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NO CONTINUUM IN EZ HAS THE TMP;
II. TRIODIC CONTINUA

L.D. LOVELAND

ABSTRACT. A subset X of the Euclidean plane E2 has
the triple midset property (TMP) if, for every line segment
[z,y] in E? such that {z,y} C X, the perpendicular bisector
of [z, y] meets X in exactly three points. Resolving the planar
aspect of a more general question, the main theorem shows
that no compact, connected, nondegenerate subset of E2 can
possess this triple midset property.

1. Introduction. Let (X, p) be a metric space, and let = and y be
two points of X. The midset M(x,y) of  and y is the set of all points
m of X such that p(z,m) = p(y,m). If each of its midsets consists
of two points, the metric space X is said to have the double midset
property (DMP); for example, a circle in the Euclidean plane E? has
the DMP. It has been conjectured that a continuum with the DMP
must be homeomorphic to a simple closed curve, a conjecture which
has been confirmed for continua lying in E? [3]. A metric space in
which every midset consists of three points is said to have the triple
midset property (TMP), but no example is available of a continuum
with the TMP. In this paper I show that no such continuum exists in
E?, the space where one might first look for examples.

Although no examples have been found of continua with the TMP, it
follows from a theorem of Bagemihl and Erdds [1] that there exists
a subset of E? with the property that its intersection with every
line consists of three points. Such a three-point set has the TMP.
Mazurkiewicz [6] had previously demonstrated the existence of a subset
E? that meets every line in exactly two points.

Midsets have also been called bisectors [2] or equidistant sets [8, 9],
but, for subsets of Euclidean spaces, it is helpful to distinguish between
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bisectors and midsets. If ¢ and b are two points of a subset X of E?,
the bisector B(a,b) of a and b is the straight line that bisects, and is
perpendicular to, the line segment joining a and b, while the midset
M(a,b) is the intersection of B(a,b) with X.

A continuum is a compact, connected metric space containing more
than one point, and a planar continuum is a continuum that lies in the
Euclidean plane E? and inherits its metric topology. Also, E% — B(a, b)
has two components; the one containing the point a is called the a-
side of B(a,b). The standard Euclidean metric p is used for E2. An
arc is a continuum homeomorphic to a closed interval [0,1] on the
real line, while a ¢riod is any homeomorphic image of the union of the
closed intervals [(—1,0),(1,0)] and [(0,0),(0,1)] in E?. The image v
of (0,0) in a triod T is called the vertex of T" while the closures of the
components of T'— {v} are called the legs of T. A simple closed curve
is a homeomorphic image of a circle in E2.

Lemma 1.1. A continuum with the TMP is locally connected, path
connected, and locally path connected.

An indirect proof of Lemma 1.1 is easily obtained using [10, 28D, p.
209] (see [5, Lemma 2]). For more details relating to Lemma 1.2, see
[5, Lemma 3].

Lemma 1.2 [7, Theorem 75, p. 218]. A locally connected continuum
is either an arc, a simple closed curve, or it contains a triod.

The proof of the result in the title breaks into three parts by virtue of
Lemma 1.2. The first two of the three parts follow from [4]. Theorem
2.1 of [4] shows that no simple closed curve in E? can have the TMP,
and Theorem 3.1 of [4] shows that no arc in E? can have the TMP.
Theorem 2.1 of this paper completes the result because it states that
no continuum containing a triod can have the TMP. The summary
theorem is given as Theorem 2.2. However, the general question [5,
Question 4] about the existence of a continuum with the TMP remains
open.

An arc or a simple closed curve A is said to cross a line L in E? at
a point m if there are arcs A’ and A” in A such that A’ N A" = {m}
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and A’ and A” lie on opposite sides of L. The arc A is said to bounce
off L at a point m if there is a subarc A’ of A such that m lies in the
interior of A’, A'NL = {m}, and A’ — {m} lies in a single component of
E?—L. Also A is said to bounce off a bisector B(a,b) at m to the a-side
of B(a,b) if A" — {m} lies on the a-side of B(a,b). An arc A is said to
hang to the side S of a line L at a point v € L if v is an endpoint of A
and there exists a neighborhood V of v such that (A —{v})NV CS.

