalent. More precisely, the
following statements are equivalent.

(1) For every field F' of nonzero characteristic p and for every p-group
G, F(G) > F(H) for some group H implies that G =~ H.

(2) For every ring R of characteristic 0 and for all R-favorable
torsion groups G and H, R(G) = R(H) implies that G = H.

Proof. (1) = (2). Suppose R has characteristic 0 and G and H
are R-favorable torsion groups with R(G) = R(H). Suppose p is a
prime number such that G, is nontrivial. Thus, p ¢ inv (R) and there
exists a maximal ideal M of R with p € M. Set F = R/M, a field
of characteristic p. Applying F®pg to both sides of R(G) = R(H),
we obtain F(G) = F(H) as F-algebras. By the remark preceding the
statement of the Theorem, F(G,) = F(H,). Thus, an application of
(1) implies that G, = Hp, for every p ¢ inv (R). Therefore, G = H.

(2) = (1). Suppose F is a field of characteristic p and F(G) = F(H)
for some p-group G and group H. Observe that H must also be a
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p-group. Moreover, |G| = |H|. Let C, denote the set of all complex
pF-th roots of unity, k > 1. If S = Z[1/p, C,], Lemma 2.2 implies that
S(G) =2 S(H). Thus, if we set R = S x F, note that R(G) = R(H)
and that both G and H are R-favorable torsion groups. Therefore, (2)
implies G = H. ]

3. Torsion-free R. In this section we show that Problem 2 has an
affirmative answer if the additive group of R is torsion-free. Clearly,
such a ring has characteristic 0. For convenience, let zd (R) denote the
set of prime numbers that are zero divisors in R. Thus, R is torsion-
free if and only if zd (R) = @. We begin with some elementary facts
concerning the relationship between the sets inv (R) and zd (R) and the
minimal prime ideal structure of R.

Lemma 3.1. (a) p € inv (R) if and only if p € inv (R/P) for every
minimal prime tdeal P of R.

(b) If R/P has nonzero characteristic p for some minimal prime
ideal P, then p € zd (R). The converse holds if R has trivial nilradical.

Proof. (a) If p € inv(R), then p inverts in every homomorphic
image. In particular, p € inv(R/P) for every minimal prime ideal
P. Conversely, if p ¢ inv (R), there exists a maximal ideal M of R
and a minimal prime ideal P with p € M and P C M. Therefore,
p ¢ inv(R/P), since R/M is a homomorphic image of R/P and
p ¢ inv (R/M).

(b) If R/P has nonzero characteristic p for some minimal prime
ideal P, then p € P. Since every minimal prime ideal consists of zero
divisors, p € zd (R). Conversely, if R has trivial nilradical, the set of
zero divisors of R is the union of the minimal prime ideals of R. Thus,
if p € zd (R), p € P for some minimal prime ideal P. In this case R/P
has characteristic p. ]

Theorem 3.2. Problem 2 has an affirmative answer for a torsion-
free ring R. More precisely, if the additive group of R s torsion-free
and if G and H are R-favorable torsion groups with R(G) = R(H),
then G = H.
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Proof. Suppose p ¢ inv (R). By Lemma 3.1(a), p ¢ inv(R/P) for
some minimal prime ideal P. Moreover, since R is torsion-free, zd (R) =
&. Therefore, Lemma 3.1(b) implies that R/P has characteristic 0.

If R(G) =2 R(H) for R-favorable torsion groups G and H, then
(R/P)(G) = (R/P)(H). Since R/P is an integral domain of char-
acteristic 0, it follows from [3 or 5] that G/Gr/p = H/Hp p. As
p ¢ inv (R/P), we conclude that G, = H,, for every p ¢ inv (R). Since
G and H are both R-favorable torsion groups, G = H. i

Suppose that G and H are (possibly mixed) abelian groups. As
shown in [5], for R(G) = R(H) to always imply G/Gr = H/Hp, it
is necessary that R be an ND-ring. This means that no matter how R
is decomposed as a finite direct product, at least one of the factors has
the same invertible primes as R itself.

Example 3.3. Suppose p1,p2,... ,Pn, n > 2, are distinct prime
numbers and set R = Z[1/p1|x---xZ[1/p,]. Note that inv (R) = @ and
so R is not an ND-ring, since each factor contains an invertible prime.
Therefore, by Theorem 2 in [5] and its proof, there exist nonisomorphic
mixed abelian groups G and H with R(G) = R(H). On the other hand,
suppose R(G) = R(H) where G and H are torsion groups. Since G
and H are R-favorable and since R is torsion-free, Theorem 3.2 implies
G=>~H.

4. Mixed R and further examples. In Theorem 3.2 it was shown
that the question asked in Problem 2 has an affirmative answer if R is
torsion-free. This section is devoted to constructing an example of a
mixed ring R of characteristic 0 which also yields an affirmative answer
to Problem 2. In fact, the R we produce will be seen to have nontrivial
p-torsion for every prime p. Therefore, the hypothesis in Theorem 3.2
that R is torsion-free is sufficient, but not necessary. Along the way, we
shall also obtain some results concerning isomorphism of group algebras
of arbitrary abelian groups.

