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ABSTRACT. Under MA + —~CH, paracompactness of cer-
tain perfect locally compact spaces is discussed in [13], [7],
[10] and [1].

In this note, under no additional set theoretical assumption,
we shall characterize paracompactness in perfect, locally Lin-
delof spaces. As a corollary, it will be shown that 2¢ < 2¢1 is
equivalent to Lindel6fness of certain perfectly normal locally
Lindel6f spaces.

0. Introduction. M.E. Rudin proved that, under MA + —~CH, per-
fectly normal manifolds are metrizable [13]. Using her technique, D.S.
Lane proved that, under MA + —CH, perfectly normal, locally com-
pact, locally connected spaces are paracompact [10]. Furthermore, G.
Gruenhage proved that, under MA + —CH, perfectly normal, locally
compact, collectionwise Hausdorff spaces are paracompact [7]. These
results are shown in Nyikos’s article [12]. In this note, we will define
the property S of topological spaces, and also define stationary collec-
tionwise Hausdorfiness (SCWH) which is a weakening of collectionwise
Hausdorffness (CWH). Then we shall prove that in every perfect, lo-
cally Lindel6f space X, X is paracompact if and only if X is SCWH
and has the property S. Also these applications will be studied. In
particular, it will be shown that 2“ < 2“! is equivalent to Lindel6fness
of certain perfect, locally Lindel6f spaces.

Throughout in this paper, all spaces are assumed to be regular T;.
A space is perfect if all closed subspaces are G5. For a disjoint family
F = {F, : a € A} of subsets of a space, an ezpansion Y = {U, : « € A}
of F is a family of subsets such that F, C U, for every a € A
and Uy N Fg = 0 if a,8 € A with o« # 8. An open expansion
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is an expansion whose elements are open. Furthermore, separation
means pairwise disjoint expansion, and open separation means pairwise
disjoint open separation. A subspace Y of a space is discrete if there
is an open expansion of {{y} : y € Y}. A space is k-collectionwise
Hausdorff (k-CWH) if every closed discrete subspace of size < k has
an open separation. A space is collectionwise Hausdorff (CWH) if
it is k-CWH for every infinite cardinal k. A space is collectionwise
normal with respect to Lindeldf closed sets if every discrete family
of Lindeldf closed sets has an open separation. Let x be a regular
uncountable cardinal. A subset of x is stationary if it intersects all
closed (in x with the order topology) unbounded subsets of k. A space
is stationary k-collectionwise Hausdorff (k-SCWH) if for every closed
discrete subspace {z, : @ € S} indexed by a stationary subset S of ,
there is a stationary subset S’ C S of  such that {z, : @ € S’} has an
open separation. If a space is k-SCWH for every uncountable regular
cardinal, then we call it stationary collectionwise Hausdorff (SCWH).
Note that we do not require discreteness of such open separations
in these definitions. A space is wi-Lindeldf if every open cover has
a subcover of size < w;. A space is (weakly) submetaLindelof if
every open cover U has a sequence {U, : n < w} of open covers
(families, respectively) refining U such that for every z € X, there
is an n < w such that 0 < |(Up)z] < w (in this definition, if we
replace |(Un)z| < w by |(Un)z] < w, then we call such a space (weakly)
submetacompact). Where (Uy,), = {U € U, : * € U}. A countable
family V = {V,, : n € w} of collections of subset of a space X is called
an interlacing on X if UV is a cover of X and for each n in w, each
V in V, is open in UV,,. A space X is called ultrapure provided for
each open cover U of X, there is an interlacing V = {V,, : n € w}
on X such that for each n in w and z in UV, there is a countable
subfamily ¢’ C U such that U(V,), C UU'. For other covering
properties (topological notions, set theoretical notions), refer to [3,
6, 9], respectively. Especially, for the Martin’s axiom or the S-space
(hereditarily separable not hereditarily Lindeldf space) problem, [19,
14], respectively.

1. In perfect, locally Lindel6f spaces. In this section we give
an equivalent condition in order that a perfect, locally Lindel6f space
is paracompact. Note that for every locally Lindel6f space X, X is
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paracompact if and only if X is strongly paracompact if and only if X
is the free union of Lindelof subspaces. The next Lemma is an easy
exercise, but it will be used frequently.

Lemma 1.1. For every Lindeldf space X, X is perfect if and only if
X is hereditary Lindelof. Hence, perfect Lindelof spaces are ccc, where
a space is ccc if there is no pairwise disjoint family of uncountably many
nonempty open sets.

