ON THE POWER POLYNOMIAL x^d OVER GALOIS RINGS

JAVIER GOMEZ-CALDERON

ABSTRACT. Let p denote a prime. Let $\operatorname{GR}(p^n,m)$ denote the Galois ring of order p^{nm} . Let $P_d(x)$ denote the power polynomial $P_d(x) = x^d$ over the ring $\operatorname{GR}(p^n,m)$. In this paper we determine two cardinalities: the cardinality of the value set $\{P_d(x): x \in \operatorname{GR}(p^n,m)\}$, and the cardinality of the preimage $P_d^{-1}(P_d(x))$ for each x in $\operatorname{GR}(p^n,m)$.

1. Introduction. For a prime p, let $GR(p^n, m)$ denote the Galois ring of order p^{nm} which can be obtained as a Galois extension of Z_{p^n} of degree m. Thus $GR(p^n, 1) = Z_{p^n}$ and $GR(p, m) = K_{p^m}$, the finite field of order p^m . The reader can find further details concerning Galois rings in the excellent reference [1].

Now, for $d \geq 1$, let $P_d(x) = x^d$ denote the power polynomial of degree d over $GR(p^n, m)$. Then it is easy to check that the cardinality of the value set of $P_d(x)$ over the field $GR(p, m) = K_p m = K_q$ depends only upon (d, q-1), the greatest common divisor of d and q-1. To be more specific,

$$|\{P_d(x): x \in GR(p, m) = K_q\}| = \frac{q-1}{(q-1, d)} + 1$$

where $q = p^m$.

In this paper we not only determine the cardinality of the value set $\{P_d(x): x \in GR(p^n, m)\}$ for $n \geq 1$, but if $x_0 \in GR(p^n, m)$, we also determine the cardinality of the preimage of $P_d(x_0)$.

2. p odd. Throughout this section we assume that p is odd. Let $GR^*(p^n, m)$ denote the group of units of $GR(p^n, m)$. Then, see [1, Theorem XVI.9], $GR^*(p^n, m)$ is a direct product of two groups G_1 and

Received by the editors on September 8, 1989 and in revised form on June 15, 1990.

Copyright ©1992 Rocky Mountain Mathematics Consortium

 G_2 where G_1 denotes a cyclic group of order $p^m - 1 = q - 1$, and G_2 denotes a direct product of m cyclic groups each of order p^{n-1} . Thus,

(1)
$$\operatorname{GR}^*(p^n, m) = G_1 \times G_2 = G_1 \times H_1 \times H_2 \times \cdots \times H_m$$

where H_i denotes a cyclic group of order p^{n-1} for i = 1, 2, ..., m.

Lemma 1. Let d denote a positive integer and write $d = p^t e$ with (e, p) = 1. Then

$$|\{x \in GR(p^n, m) : x^d = 1\}| = (d, q - 1)q^k$$

where $k = \min\{n-1, t\}$ and $q = p^m$.

Proof. Let A(d) denote the set of elements x in $GR(p^n, m)$ so that $x^d = 1$. Thus, A(d) is a multiplicative subgroup of $GR^*(p^n, m)$, the group of units of $GR(p^n, m)$.

Now, by (1),

$$A(d) = A^* \times H_1^* \times H_2^* \times \dots \times H_m^*$$

where A^* denotes the subgroup of G_1 of order (d, q-1) and H_i^* denotes the subgroup of H_i of order (p^t, p^{n-1}) for $i \geq 1$. Therefore,

$$|A(d)| = (d, q - 1)(p^k)^m = (d, q - 1)q^k$$

where $k = \min\{t, n-1\}.$

Theorem 2. Let d denote a positive integer and write $d = p^t e$ with (e,p) = 1. Let $x_0 \in GR(p^n,m)$ and write $x_0 = p^i A$ with A a unit of $GR(p^n,m)$. Let $P_d^{-1}(P_d(x_0))$ be the preimage of $P_d(x_0)$. Then

$$|P_d^{-1}(P_d(x_0))| = \begin{cases} (d, q-1)q^{i(d-1)+k} & \text{if } i \le \lfloor (n-1)/d \rfloor \\ q^{n-\lfloor (n-1)/d \rfloor - 1} & \text{if } i > \lfloor (n-1)/d \rfloor \end{cases}$$

where $k = \min\{t, n - id - 1\}$ and $q = p^m$.