Frequently used in the sequel, Lemma 1.3 says, roughly, that if
X C E? and some bisector B of X has one bounce point and two
crossing points of X, then, under certain limit point conditions, there
must be a bisector near B that intersects X at least four times. Thus, X
cannot have the TMP. A slightly different version of Lemma 1.3 appears
as Lemma 2.1 of [4]. The proof outlined there establishes Lemma 1.3.3
below, and it is easily modified to prove both Lemma 1.3.1 and 1.3.2.

Lemma 1.3. If X C E?, X has the TMP, C is a circle centered at
v, V is a component of E* — C, a and b are points of C N X, and X
contains three disjoint arcs, two that cross B(a,b) and one, say A, that
bounces off B(a,b) at the point v, then:

1. a and b cannot both be limit points of V N X,
2. a cannot be a limit point of both X NInt C' and X N Ext C, and

3. If, in addition, A bounces off B(a,b) to the a-side of B(a,b) at
v, then a cannot be a limit point of X NExt C' and b cannot be a limit
point of X NInt C.

Open questions and conjectures relating to the TMP, and to sets
whose midsets consist of n points, are stated at the end of Section 3 of
[4] and in [5].

2. No triodic continuum in E? has the TMP. From Lemmas
1.1 and 1.2, a continuum with the triple midset property is either an
arc, a simple closed curve, or it must contain a triod. Theorem 2.1
rules out the latter for plane continua.

Theorem 2.1. If a continuum in E? has the TMP, then it cannot
contain a triod.
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Proof. Suppose X is a continuum in E? such that X contains a
triod T and X has the TMP. Let the vertex of T be v, and let W;,
for i = 1,2,3, denote its legs. For each » > 0 let C'(r) denote the
circle of radius r which has its center at v, and choose u > 0 such that
C(u) NW; # @, for each . Then T contains a triod T with vertex v
and legs L; such that, for : = 1,2,3, L; C W; and L; has an endpoint
e; such that L; N C(u) = {e;}. For p € E2, let C(p) = C(p(v,p)). If
x and y are two points of X, then a point ¢ of M(z,y) — {v} is called
a bad point of B(z,y) if no arc in X crosses B(z,y) at c. The proof is
broken into a sequence of 13 enumerated assertions, the last of which
gives the contradiction.

(1). For v' € X, define B(v') to be the collection of all bisectors
B(z,y) such that {z,y} C X, v' € B(z,y), and some point of M(z,y)
is a bad point of B(z,y). Then 5(v’) is countable.

Proof of (1). Suppose there exists v € X such that B(v') is
uncountable. Let B(v') = 3. For each B € 3, there exists an interval
I(B) C B such that the midpoint ¢ of I(B) is a bad point of B. The
collection 8’ = {I(B) : B € 3} is an uncountable collection of pairwise
disjoint intervals, each of which lies on a line through v’, so there must
exist a sequence {I;} of intervals in 8’ which converges to an interval
Iy in B’ in such a way that I, and I, lie on opposite sides of the
bisector By containing Iy, for each n. Let ¢; be the midpoint of I;
for i = 0,1,2,..., and note that {¢;} converges to cy. Let N be a
neighborhood of ¢y such that N contains no endpoints of any interval
I; and N N X is path connected (see Lemma 1.1). Let A be a path in
N N X joining two points, cg;,, and cop,+1. Then A contains an arc that
crosses By at cg, contradicting the fact that co is a bad point of B. It
follows that 3’ and § are countable sets, and (1) follows.

(2). If, for some r > 0, C(r) N X contains an arc and c is a point
of C(r)N X, then ¢ cannot be a limit point of both X N Int C(r) and
X NExt C(r).

Proof of (2). Suppose there exists r > 0, an arc A C C(r)NX, and a
point ¢ € X NC(r) such that ¢ is a limit point of both X NInt C(r) and
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XNExtC(r). Let m € Int A such that m # ¢. Since X must contain an
arc that bounces off B(m,¢) at v and X has the TMP, it follows from
Lemma 1.3.2 that B(m, ¢) contains a bad point p. Then X contains an
arc E which hangs to the, say, c-side of B(m,c) at p. Choose a point
my € A such that E crosses B(m,c), and, using Lemma 1.3 again, let
p1 be a bad point of B(mjy,c). Then an arc F; exists in X — E such
that p; € E;. Choose a point mo € A such that E and E; each cross
M(m2,c). But this contradicts Lemma 1.3.2 because B(mg,c) must
contain, in addition to these two crossing points, the point v where an
arc in X bounces off B(ma,c). This proves (2).