The technique of the proof of the following lemma is essentially due
to [2, 1.3 and 1.7].

Lemma 1.2. Locally ccc, SCWH spaces are collectionwise normal
with respect to Lindeldf closed sets. In particular, locally ccc, SCWH
spaces are CWH.

Proof. We shall prove by induction of ¢(X), where ¢(X) = min{\:
there does not exist a pairwise disjoint family of A-many nonempty open
sets}. If ¢(X) = wy (i.e., X is ccc), then there does not exist a discrete
family of uncountably many Lindel6f closed sets by w;-SCWH. Since
in a regular space, every discrete family of countably many Lindelof
closed sets has an open separation, the first step of the induction is
proved.

Assume ¢(X) =X > wy. Let F = {Fy : @ < k} be a discrete family
of nonempty Lindelof closed sets. Then by SCWH, & < X if & is regular
uncountable, and k < X if  is a singular cardinal. For every a < x and
z € F,, take a ccc open neighborhood V, of = such that V, N Fz =0
for all 8 < k with « # . Since Fy, is Lindelof, take a countable subset
F! of F, such that F, C U{V, : = € F.}, call this open set U,. Then
{U, : @ < k} is an expansion of F by ccc open sets. There are two
cases.

Case 1. Kk is a regular cardinal. First we shall show that S =
{a < K :cl(Us<aUp) NUp>aF # 0} is not stationary in x. Assume
on the contrary that S is stationary. For every a € S, take an
To € cl(Ug<alUg) NUp>aF3. For every a € S, let x, € F,(4). Then
a < v(a) and v(a) € S for every a € S. For every a € kK — S, let
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v(a) = 0. Then C = {a < £ : V"o C a} is closed unbounded in
k. If @ and o are in SN C with a < ¢/, then v(a) < o' < v(d).
Thus, Y = {z, : « € SN C} is a discrete closed subspace consisting of
distinct points and S N C' is stationary in k. Using k-SCWH, take an
open separation {V, : a € S’} of {z4 : @ € S'}, where S’ is a stationary
subset of k which is included in SN C. Of course, z, € V, for every
a € S'. Since z, € cl(Up<aUp) for every a € ', take an f(a) < «
such that V,, NUf(q) # 0. Then by the pressing down lemma, there are
a stationary subset S” C S’ and an ag < & such that V,, NU,, # 0 for
every a of S”. Thus {V, N Uy, : @ € S”} witnesses a contradiction,
since Uy, is ccc. Therefore, S is not stationary.

Next, take a closed unbounded set C' of k which misses S. Enumerate
C = {a(y) : ¥ < s} with the increasing order. For v < &, let H, =
Up<a(r+1)Up — cl(Up<a(yUp) and Fy = {Fp : a(y) < B < a(y + 1)}
Note UF, C H,. Since each Up is ccc, ¢(clH,) < k(< A) for each
v < k. Using the inductive hypothesis, take an open separation U,
of F, in H, for every v < x. Since C is closed unbounded in &,
U{F, : v < k} = F. Therefore, U{U, : v < k} is an open separation of
F.

Case 2. £ is a singular cardinal. Decompose « into {A, : v € T'},
where |A,| < & for each v of ', |T'| < k and A, N A, =0 for , 7' of
[ with v # 7. Let 7, = {Fy : a € A,} and H, = Ugea,U,. Then
it is easy to show c(clH,) < (w-]A,])T < k < X for each v of T.
By the inductive hypothesis, for every v in I' take an open separation
Vy={Va:ae€ A} of F, in H, with F,, C V,, C U, for every a € A,.
Let V = U{V, : v € T'}. Since every member of V is ccc, for every
~v in T, every member of V meets at most countably many members
of V,. Hence, every member of V meets at most w - |I'| members of
V. By the usual chaining argument, decompose V into {Wjs : § € A},
where [Ws| < w - |T| for every § € A and (UW5) N (UWs) = 0 if
0,0/ € A with 6 # ¢§. Let Ks = {F € F : F C UW;s}. Since
c(cl UWs) < (w-|T|)* < & < A, by the inductive hypothesis, take an
open separation Us of Ks in UWjs for each § € A. Then U{U;s : § € A}
is an open separation of F, since F = U{K;s : § € A}. Thus the proof
is complete. ]

By the same argument of the proof of [7, Lemma 6], we can show the
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next lemma. Note that by 1.1 and 1.2, CWH can be replaced by SCWH
in the following lemma, as well as the later results such as Theorems
1.4, 1.5, etc.