At this point we direct our attention to several needed technicalities.
First, by an idempotent of R, we mean a nonzero idempotent of R.
Call a set of idempotents {ej, ... ,en} C R a complete orthogonal set if
eiej =0fori # jand e;+ - +e, = 1. Inthiscase R = Re1®- - -®Reyp,
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and each Re; may be viewed as a ring with identity e;. As usual, an
idempotent e is called primitive if Re is indecomposable.

Lemma 4.1. Suppose R and S are rings with complete orthogonal
sets{e1,...,em} CRand F = {f1,... ,fn} CS. Ifeach f;, 1 < j <nmn,

is primitive and if ¢ : R — S is an injective ring-homomorphism, then:
(a) Forl<i<m, E;,={f¢€F :ye)f = [} is nonempty and
Plei) = 2 Af : f € By},
(b) Eu,...,E,, partition F.
(

c) Each E; is uniquely determined by e;. That is, if F; CF with
Y(e;)) =>A{f:f € F;}, then F; = E;.

Proof. (a) Note that ¥(e;) = v(e;)f1+---+v(e;) fn- Since ¢(e;) #0
and is idempotent, each f; primitive implies that v (e;) f; = f; for some
Jj. Therefore, E; # @ and 9(e;) = > {f: f € E;}.

(b) Suppose m > 2 and f € E;NE; with 1 < i < j < m. Then,
Y(e;) = f+eand ¢Y(e;) = f+ ¢, wheree = > {s:s € E;,—{f}}
and ¢/ = ) {s:s € E; — {f}}. Hence, 0 = 9(eje;) = f + e’ and
0= f%(f+ee') = f+(ef)(e'f) = f, contradicting f # 0. Consequently,
E;NE; = @ whenever i # j. Also, 1 = (1) = ¢(e1 + -+ e,) =
YuxAf fe B} =3{f:f e UE;}. Therefore, F = U;E; since
fi,..., fn are pairwise orthogonal.

(c) This follows easily from the fact that F is a complete orthogonal
set for S. We omit the details. o

For a directed set I, a direct system over I will be written as
{Sa(a € I);pap}. Here the S, are objects in some category (for
us, either rings or sets) and, for each a < f, ¥ag : Sa — Sg
is a morphism satisfying 1o, = id,, the identity map on S,, and
Yy Pap = Yoy whenever a < B <. We write lim_,; S, for the direct
limit of {Sy( € I);9ap}. Inverse systems are defined dually, and we
employ the notation lim, ; S, for the inverse limit of the inverse system

{Sa(a € I); 'll)ﬂa}'

As the following result is a routine exercise, we omit the proof.
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Lemma 4.2. Let {So(a € I);thap} be a direct system of rings and
ring-homomorphisms over a directed set I.

(a) If each S, has characteristic 0, then lim_,; S, has characteristic
0.

(b) If each Sy is indecomposable, so is lim_,1 S, .

In Theorem 3 of [5], ND-rings were characterized as those rings R
which possess an indecomposable homomorphic image S with inv (S) =
inv (R). The following result shows that S may be taken to have
characteristic 0, if R is an ND-ring of a special type.

Theorem 4.3. Suppose R has characteristic 0, and whenever R
is written as a finite direct sum R = Ry @ --- ® R,, of nonzero ideals
Ry, ..., Ry, there exists an i, 1 < i < n, such that R; has characteristic
0 and inv (R;) = inv (R). Then R has an indecomposable characteristic
0 homomorphic image S with inv (S) = inv (R).

Proof. Let {R, : o € I} be the set of finitely generated subrings
of R indexed by a set I. Partially order I by defining @ < 3 for
a,B € Iif and only if R, C Rg. Note then that I is a directed set. If
a < f,let Yop : Ry — Rp be the inclusion map. Thus, a direct system
{Ru( € I);Yop} is obtained. Moreover, we may view R = lim_,; R,,.

Since each R, is Noetherian, we have Ry, = Ro€a1 @ -+ ® Ra€an(a),
where n(a) is a positive integer and Eq = {€a1,--- ,€an(a)} S & com-
plete orthogonal set for R, (and hence R) with each R,e,; indecom-
posable (1 < i < n(a)). For each pair o < § in I, use parts (a) and (b)
of Lemma 4.1 to obtain a partition Egy, ... ,Eg‘n(a) of Eg such that
Vapleai) = 2 {f: f € Eg;}, for 1 <i < n(a).

For each 8 > «, define a mapping Mg, : Eg — E, as follows: Given
e € Eg, select the unique Ef;, 1 < j < n(a), with e € EF;. Define
Aga(€) = eqj. Note that the mapping is well-defined by Lemma 4.1.
It is now easily verified that {E, (o € I); Ago} is an inverse system of
nonempty finite sets.

For each o € I, set Fy, = {e € E, : inv(Rqe) Cinv (R) and R,e
has characteristic 0}. The hypotheses on R guarantee that each F, is
nonempty. If we set g0 = Aga|Fu, an inverse system {F, (o € I); pga}
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of nonempty finite sets is obtained. Since lim, ; F,, is known to be
nonempty, for each a we may select an idempotent e, € F, with
paal(es) = eq for all B > a.