(3). If, for some r > 0, C(r)NX contains an arc A, then the endpoints
of A cannot both be limit points of either X NInt C' or of X NExt C.

Proof of (3). The proof is much the same as for (2).
(4). If r € (0,u), then each component of C'(r) N X is a point.

Proof of (4). Suppose there exists an r € (0,u) such that C(r) N X
contains an arc. It follows from (2) that, for each ¢ € {1,2,3}, there
exists an arc ; such that §; C L;NC(r), and from (3) that one endpoint
a; of 6; is a limit point of L; N Int C(r) and the other endpoint b; of
6; is a limit point of L; N Ext C(r). If each 6; is given an orientation
from a; to b;, then some two of them, say #; and 62, must have the
same orientation, and with no loss in generality it may be assumed
that ajbjasb, is the clockwise orientation on C(r). Let w be the
clockwise rotation about v such that w(a;) = a2, and choose an arc
¥ in w(f;) N 6 such that ay € V. For each z € ¥, B(ay, ) separates
a; from ay and there exists an arc in T that bounces off B(ay, )
at v. For i € {1,2}, define ¥; = {x € ¥ : thereis an arc 4, C
T such that A, bounces off B(ay,z) at v to the a;-side of B(ay,x)}.

Suppose ¥, is dense in some open subset ® of ¥, and let z € ®. From
Lemma 1.3.3 there is an arc P in X such that P hangs off B(ay,z) to
one side at a point p # v. Choose y € ® N ¥y such that P crosses
B(ay,y) and, using Lemma 1.3.3 again, let P’ and @ be arcs in X such
that @ hangs off B(ay,y) at a point ¢ where g # v, P’ C P, P’ crosses
B(as,y), and P'NQ = @. Choose z € ® N ¥, such that both P’ and @
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cross B(ay,z). Since z € ¥y, there is an arc A, in X that bounces off
B(as,2) at v to the ag-side of B(aj,z). But this contradicts Lemma
1.3.3 since a; is a limit point of X N Int C. It follows that ¥y is not
dense in any open subset of .

Since ¥ = ¥y U ¥y, ¥; must be dense in ¥. From the definition
of ¥, for each € ¥y, the point w !(z) = 2’ € 6; has the property
B(ay,z) = B(2',a3). This means that there is an open subset ® of 6,
and a dense subset ¥} of &' such that, for 2’ € ¥/, there is an arc A,
in T that bounces off B(z',az2) at v to the a;-side of B(z',az). Then,
because as is a limit point of X NInt C, a contradiction to Lemma 1.3.3
is obtained just as in the previous paragraph, and (4) follows.

An arc A is said to span an open annulus U if Int A C U and the
endpoints of A lie in different components of BdU. An annulus at
a point v' is the open annulus between two circles centered at v'. If
v' € X and r > 0, let C(r,v") denote the circle at v with radius r.

(5). If X contains a triod 7" with vertex v/, U is an annulus at v,
u’ is a number such that C(u',v') intersects each leg of T, and there
exist arcs Ay, A2, Az in X NInt C(uv',v"), each spanning U, such that,
for every © € Ay, points y € As and z € Aj exist with the following
properties:

(a) p(v',z) = p(v',y) = p(v', ) and
(b) {B(x,y),B(y,z),B(z,2)} C B(v),
then there exists an annulus U’ in U at v’ and three arcs X1, Xo, X3

such that, for each i, X; C A;, X; spans U’, and X; U {v'} lies in a
straight line.