Lemma 1.3. [7]. Let X be a perfect, locally Lindelsf, CWH space.
Then X is the free union of wy-Lindeldf subspaces.

Definition. A space has the property S if every right separated
subspace of type w; is o-discrete (i.e., the countable union of discrete
subspaces).

Then using the above definition we can characterize paracompactness
in perfect, locally Lindelof spaces as follows. First we prove the next
main theorem.

Theorem 1.4. Let X be a perfect, locally Lindeldf, wi-Lindelof
space. Then the following assertions are equivalent.

1) X is wi-CWH and has the property S.
2) X is the free union of Lindelof subspaces.

Proof. To show 1) — 2), we may assume that X is the union of
{Uq : @ < w1}, where each U, is an open set with the Lindeldf closure,
since X is wi-Lindelof and locally Lindel6f. Furthermore, assume that
1) holds.

Claim 1. The closure of every Lindelof open set is Lindelof.

Proof. Assume on the contrary that there is an open Lindel6f subset
W such that cl W is not Lindelof. Then clW has a right separated
subspace {z, : @ < w;}, from now on we identify this set with w;.
Since X has the property S, there is a stationary subset S of w; such
that S is discrete. For convenience, we shall call such an S stationary
discrete. By perfectness of X, there is a stationary discrete closed
subset S’ of S (in fact, S is o-discrete-closed, i.e., S is the countable
union of discrete closed subspaces of X). Using the w;-CWH-ness of
X, take an open separation of S’. Since W is ccc, this separation shows
a contradiction. Thus this claim is proved. ]
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Next by induction on 8 < wj, we shall define an increasing sequence
(a(B) : B < w1) in w; and an increasing sequence (Xg : B < wy) of
open Lindelof subspaces. Let «(0) = 0 and X, = Up. Assume that
for each 6 < B, where 8 < wy, a(d) and Xs have been defined. When
B =8+ 1, since cl X5 is Lindelof, take an «(8) > a(d) with a(8) < wy
such that Xg = U{U, : a < o(B)} includes cl X5. When £ is limit, let
a(B) = sup{a(d) : § < B} and Xg = Us<pXs. Then (Xg: 8 < wr)
satisfies the following properties:

1) cdX, C Xgifa<f <wi,
2) XB = U5<BX5 = U5<BC1X5 lf,B is limit.

Claim 2. S = {8 <w; : 0Xg # 0} is not stationary in wy.

Proof. Assume on the contrary that S is stationary. Fix an x5 € 0Xg
for every 8 € S. We identify {z, : @ € S} with S. Then S with the
increasing enumeration is right separated by {Xz : § € S}. Since
X has the property S, there is a stationary discrete subset S; of
S. Furthermore, using perfectness take a stationary discrete closed
subspace Sy of S1. Let C be the set of all limit ordinals of w;. Note
that C is closed unbounded in w; (with the order topology). Using the
w1-CWH-ness of X, take an open separation {V3 : § € S3} of Ss, where
S3 = S2 N C is stationary. Since zg € 0Xp C cl(Us<pXs) if B € Ss,
take an f(3) < B such that X3 N Vs # 0 for each 3 € S3. Then by
the pressing down lemma, there are a stationary subset S4 of S3 and
an o of wy such that X, N Vg # 0 for each § € S;. This contradicts
the fact that X, is ccc. This completes the proof of the claim. mi

To continue the proof, take a closed unbounded subset C' of w; which
misses S of the above claim. Enumerate C' with the increasing order,
say {B(7) : v <wi}. Then Fy = Xg(y41) — Xg(4) is clopen Lindeldf for
each v < w;. And since C' is closed unbounded and X = Uy, F,, X
is the free union of wi-many Lindel6f subspaces.

To show 2) — 1), assume that X is the free union of Lindel6f
subspaces X,’s, @ € A. Let Y be a right separated subspace of type
wi. Then by Lemma 1.1, each X, is hereditarily Lindelof. So Y N X,
is countable for each . Hence it is easy to show that Y is o-discrete.
Finally, the w;-CWH-ness of X is evident, since it is paracompact. a
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Remark. The above argument implies a perfect Type I space (for the
definition, see [12, 2.10]) is w;-CWH and have the property S if and
only if it is paracompact.