Proof. Let $x_0 \in GR(p^n, m)$ and write $x_0 = p^i A$ with A a unit of $GR(p^n, m)$. Let $d = p^t e \ge 1$ with (e, p) = 1. Then we consider two cases.

Case 1. $i \leq \lfloor (n-1)/d \rfloor$. Then, $x^d = x_0^d$ if and only if $x = p^i B$ for some B in GR (p^n,m) with $B^d \equiv A^d \pmod{p^{n-id}}$. Thus, $B \equiv wA \pmod{p^{n-id}}$ for some w in GR (p^{n-id},m) with $w^d=1$. Hence, by Lemma 1, there are $(d,q-1)q^k$ distinct values B over GR (p^{n-id},m) where $k=\min\{t,n-id-1\}$ and $q=p^m$. Therefore, there are $(d,q-1)q^{k+(n-1)-(n-id-1)-i}=(d,q-1)q^{i(d-1)+k}$ distinct values x over GR (p^n,m) satisfying $x^d=x_0^d$.

Case 2. $n \geq i \geq \lfloor (n-1)/d \rfloor + 1$. $x^d = x_0^d = p^{id}A = 0$ if and only if $x = Bp^{\lfloor (n-1)/d \rfloor + 1}$ for some B in $\mathrm{GR}\,(p^n,m)$. Therefore, there are $q^{n-1-\lfloor (n-1)/d \rfloor}$ distinct values x in $\mathrm{GR}\,(p^n,m)$ so that $x^d = 0$. This completes the proof of the theorem.

Theorem 3. Let d denote a positive integer and write $d = p^t e$ with (e, p) = 1. Then

$$|\{P_d(x): x \in GR(p^n, m)\}| = \frac{q-1}{(q-1, d)} \sum_{i=0}^{\left[\frac{n-1}{d}\right]} q^{n-1-id-k_i} + 1$$

where $k_i = \min\{t, n - id - 1\}$ for $0 \le i \le [(n - 1)/d]$.

Proof. We partition $GR(p^n, m)$ as follows:

$$\operatorname{GR}\left(p^{n},m\right) = \bigg(\bigcup_{i=0}^{\left[\frac{n-1}{d}\right]} p^{i} \operatorname{GR}^{*}(p^{n},m)\bigg) \cup \bigg(\bigcup_{i>\left[\frac{n-1}{d}\right]} p^{i} \operatorname{GR}^{*}(p^{n},m)\bigg).$$

Therefore, by Theorem 2,

$$|\{P_d(x) : x \in GR(p^n, m)\}| = \sum_{i=0}^{\left[\frac{n-1}{d}\right]} \frac{(q-1)q^{n-1-i}}{(q-1, d)q^{i(d-1)+k_i}} + 1$$
$$= \frac{q-1}{(q-1, d)} \sum_{i=0}^{\left[\frac{n-1}{d}\right]} q^{n-1-id-k_i} + 1$$

where $k_i = \min\{t, n - id - 1\}.$

Corollary. $P_d(x) = x^d$ permutes $GR(p^n, m)$ if and only if d = 1 or n = 1 and $(d, p^m - 1) = 1$.