Proof of (5). Since B(v') is countable by (1), the collection S’
of all ordered triples of elements of 3(v’) is also countable. Let Tj,
i=1,2,3,..., denote the elements of 3’, and, for each i, define M; to
be the set of all points x € A; such that there exist y € As and z € Aj
with (B(z,y), B(y, 2), B(z,2)) = T;. By hypothesis, A; = UM;, and
it is not difficult to prove that each M; is closed. A Baire category
theorem [10, 25, p. 185] shows the existence of an integer n and an arc
X1 in Ay such that X| C M, Since v’ is the vertex of a triod in X and
C(u',v") intersects each leg of T", (4) can be applied at the vertex v’ to
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see that X{ cannot lie in a circle at v’. This means that there exists an
open annulus U’ in U at v’ and a subarc X; of X] such that X; spans
U'. Let (By, Be, B3) = T, and let R;, for i € {1,2, 3}, be the reflection
of E? in B;. If the composition RyR; is denoted by R, a rotation about
v, then R3RoR;(x) = R3R(z) for € X1. However, the reflection R
changes the orientation of three noncollinear points, so the set X; U{v'}
must be collinear. Let Xo = R;(X;) and X3 = Ra(X2) to complete

(5)-

(6). If v is the vertex of a triod 7" in X such that two legs of T” lie
in C(u) UInt C(u), then v =v'.

Proof of (6). Suppose X contains a triod 7' as in the statement
of (6) such that v’ # v. There exist open annulus U at v’ and three
disjoint arcs Aj, As, Az in distinct legs of 7" that span U such that
A1 U Ay C C(u)UIntC(u). Applying (4) at the point v’, one can
also insist that, for each circle C' centered at v’ and lying in U, each
component of each A; N C' is a point. Let = € Int Ay, and let C’ be
the circle at v’ with radius p(v',z). Then = must be a limit point of
Y N X where V is either Int C' or Ext C’. Since each component of
A; N C'" is a point, there must exist points y € Ao NC' and z € A3 NC’
such that each is a limit point of X N'V. By Lemma 1.3.1, each of
B(z,y), B(z,z), B(y,2) has a bad point, so the hypothesis of (5) is
satisfied. By the conclusion of (5) it may be assumed that each arc A;
lies in a line through v’. One of A; or As, say A;, must fail to lie on
the line through v and v’. Using (4), Lemma 1.3.1, and the fact that
the segment A; must have its interior in Int C'(u), choose an annulus
U’ at v and three disjoint arcs A}, A}, A} in X spanning U’ such that
A} C A; and conditions (a) and (b) of (5) are satisfied relative to the
point v. Then, from (5), there must exist a subarc X7 of A} such that
X1 U {v} lies on a line. But X; C A; and the segment A; does not lie
on a line through v. This contradiction establishes (6).

(7). If Lis an arc in X N(C'(u)UInt C(u)) such that v is an endpoint
of L and 0 < t < u, then C(¢t) N L cannot contain three points.
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Proof of (7). Suppose there exists ¢ € (0,u) such that C(¢t) N L
contains three points. From (4) each component of LNC(t) is a point,
so an annulus U exists at v such that L contains three disjoint arcs
Ay, As, As each spanning U and U C Int C(u). In the order on L with
v as the first point, assume 4; < Ay < As. From (4) and Lemma
1.3.1, as used in the proof of (6), one sees that (5) applies to these
arcs, and, using (5), it may be assumed that each of the sets A; U {v}
lies in a straight line. Let r and s be such that BdU = C(r) U C(s)
with r < s. For i € {1,2,3}, let a; be the point of A; N C(s), let
B; = B(a;,a;1+1) (mod 3), and let p be the point where L crosses
Bs. Impose a rectangular coordinate system such that v is the origin,
Bs is the z-axis, and p has a positive z-coordinate. For convenience,
assume also that A; lies above the z-axis, and, using (6), assume
(L2 U L3) NL = {’U}

Let W and W* be the two open sectors of E? at v defined by the
two rays from v through A; and As such that p € W. Then Ay C W
because if A5 C W* and p € W, then L would cross either By, B,
or Bj twice, contrary to Lemma 1.3.2. For similar reasons, no Bj,
J € {1,2,3}, can separate A; U A3 from Ay. Then each Bj; intersects
both W and W*. From this it can be deduced that B; U B, separates
A; U A; from Bs — {v}. Let BsN X = {p,q,v}, let P be an arc in
L — {v} that crosses Bs at p, and observe that, from Lemma 1.3.2, no
arc in X can cross B3 at q. To see that no arc in X can bounce off
Bj3 at g, suppose G is such an arc. Because A; and A3z are segments,
there is a circle C' at ¢ and points a € C' N Ay and b € C N Az such
that a and b are limit points of A; NInt C' and A3 NInt C, respectively.
But this contradicts Lemma 1.3.1 because X crosses B(a,b) at v, P
crosses B(a,b), and G bounces off B(a,b) at q. Therefore, ¢ must be
an endpoint of each arc in X that contains it.