Theorem 1.5. Let X be a perfect, locally Lindelof space. Then the
following assertions were equivalent.

1) X is CWH and has the property S.

2) X is paracompact.
Proof. By 1.3 and 1.4. u]
As an easy corollary of 1.4, we can prove the following.

Corollary 1.6. Let X be a connected (locally connected), perfect,
locally Lindeldf, wy-Lindelof space. Then the following assertions are
equivalent.

1) X is wi-CWH and has the property S.
2) X is Lindelof (paracompact, respectively).

Proof. The connected case is due to 1.4. If we apply the connected
case to each connected component, then we can also prove the local
connected case. a

Thus we can prove the following result by 1.3 and 1.6. For the local
connected case, apply the connected case to each connected component.

Corollary 1.7. Let X be a connected (locally connected), perfect,
locally Lindeldf space. Then the following assertions are equivalent.

1) X is CWH and has the property S.
2) X is Lindeldf (paracompact, respectively).

In another flavor of these contexts, we can also prove the following
result. Note that perfect, locally compact spaces have countable
tightness.
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Corollary 1.8. Let X be a connected (locally connected), perfect,
locally Lindeldf space of countable tightness. Then the following asser-
tions are equivalent.

1) X is wi-CWH and has the property S.
2) X is Lindeldf (paracompact, respectively).

Proof. As above, the locally connected case is an easy corollary of
the connected case. It suffices to show 1) — 2) of the connected case.
Assume 1), then as in Claim 1 of 1.4, the closure of every Lindel6f open
set is Lindelof.

Next let Xy C X be a Lindel6f open set. We can define an increasing
sequence of Lindel6f open sets {X, : o < wy} such that cl X, C Xg
if o < B < w and UgepXy = Ugcpcl Xy if B is limit. Because, if
B = a + 1, take a Lindelof open set Xg such that cl X, C Xg. If 8 is
limit, let Xg = Ua<gX3.

Then Ug<w; Xo = Ua<w, €l X4 is clopen in X, since X has countable
tightness. Therefore, X = Uy<., Xo by the connectedness of X. We
shall show that there is an @ < w; such that X, = X (then X is
Lindeldf). Assume on the contrary that X — X, # 0 for every a < w;.
Take z, € 0X, for each a < w; using connectedness of X. Then
Y = {2, : @ < wy} is right separated. Identify ¥ with w;. By the
property S, w;-CWH-ness and perfectness of X, we can get a stationary
discrete closed set S of wy and an open separation {V, : o € S} of S.
As in the proof of claim 2 of 1.4, using the pressing down lemma, we
can get a contradiction. o

Example. In 1.4, 1.5, 1.6, 1.7 and 1.8, (w;-)CWH-ness cannot be
deleted.

Let X be the Bubble space derived from a subset of z-axis of size
w1, see [16, Example F|. As is well known, X is a connected, locally
connected, locally Lindelof (but not locally compact), w;-Lindelof
Moore space which is neither Lindel6f nor w;-CWH. Since Moore
implies perfect and subparacompact, it has the property S (see the
next section). Note that MA + —CH implies the normality of X, but
CH implies the non-normality of X.
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2. Getting the property S. In this section, we study the property
S. First we shall show the next result.

Theorem 2.1. Let X be a space. Then X has the property S if and
only if every locally countable subspace of X of size wy is o-discrete.

Proof. Here a space Y is locally countable if every point in Y has
a countable neighborhood. Assume that X has the property S and
Y = {z,: o € w1} is a locally countable subspace of X. By transfinite
induction on 3 € w;, we shall define an a(3) € w; and a countable open
neighborhood Vj of z4(5) in Y. Assume a(y) and V., have been defined
for all v < 3. Let a(B) be the least o in w; such that zo ¢ U,<gV;.
Take a countable open neighborhood Vp of x4y in Y. Since for each
B € w1, Vg —Uy<gV5 is countable, let fz be an onto map from w to
Vs — Uy<gVy. Then each Y,, = {fs(n) : € wi} is a right separated
subspace of type wy. Since X has the property S, each Y,, is o-discrete.
Thus Y is o-discrete. The other direction is obvious. o

Theorem 2.2. Let X be a locally countable space. Then the following
assertions are equivalent.

1) X is o-discrete.

2) X 1is weakly submetacompact.
3) X is weakly submetaLindeldf.
)

4) X 1s ultrapure.