For each «, let 7, : R, — Rgeq be the projection map and,
if a < B, set ngg = m3 © (Map|Ruen). In this way, a direct sys-
tem {Rpeqa(a € I);nap} of rings and ring-homomorphisms is ob-
tained, where each R,e, is indecomposable of characteristic 0 and
inv (Rye,) Cinv (R). Set S =1lim_,; Rye,. By Lemma 4.2, S is inde-
composable of characteristic 0. Moreover, for each a < 3, the diagram

Yag

R, —= Ry

Raea &) Rg@g
commutes. Recalling that R = lim_,; R,, we have an induced ho-
momorphism 7 : R — S, which is surjective, since each m, Iis.
The existence of such a homomorphism = : R — S implies that
inv (R) Cinv (S). Finally, since inv(R,,e,)Cinv(R) for each «,
inv (S) Cinv (R). O

Before proceeding to our final example, it is desirable to recall some
notions from [5]. First a ring R is said to satisfy the Isomorphism
Theorem if whenever R(G) = R(H) for (possibly mixed) abelian
groups G and H, then G/Gr = H/Hg. In [5] it was shown that
any indecomposable ring of characteristic 0 satisfies the Isomorphism
Theorem. Combining this with Theorem 4.3, we obtain

Corollary 4.4. If R has the hypotheses of Theorem 4.3, then R
satisfies the Isomorphism Theorem.

Proof. By Theorem 4.3, there exists an indecomposable homomorphic
image S of R such that S has characteristic 0 and inv (R) = inv (5).
Suppose R(G) = R(H) for abelian groups G and H. Viewing S as
an R-algebra, we have S(G) = S ®gr R(G) = S ®r R(H) = S(H).
Therefore, by the above mentioned result of [5], G/Gr = G/Gs =
H/Hs = H/Hp. O
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In [5] it was shown that a ring R which satisfies the Isomorphism
Theorem must be an ND-ring. Moreover, the converse was shown to
hold if inv (R) is not the complement of a single prime number. As a
preliminary fact needed in our final example, we now give an example
of an ND-ring with exactly one noninvertible prime which satisfies the
Isomorphism Theorem. Our example will not be a finite product of
indecomposable rings of characteristic 0. This latter class contains all
previously known examples of rings R with exactly one noninvertible
prime for which the statements “R is an ND-ring” and “R satisfies the
Isomorphism Theorem” are equivalent.

Example 4.5. Fix a prime number p. For each positive integer n,
let (p™) be the ideal of Z generated by p™ and set

RP:Z/(p)xz/(pz)X'--XZ/(pn)x...

Clearly, inv (R,) contains all primes but p. Moreover, R, is a charac-
teristic 0 ND-ring satisfying the hypotheses of Theorem 4.3 (because
whenever R, is written as a finite product, at least one of the factors
is isomorphic to a product of finitely many Z/(p™)’s for various n’s).
Therefore, Corollary 4.4 implies that R, satisfies the Isomorphism The-
orem.

We can now give our final example.

Example 4.6. There exists a ring R such that the additive group
of R has nontrivial p-torsion for every prime p, yet R yields a positive
response to Problem 2.

Proof. For a prime number p, let R, be as in Example 4.5. If
P1,P2y.-+ yPn ... are the prime numbers, set

R=R, xRy, x---xRp, X---

Note that R has nontrivial p-torsion for all primes p and inv (R) = &,
so that every torsion group is R-favorable. Suppose now that G and
H are torsion groups with R(G) = R(H). Then R, (G) = R, (H)
for every n > 1, and Example 4.5 shows that G, = Hp,. Therefore,
G~H. O



1122 W. ULLERY

REFERENCES

1. G. Karpilovsky, Commutative group algebras, Marcel Dekker, New York, 1983.

2. W. May, Invariants for commutative group algebras, Illinois J. Math. 15 (1971),
525-531.

3. , Isomorphism of group algebras, J. Algebra 40 (1976), 10-18.

4. , Modular group algebras of simply presented abelian groups, Proc.
Amer. Math. Soc. 104 (1988), 403—409.

5. W. Ullery, Isomorphism of group algebras, Comm. Algebra 14 (1986), 767-785.

6. , A conjecture relating to the isomorphism problem for commutative
group algebras, in Group and semigroup rings, North-Holland Math. Studies No.
126, North-Holland, Amsterdam, 1986, 247-252.

7. , Modular group algebras of N-groups, Proc. Amer. Math. Soc. 103
(1988), 1053 1057.

8. , Modular group algebras of isotype subgroups of totally projective p-
groups, Comm Algebra 17 (1989), 2325-2332.

9. , An isomorphism theorem for commutative modular group algebras,
Proc. Amer. Math. Soc., to appear.

DEPARTMENT OF MATHEMATICS, AUBURN UNIVERSITY, AUBURN, ALABAMA 36849-
5307