Suppose g € L. Since By U By separates A; U A3 from B3 — {v} and
q € B3 — {v}, L must cross either By or By twice. But this contradicts
Lemma 1.3, so g ¢ L. For the same reason ¢ cannot belong to any arc
in X — {v} that contains L. Let L' be an arc in X from v to ¢, and
note that L' N L = {v} from (6). With no loss in generality, assume
L3 ¢ L' since L' cannot contain both Ly and Ls. Then LN L' = {v},
LNLs={v},and L' N (Ls — {e3}) = {v}.

For points = and y on the z-axis, let “x < y” refer to the usual order
of their z-coordinates; therefore, v < p. Suppose p < g¢. Then an arc
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in L from A; to Ag separates ¢ from v in the closure of W. By Lemma
1.3, L' cannot cross either By or Bs, so L' must intersect L — {v}. But
this contradicts the previous paragraph, and ¢ < p. Let o denote the
degree measure of the angle BdW, and let K be the circle of radius
p(q,a1) centered at gq.

Suppose ¢ € Int C(u). Then q ¢ L; for i € {1,2,3} because the
endpoints of the L;’s lie in C(u). Suppose further that Ly C L', as
could happen if L' goes through es before getting to q. Choose u’ such
that 0 < ' < uw and C(u') separates ¢ from es. Then there exists a
component G of L' —C(u') with endpoints z and y in C(v’). By Lemma
1.3.1, B(z,y) cannot be crossed by L since it is already crossed by G.
This means that B(z,y) cannot intersect both W and W*. For the
same reason, B(z,y) ¢ WU{v}, so B(z,y) C W*U{v}. Then o < 90°,
g < v because L’ cannot cross By or By, and A1 UA3—{a;,a3} C Int K.
Suppose L' — {q,v} lies on the A;-side of Bs, and choose a point aj
near a3 and in Az such that B(ay,a}) intersects P near p, intersects L'
near g, and intersects both L and L’ near v. This is possible since a}
lies in both Int C(p(v,a3)) and Int K. But this contradicts the TMP,
so L' — {q,v} lies on the As-side of Bs. Since L crosses By, L' cannot
cross it by Lemma 1.3.1, so L' — {v} lies on the g-side of B;. But then
B(z,y) is trapped between the z-axis and By, which means that B(z, y)
intersects W. However, B(z,y) C W*U{v}, so this contradiction shows
that Ly ¢ L.

Then L UL’ U Ly U L3 contains four arcs whose pairwise intersections
are either {v} or {v, eg}. If any three of the four hang off B3 to the same
side at v, then, for x and y carefully chosen in A; and As, respectively,
B(z,y) would intersect all three of these arcs near v and would also
intersect P near p. This would contradict the TMP so, of the four
arcs, two hang to each side of B3 at v. But this results in the same
contradiction to the TMP because points ¢ € A; and y € Az can be
chosen so that B(z,y) is close enough to Bs, with v ¢ B(z,y), that
B(z,y) intersects L' near ¢ and L near p as well as intersecting two of
the four distinct arcs in X hanging off B3 at v. The supposition is that
q € Int C(u) led to this contradiction; therefore, ¢ € C(u) U Ext C(u).

Since p € Int L C C(u) UInt C(u), ¢ < p, and g € C(u) UExt C(u),
it follows that ¢ < v < p and p(v,p) < u < p(v,q). Also, since L
cannot cross Bj except at p and A; C L, L must hang off B3 at v to
the A;-side of Bs.
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Suppose o < 90°. Then, since ¢ < v, it follows that A; U A3z —
{a1,a3} C Int K, and the argument given in the fifth paragraph of this
proof of (7) shows the existence of a point af in Ag such that B(ay, a})
intersects X four times if L' — {q, v} lies on the A;-side of Bs. It follows
that L' —{q, v} lies on the As-side of Bs. The same argument, but using
a point a} near a; and in A, shows that B(a},a3) would intersect X
four times if L3 hangs below the z-axis at v. Because neither L3 nor L’
can cross either B; or Bj, and because e3 ¢ L by (6), Ly and L' must
each hang off By at v to the Aj-side of B; at v. But L must also hang
off By at v to the A;-side of Bj, so there exists a point af € Int As,
near ag, such that B(ap,a}) intersects each of L, L', and L3 near v.
However, B(ay,a}) also intersects L at a point between A; and As.
Since this contradicts the TMP, o > 90°.