Proof. 1) — 2). Assume that X = UpecoX, and U is an open
cover of X, where each X,, is discrete. Let U,, be an open expansion
of X,, which refines #. Then {U, : n € w} witnesses the weak
submetacompactness of X.

2) — 3) — 4) is obvious.

4) — 1). Assume that X is locally countable and ultrapure. For each
z in X, fix a countable open neighborhood V, of x. By ultrapureness,
take an interlacing {V, : n € w} on X such that for every n in w
and z in UV, there is a countable subfamily V' of {V, : z € X}
with U(V,): € UV (thus U(V,), is countable). Put X,, = UV, and
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Up = {U(Vn)z : & € UV, } for each n in w.
Claim. For eachn in w and x in UV, (U,)z is countable.

Proof. Assume indirectly that (i4,), is uncountable for some n in w
and z in UV,. Then there is an uncountable subset A C UV, such
that z is in U(V,), for each y in A. By picking V, in V), such that
z,y € V, for each y in A, we can show A C U(V,),. But, since U(Vy,),
is countable, this is a contradiction. This complete the proof of the
claim. o

Since each member of U, is countable and each (U,), is countable,
by the usual chaining argument, we can decompose U, into {W, : A €
A, } such that each W, is countable and UW,,)’s are pairwise disjoint.
Thus, UW,\’s are a decomposition of UV,, by countable clopen sets in
UV,. Then it is straightforward to show that UV, is o-discrete. Thus
X is o-discrete. a

In a similar way of the proof of the above theorem, we can also prove
the next theorem. But Theorems 2.3, 2.5 and the equivalences of 1),
2), 3) of Theorem 2.2 are known by [11].

Theorem 2.3. ([11]). Let X be a locally countable space. Then the
following assertions are equivalent.

1) X is o-discrete-closed.

2) X is subparacompact.
3) X is submetacompact.
)

4) X is submetaLindeldf.

Next we quote the relation between 2.2 and 2.3. But the proof is not
hard, so we state without proof.

Theorem 2.4. For every space X, X is o-discrete-closed if and only
if X is perfect and o-discrete.
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Noting that o-discrete-closed, first countable spaces are Moore, we
can show the following result by 2.3.

Theorem 2.5. ([11]) Let X be a locally countable space. Then the
following assertions are equivalent.

1) X is o-discrete-closed and first countable.
2) X is subparacomapct and first countable.
3) X is Moore.

By 2.1 and 2.2, if a space is hereditary ultrapure, then it has the
property S. Since we can prove in a usual way that perfect, ultrapure
spaces are hereditary ultrapure, we can show the following corollary
using 1.5.

Corollary 2.6. Perfect, locally Lindeléf, CWH, ultrapure spaces are
paracompact.

Remark. 1t is not hard to show that screenable or o-para-Lindel6f
spaces are ultrapure and SCWH (cf. 2.6). But a consistent example of
a perfectly normal, locally compact, metaLindelof space which is not
paracompact is known (see [18]).

3. What happens in perfect, locally compact spaces under
Martin’s Axiom? A survey. In this section we study paracompact-
ness of perfect, locally compact spaces. As corollaries, we shall show
the Gruenhage’s and Lane’s (in the next section) Theorems.

It is well known that under MA(wy), there does not exist a compact
S-space of countable tightness, and there does not exist a perfect locally
compact space having S-subspace, [13, 15]. Using essentially the same
argument, Balogh showed the following.

Theorem 3.1. ([1])[MA + —CH]. In a compact space of countable
tightness, every locally countable subspace of size < 2% is o-discrete (in

fact, compact spaces of countable tightness have the property S under
MA (wyq)).
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Theorem 3.2. [MA(wy)]. Perfect, locally compact spaces have the
property S.

Proof. Let X be a perfect, locally compact space and Y be a right
separated subspace of type wi. Let wX be the one point compactifica-
tion of X. Then by the comment after 4.14 of [12], wX has countable
tightness. Therefore, Y is o-discrete by 3.1. o

Using 3.2 and 1.5, we can show the next Gruenhage’s result.

Theorem 3.3. ([7])[MA(w;)]. In perfect, locally compact spaces,
CWH-ness is equivalent to paracompactness.

4. CWH-ness in normal spaces. A survey. In this section we
shall show that with further set theoretical assumptions or assumptions
of spaces, we can delete CWH-ness from Theorem 1.5.