3. p even. Throughout this section we assume that p=2. Then, the group of units $GR^*(p^n, m)$, see [1, Theorem XVI.9], is a direct product of two groups G_1 and G_2 , where G_1 denotes a cyclic group of order $p^m - 1 = q - 1$, and G_2 denotes a group with two possible structures depending on the value of n. If $n \leq 2$, G_2 is a direct product of m cyclic groups of order p^{n-1} . Thus,

(2)
$$\operatorname{GR}^*(p^n, m) = G_1 \times G_2 = G_1 \times H_1 \times H_2 \times \cdots \times H_m$$

where H_i denotes a cyclic group of order p^{n-1} for $i \geq 1$. On the other hand, if $n \geq 3$, G_2 is a direct product of a group of order 2, a cyclic group of order 2^{n-2} and m-1 cyclic groups each of order 2^{n-1} . Thus,

(3)
$$GR^*(p^n, m) = G_1 \times G_2 = G_1 \times E_1 \times E_2 \times H_1 \times H_2 \times \cdots \times H_{m-1}$$

where E_1, E_2 and H_i , $i \ge 1$ are cyclic groups of orders 2, 2^{n-2} and 2^{n-1} , respectively.

Corresponding to Lemma 1 and Theorems 2 and 3 for odd p, we can prove the following results when p=2. As the proofs are analogous to those given for odd p, we omit the details for the p=2 case.

Lemma 1'. Let d denote a positive integer and write $d = p^t e$ with (p, e) = 1. Then

$$|\{x \in GR(p^n, m) : x^d = 1\}| = \begin{cases} (d, q - 1) & \text{if } t = 0\\ 2(d, q - 1)q^t & \text{if } 1 \le t \le n - 2\\ (d, q - 1)q^{n-1} & \text{if } n - 1 \le t \end{cases}$$

where $q = p^m$.

Theorem 2'. Let d denote a positive integer and write $d = p^t e$ with (e, p) = 1. Let $x_0 \in GR(p^n, m)$ and write $x_0 = p^i A$ with A a unit of

 $GR(p^n, m)$. Let $P_d^{-1}(P_d(x_0))$ be the preimage of $P_d(x_0)$. Then

$$|P_d^{-1}(P_d(x_0))| = \begin{cases} (d, q-1)q^{i(d-1)} & \text{if } t=0 \text{ and } id \leq n-1 \\ 2(d, q-1)q^{t+i(d-1)} & \text{if } 1 \leq t, \ t < n-1-id, \\ & \text{and } id \leq n-1 \\ (d, q-1)q^{n-1-i} & \text{if } 1 \leq t, \ t \geq n-1-id, \\ & \text{and } id \leq n-1 \\ (d, q-1)q^{n-[(n-1)/d]-1} & \text{if } id \geq n. \end{cases}$$

Theorem 3'. Let d, n and m denote three positive integers and write $d = p^t e$ with (e, p) = 1. Let V denote the value set

$$V = \{ P_d(x) : x \in GR(p^n, m) \}.$$

a) Assume t = 0. Then,

$$|V| = \frac{q-1}{(q-1,d)} \sum_{i=0}^{\left[\frac{n-1}{d}\right]} q^{n-1-id} + 1$$

b) Assume $1 \le t$ and $n - 1 - (j + 1)d \le t < n - 1 - jd$ for some j, $0 \le j \le \lfloor (n - 1)/d \rfloor$. Then,

$$|V| = \frac{q-1}{(d,q-1)} \left([(n-1)/d] - j + (1/2) \sum_{i=0}^{j} q^{n-1-id+t} \right) + 1$$

c) Assume $t \geq n - 1$. Then,

$$|V| = \frac{q-1}{(d,q-1)}([(n-1)/d]+1)+1$$

Acknowledgment. The author thanks the referee for his suggestions which improved the final version of the paper.

REFERENCES

1. B.R. MacDonald, Finite rings with identity, Marcel Dekker, New York, 1974.

DEPARTMENT OF MATHEMATICS, NEW KENSINGTON CAMPUS, PENNSYLVANIA STATE UNIVERSITY, NEW KENSINGTON, PA 15068