Since o > 90°, A; and As lie in the second and third quadrants,
respectively. Also, because B intersects both W and W* and A; C W,
Aj lies either in the first or fourth quadrants. Using this together with
o > 90° and ¢ < v, choose a vertical line H that separates {q}UA; UA;3
from {v} U A,. Then H intersects L three times, once between v and
Ay, again between A; and Ay, and a third time between Ay and Ajs.
Since H also intersects L', H N X contains four points. The object
in Case 1 below is to show that H can be chosen close enough to the
y-axis that it is a bisector for some two points of X, which contradicts
the TMP. Let R denote the reflection of E3 in H.

Case 1. Assume p(p,v) < p(g,v). In this case it is clear that H
can be chosen such that R(v) < v < p < R(gq), which means that
R(L') must intersect L at a point . Then H = B(z, R~!(z)) and the
contradiction follows.

Case 2. Assume p(p,v) = p(q,v); that is, {p,q} C C(u). In this
case the y-axis is B(p,q) and L crosses B(p, q) twice, once between Ay
and A, and again between Ay and As. By the TMP neither L nor L'/
can intersect B(p,q) except at v and the two points of L N B(p,q).
This means L' U L bounces off B(p,q) to the g-side at v. By (2)
there can be no arc in X N C(u) with p in its interior; therefore, since
L C C(u) UInt C(u), p must be a limit point of X N IntC'. But this
contradicts Lemma 1.3.3, and (7) follows.
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(8). Forie {1,2,3} and t € (0,u], C(¢t) N L; is a point.

Proof of (8). Suppose (8) is false. Then there exists i € {1,2,3}
and t € (0,u) such that L; N C(t) contains two points. But since
C(t) separates the endpoints of L;, there must exist ¢’ near ¢ such that
L; N C(t') contains three points. This contradicts (7) and (8) follows.

(9). Forie {1,2,3}, L; is a straight line segment.

Proof of (9). From Lemma 1.3 and (8), it follows that each bisector
B(z,y), for {z,y} C C(r)NT, lies in B(v). From (8), the collection
Fis = {B(z,y) : ® € L1,y € La,{z,y} C C(r), and 0 < r < u}
is a continuous family of lines in B(v). If Fj5 contains two distinct
bisectors, then it contains uncountably many between them. Therefore,
since ((v) is countable by (1), Fi2 consists of a single line By. The
analogous sets Fy3 and F)3 similarly consist of single lines B, and Bs,
respectively. As in the last part of the proof of (5), this means that L;
transposes to itself under the composition of a rotation about v and a
reflection in Bs. Unless L; is a line segment, this is a contradiction,
and, similarly, Ly and L3 must be segments.

The only restriction on u in order for the corresponding triod 71" to
have its three legs on straight lines, as in (9), was that C'(u) meet each
leg of T. Let I' = {u : C'(u) meets all three legs of T}. Because X
is compact, I has a least upper bound p, and since Y is compact, it
follows from (9) that u € I'. By enlarging YT if possible, it may be
assumed that for ¢ > p, there is no triod 7" in X having vertex v such
that T C 7" and all three legs of 7" meet C(¢). In the sequel, let
C = C(p), let T be this maximal straight-legged triod, and, for each %,
let L; denote a leg of T'. For i € {1, 2,3}, let §; denote the component
of X N C containing the endpoint e; of L;.

(10). The components 61,65, and 83 of X N C are pairwise disjoint.

Proof of (10). Suppose, for example, that 6; and 6, intersect. Then
0> = 6;. With no loss in generality assume that L, N L3 bounces off
B(es, e2) to the es-side of B(ey,ez) at v, and, using (9), choose = € 6,
near enough to e; that Lo U L3 bounces off B(ey, z) at v to the z-side
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of B(e1,z). Let M(ey,x) = {v,p1,p2} where p; € 65. From Lemma
1.3.3, there must exist an arc P such that p, € P and P hangs to
one side of B(e;,z) at ps. Choose a point y € 6 near x such that P
crosses B(ey,y). But 6, also crosses B(ep,y) and v € B(ey,y). This
contradicts Lemma 1.3.3, and (10) follows.