F.D. Tall asked whether perfectly normal, locally compact spaces are
collectionwise normal in L, see [16]. Note that L satisfies V = L. It is
known that in the model adding ws-random reals to a model satisfying
V = L, perfectly normal, locally compact spaces are collectionwise
normal. Here we give related topics.

Theorem 4.1. [V = L]. Let X be a perfectly normal, locally Lindelof
space of character < 2¥ (= wy). Then X has the property S if and only
if X is paracompact.

Proof. Since under V' = L, normal spaces of character < 2% are
CWH, by 1.5, it is evident. O

Remark. The above result implies that perfectly normal, locally
compact spaces having the property S are collectionwise normal under
V = L. Recently in [8], by modifying the construction of the Kunen
line, Gruenhage and Daniels construct a perfectly normal, locally
compact, CWH, noncollectionwise normal space under ¢* (which holds
in L). Thus such a space does not have the property S (one cannot
delete the property S from 4.1).
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Next we shall consider paracompactness in perfectly normal, locally
compact, locally connected spaces.

Theorem 4.2. Let X be a perfectly normal, locally compact, locally
connected space. Then X has the property S if and only if X is
paracompact.

Proof. Since perfectly normal, locally compact, locally connected
spaces are CWH ([3, 8.9]), it is evident by 1.5 (or 1.8). o

Remark. The above result implies that every perfectly normal mani-
fold is metrizable if and only if it has the property S.

Now, as a corollary, we can get Lane’s theorem using 3.2 and 4.2.

Corollary 4.3. ([10]) [MA(w;)]. Perfectly normal, locally compact,
locally connected spaces are paracompact.

5. Equivalents of 2¥ < 2“1, In this section, we shall show that
paracompactness of certain perfectly normal, locally Lindelof spaces
is equivalent to 2¥ < 2¥t. To begin, we need some definitions and
lemmas.

Definition. Let S be a subset of wy. ®(S) denotes the following
assertion.

For every F : <¥12 — 2 there is a ¢ : w; — 2 such that for every
frw = 2 {a€S: F(flo) = g(a)} is stationary in w;y, where
<912 = Ug<w, “2 and “2 denotes the set of all functions from « to 2
and f|a denotes the restriction of f to a.

Incidentally, if ®(S) holds, then S is stationary in w;. For more
details, see [5]. The next results were proved in [5].

Lemma 5.1. ([5]). The following assertions hold.
1) I={S Cwy:®(S) does not hold} is a normal ideal on w;.
2) 2¥ < 2“1 holds if and only if wy ¢ I.
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In a similar way of the proof of [17, 3.1], we can get the next result.

Lemma 5.2. Let S be a stationary subset of wi and X be a normal
space of character < 2¥. Assume that ®(S) holds. Then for every
closed discrete subspace {zq : @ € S} of X indexed by S, there is
a stationary subset S’ of S such that {x, : o € S'} has an open
separation.

Using the above results, we can get the following result.

Theorem 5.3. The following assertions are equivalent.
1) 2¢¥ < 2¢t holds.

2) Every perfectly normal, locally Lindeldf, connected space of count-
able tightness and character < 2% which has the property S is Lindeldf.

3) Ewery perfectly normal, locally Lindeldf, connected, wy-Lindelof
space of character < 2¥ which has the property S is Lindelof.

Proof. To show 1) — 2), assume that X is such a space as in 2). We
shall show that X is Lindel6f by modifying the proof of 1.8.

Claim. The closure of every Lindelof open set is Lindeldf.

Proof. Assume on the contrary that there is an open Lindelof
W such that clW is not Lindeléf. Then there is a right separated
Y = {24 : @ < w1} C clW. Now identify ¥ with w;. Since X has
the property S, wy is o-discrete, say w1 = Up<o,Sn. By 5.1, there is
an n < w such that ®(S,). By perfectness, S,, is the countable union
of closed discrete subsets of X, say S, = Um<wSnm. Again by 1) of
5.1 there is an m < w such that ®(Sy,,) holds. Then by 5.2, there
is a stationary subset S’ of S,,,, such that S’ has an open separation
{Vo:ae S’} But {VoNW : a € S’} witnesses a contradiction, since
W is ccc. This completes the proof of the claim. a

Next let Xy C X be a Lindel6f open set. We can define an increasing
sequence of Lindel6f open sets {X, : o < wy} such that cl X, C Xg
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if o < B < w and UgepXa = Uacpcl X, if B is limit. Because, if
B8 = a+1, take a Lindelof open set Xz such that cl X, C Xz using the
above claim. If 5 is limit, let Xg = Ua<pX3.