In view of (10) and Lemma 1.1, it would violate the maximality of T
and p for all three 6;’s to contain limit points of X NExt C, so let L; be
a leg of T such that no point of #; is a limit point of X NExt C. Using
(6), let e; and € be the endpoints of 6; with e; = e} if 6; = {e1}.

(11). The endpoint €} of Ly U6 is not a limit point of X — (Ly U#6;).

Proof of (11). Suppose (11) is false. Then e} must be a limit point
of (X — L;) NInt C, and there is an arc A in X N IntC such that A
has endpoints €] and z, where z € Int C, and A ¢ L, U#6;. By (6),
AN(LyUby) ={e\}, so Ly Uh U A is an arc. Choose r such that
p(v,z) < r < p. Since C(r) intersects L;, it follows from (7) that
C(r)N A consists of one point. Then, for a € (A—{e},z})NC(r), ais a
limit point of both ANInt C(a) and ANExt C(a), and the proof of (9)
applies, where A replaces Ly, to show that AU{v} lies in a straight line.
From this, e; # €. Since an arc in Ly U Ly U L3 bounces off B(ey,€])
at v, the proof of (10) applies here to show that no component of CNX
can contain both e; and €. This contradiction establishes (11).

To establish the contradiction in (13), it seems necessary to strengthen
(6) as in (12) below.

(12). If 7" is a triod in X and ¢’ is its vertex, then v = v'.

Proof of (12). Suppose T is a triod in X such that the vertex v’ of
T’ is not v. For r > 0 let K (r) denote the circle of radius r centered
at v'. By (9) there must be two legs, say L; and Ly, of T" and an open
annulus V at v’ such that v € BdV and, for every r such that K(r) C V,
K (r) intersects both Ly and L. Let {r;} converge to p(v,v") such that
K(r;) = K; CV and, for each ¢, let {a;} = L1 N K, {b;} = L2 N K,
and let B(ai, bl) = {:Ei, Yis UI} where x; € L1UL5. Note that {B(ai, bz)}
converges to the line M through v and v’ and that {z;} converges to
v. Let S and S’ be the two sides of M, and assume Lo U L3 — {v} C S.
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Suppose Ly —{v} C S. Choose two points a; and b; close enough to v
that B(a;, b;) separates {e1, ez, e3} from {v}. Then, in contradiction to
the TMP, M (a;, b;) contains four points, one in each L; and the point
v'. Thus, Ly — {v} C §'.

Suppose L; and Lo are symmetric about the line M. Then, for each
i, B(a;, b)) = M, x; = v and y; = y where M N X = {v,v',y}. Fix
points a and b in Int L; and Int Lo, respectively, such that B(a,b) = M,
and let K = K(p(v',a)). If all three legs of T’ hang to the same side
of M at v’, then a bisector B near M is easily found such that B
intersects all three legs of T’ and B intersects at least one leg of T.
Since this contradicts the TMP, an arc in 7" must cross M at v'. Let
A be an arc in X hanging off M at y, and let Y be the circle at y
with radius p(y, a). Adjust the points a and b, if necessary, so that the
lines through L; and L, are not tangent to either circle K or Y, which
means that Ly and Lo each cross all three circles K,Y, and C(p(v,a))
at a and b, respectively. In the subsegments (v,a) and (v,b) of L; and
L, choose points a’ and b’ near a and b, respectively. There are three
cases depending on the order of y,v and v’ on M, but the orders yvv'
and yv'v are really the same since the previous assertions apply to v’
as well as to v. Let ] = (It K) N (IntY), E = (ExtK) N (ExtY),
and note that, with the order yvv’ eliminated, either v € I or v € E.
Assume v € I. Then {a’,b'} C I, and all three of v,v’, and y lie on
the same side of both B(a',b) and B(a,b’). But this contradicts the
TMP because one of these two bisectors must intersect T U AUT" four
times. Therefore, v € E, which means that {a/,b'} C E. But then
B(d',b) U B(a,b') separates {y,v'} from {v}, and there is no way to
arrange the seven arcs in TU AUT" without one of B(a’,b) or B(a,b')
intersecting four of them. Since this contradicts the TMP, L; and Lo
are not symmetric about M.

Since Ly and Ly are not symmetric about M and each of {a;} and
{b;} converge to v, it follows from (9) that {B(a;, b;)} is a sequence of
distinct lines converging to M. If infinitely many x; belong to Lo, then,
for 7 sufficiently large, both Ly and L3 would cross B(a;, b;), contrary
to Lemma 1.3. Then, for convenience, assume that x; € L for each i.
Let y € M be a limit point of {y;}. For each i there exists an arc A;
in X joining y; to y. For i sufficiently large, it follows from (6) that A;
misses Ly — {v}. Then A; and L; are two distinct arcs each of which
must cross B(a;,b;) for some j. If K' = K(p(v',a;)), then a; and
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b; are limit points of both X N Int K’ and X N Ext K', contradicting
Lemma 1.3. (12) follows.

(13). X cannot have the TMP.

Proof of (13). Let £ = Ly U L3. In the first of two similar cases,
suppose that €] ¢ B(ez,e3), and let p and ¢ be points of £ such that
M(p,q) = {z,y, e} }, where z lies between p and ¢ in Int £. Then z # v.
Assume p and g are named in such a manner that, for p’ near p and
between p and g on £, B(p',q) N0, = &. Let {p;} converge to p on L
such that, for each 4, p; lies between p and q on £, B(p;, q) = {zi, yi, zi },
and {z;} converges to z on £. From (6), (9), (11), and = # v, it follows
that neither = nor ¢ lies in the limiting set of {y;, 2;}. Then {y;, 2}
converges to y, and, from Lemma 1.1 and (6), y ¢ Ly U6,. Using (12),
let & be an arc in X — (LU Ly) such that aNB(p,q) = {y}, {vi, 2} C
for all but finitely many i, and a — {y} lies in one side S of B(p,q).
Choose a sequence {g;} of points between p and ¢ in £ that converges
to ¢ such that, for each i, M(p,q;) = {z}, v}, 7}, {z}} converges to z,
and {z]} converges to e}. Since z # v, it follows from (11) that {y.}
converges to y. Clearly, y. ¢ S. Using (12) again, let &’ be an arc in X
such that o' N B(p, q) = {y}, & contains all but finitely many y}, and
o' C E* — S. Then o cannot bounce off B(p,q) at y because, by (12),
a U cannot contain a triod. The other case being similar, it may be
assumed that S is the g-side of B(p, q). Let d be the endpoint of a such
that d # y, and choose n such that B(q,p,) separates y from d. Since
B(q,pn) N L = {z,}, the TMP ensures that o« N B(¢,pn) = {yn, 2n}-
Thus, « must cross B(g,p,) at one point, say y,, and must bounce off
B(q,pn) at the other point z,. Choose a point w in £ near enough
to, and on the appropriate side of, p, that B(g,w) intersects « twice
near z, and again near y,. Since B(g,w) also must intersect £, this
contradicts the TMP.

This leaves the case where e € B(eg,e3). However, Ly cannot lie
in B(ez,e3), so e; ¢ B(eg,es). In this case points p and ¢ exist in £
such that M(p,q) = {e1,z,y}, z € L, and p and g are named such
that, for p’ near p and between p and g on £, B(p',q) N (L1 U6) = 2.
Under this new definition of z, z # v. It follows from (6), and the fact
that no point of #; is a limit point of X N Ext C, that e; is not a limit
point of X — (L; U 6;). From these two facts and the technique of the
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previous paragraph, a contradiction to the TMP is obtained. Because
(13) follows, Theorem 2.1 is established.

Theorem 2.2. No continuum in E? can have the triple midset
property.

Proof of Theorem 2.2. From Theorems 2.1 and 3.1 of [4], neither
an arc nor a simple closed curve in E? can have the TMP, and from
Theorem 2.1 no continuum in E? that contains a triod can have the
TMP. Therefore, Theorem 2.2 follows from Lemma 1.2.

Note added in proof. Theorem 2.2 was recently proved in more
general form by the author and S.M. Loveland.
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