Then Upcw, Xo = Ua<w, ¢l X4 is clopen in X, since X has countable
tightness. Therefore, X = Uy<., Xo by the connectedness of X. We
shall show that there is an @ < w; such that X, = X (then X is
Lindel6f). Assume on the contrary that X — X, # 0 for every a < w;.
Take an z,, € 0X,, for each o < w; using the connectedness of X. Then
Y = {24 : @ < w1} is right separated. Identify ¥ with w;. In a similar
way of the proof of the above claim, we can get a stationary discrete
closed subset S of wy and an open separation {V, : @ € S} of S. Asin
the proof of claim 2 of 1.4, using the pressing down lemma, we can get
a contradiction. This completes the proof of 1) — 2).

The proof of 1) — 3) is similar to the above proof.

2) — 1) and 3) — 1) can be proved simultaneously by giving a
counterexample assuming 2¢ = 2¢!, Assume 2¥ = 2“!, Then there
is a collection of wj-many free ultrafilters on w, say {z, : @ < wi},
such that for any subset D of w; there is a subset U of w such that
Ue€wx, forany a € D and w—"U € z, for any o € w; — D, by [4].

Let R be the real line. Since R is normal and w is closed in R (hence w
is C*-embedded in R), fw = clgrw C BR is valid. Where SY denotes
the Stone-Cech compactification of a Tychonoff space Y. Let X be
RU{z, : @ < wy}. Equip X with the subspace topology on SR. We
shall show that this X is the counterexample.

Since R is connected and dense in X, X is connected.

To show normality of X, it is enough to show that the subspace
X — R is normalized in X. Where a subspace A is normalized if for
every subset B of A, B and A — B can be separated by disjoint open
sets. Let D be a subset of w; and U be the subset of w as above. And
let W be the set U{(n —1/2,n 4+ 1/2) : n € U}, and W' be an open
set of X such that W/ N R = W. Then it is not hard to show that
{zq :a € D} C W and W' N{z, : @ € wy — D} = 0. Hence X is
normal. This argument implies {z, : @ < wy} is closed discrete in X.
Therefore, X is not Lindelof.

Since points of R have compact neighborhoods in X, to show the local
Lindel6fness of X we must show that points of X — R have Lindelof
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closed neighborhood of X. Take an open neighborhood U of z, such
that clU N{zq : @ < w1} = {x4}. Since R is hereditarily Lindeldf, it
is easy to show that clU is Lindel6f. Thus, X is locally Lindel6f.

Since R has a countable basis, the character of X does not exceed
2¢,

Since R is hereditarily separable, it is easy to show that the tightness
of X does not exceed w.

To show perfectness of X, let U be an open set of X. Since R is
locally compact and hereditarily Lindel6f, U N R is the countable union
of compact sets. Furthermore, U — R is closed in X. Thus, U is the
countable union of closed sets of X.

To show that X has the property S, let {z, : @ < wi} be a
right separated subset of X, identify this set with w;. Then wy N
R is o-discrete (in fact countable), since R is hereditarily Lindelof.
Furthermore, w; — R is closed discrete in X. Thus w; is o-discrete.

It is easy to show wj-Lindel6fness of X using the hereditarily Lin-
deldfness of R.

This completes the proof. a

Remark. The above proof implies that the assertion, that every
perfectly normal, locally Lindel6f, w;-Lindelof space of character < 2%
which has the property S is Lindeldf, implies 2¥ < 2“1.

Corollary 5.4. [2¢¥ < 2“1]. In every perfectly normal, locally
compact, connected space, it has the property S if and only if it is
Lindelof.

Proof. Because perfect, locally compact spaces are first countable,
character and tightness are countable. ]

Corollary 5.5. [2¥ < 2¥1]. Let X be a perfectly normal, locally
Lindelof, locally connected space of countable tightness and character
< 2¥. Then X has the property S if and only if X is paracompact.

Proof. Apply 5.3 in each component of X. O
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Remark. Note that by 4.2, the resulting assertion of the above
corollary, that local Lindel6fness is replaced by local compactness, is
valid without 2% < 2«1,

The author would like to express his thanks to the referee of this
paper for his valuable comments.
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