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ON THE POWER POLYNOMIAL z¢
OVER GALOIS RINGS

JAVIER GOMEZ-CALDERON

ABSTRACT. Let p denote a prime. Let GR (p™, m) denote
the Galois ring of order p™™. Let Py(z) denote the power
polynomial Py(z) = z% over the ring GR (p®,m). In this
paper we determine two cardinalities: the cardinality of the
value set {Py(z) : « € GR (p™, m)}, and the cardinality of the
preimage Pd_l(Pd (z)) for each z in GR (p™, m).

1. Introduction. For a prime p, let GR (p™, m) denote the Galois
ring of order p™™ which can be obtained as a Galois extension of Z,»
of degree m. Thus GR (p",1) = Z,» and GR (p, m) = K,m, the finite
field of order p™. The reader can find further details concerning Galois
rings in the excellent reference [1].

Now, for d > 1, let Py(z) = x¢ denote the power polynomial of degree
d over GR (p", m). Then it is easy to check that the cardinality of the
value set of P4(z) over the field GR (p,m) = K,m = K, depends only
upon (d,q—1), the greatest common divisor of d and ¢ — 1. To be more
specific,

q—1

[{Pa(z): z € GR (p,m) = K, }| = G-1Ld

+1

mn

where ¢ = p

In this paper we not only determine the cardinality of the value set
{Pi(z) : = € GR(p™,m)} for n > 1, but if zo € GR (p", m), we also
determine the cardinality of the preimage of Py(zg).

2. p odd. Throughout this section we assume that p is odd. Let
GR*(p™,m) denote the group of units of GR (p™, m). Then, see [1,
Theorem XVI.9], GR *(p", m) is a direct product of two groups G; and
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G2 where (G; denotes a cyclic group of order p™ — 1 = ¢ — 1, and G2
denotes a direct product of m cyclic groups each of order p”~!. Thus,

(1) GR*(pnam):GlXG2:G1XH1XH2X---XHm

where H; denotes a cyclic group of order p”~! for i = 1,2,... ,m.

Lemma 1. Let d denote a positive integer and write d = pte with
(e,p) =1. Then
{z € GR(p",m) : z¢ = 1}| = (d,q — 1)¢*
where k = min{n — 1,t} and ¢ = p™.
Proof. Let A(d) denote the set of elements z in GR (p™, m) so that

x? = 1. Thus, A(d) is a multiplicative subgroup of GR *(p", m), the
group of units of GR (p”, m).

Now, by (1),
A(d) = A" x Hf x Hy x---x H,

where A* denotes the subgroup of G; of order (d,q—1) and H} denotes
the subgroup of H; of order (p?,p"~!) for i > 1. Therefore,

|A(d)| = (d,g = D)(P")™ = (d, ¢ = 1)¢"
where k = min{¢,n — 1}. u]
Theorem 2. Let d denote a positive integer and write d = pte with

(e,p) = 1. Let g € GR (p", m) and write xyg = p*A with A a unit of
GR (p",m). Let P; ' (Py(z0)) be the preimage of Py(zo). Then

L (dg— D@D ifi < [(n- 1)/
e = {0 e S o

where k = min{t,n — id — 1} and ¢ = p™.
Proof. Let zy € GR (p",m) and write o = p'A with A a unit of

GR (p™,m). Let d = p'e > 1 with (e,p) = 1. Then we consider two
cases.
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Case 1. i < [(n —1)/d]. Then, z¢ = z¢ if and only if z = p'B for
some B in GR (p",m) with B? = A% (mod p"~*¥). Thus, B = wA
(mod p"~i?) for some w in GR (p" 4, m) with w? = 1. Hence, by
Lemma 1, there are (d,q — 1)¢"* distinct values B over GR (p"~¢, m)
where k& = min{t,n — id — 1} and ¢ = p™. Therefore, there are
(d,q — 1)gktn=D=(n—id=D=i — (4 ¢ — 1)¢*(¢-D+k distinct values
over GR (p",m) satisfying z¢ = z.

if = Bpl(=D/d+1 for some B in GR (p",m). Therefore, there are
¢ 1 (=D/d] distinct values = in GR (p",m) so that z? = 0. This
completes the proof of the theorem. o

Case 2. n > i > [(n—1)/d] +1. 2% = z¢ = p'?A = 0 if and only

Theorem 3. Let d denote a positive integer and write d = pte with
(e,p) =1. Then

n g—1 n—1—id—k;
Piy(z):z € GR(p",m)} = ———= i+ 1
{Pa(o) Wl =g 2

where k; = min{t,n —id — 1} for 0 <i < [(n —1)/d].

Proof. We partition GR (p™, m) as follows:

(232
ar ) = (U persgrm)u (U soretm).
=0 i>[271]

Therefore, by Theorem 2,

& (¢—Dg~ '
{Py(z): 2z € GR(p",m)}| = ; @ L)@ 0TE +1

_og-1 n—1—id—k;
=L ¢ !

where k; = min{¢t,n — id — 1}. o
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Corollary. P;(z) = x% permutes GR (p™,m) if and only if d =1 or
n=1 and (d,p™ — 1) =1.

3. p even. Throughout this section we assume that p = 2. Then,
the group of units GR*(p™,m), see [1, Theorem XVI.9], is a direct
product of two groups (G; and G2, where (G; denotes a cyclic group
of order p™ — 1 = ¢ — 1, and G5 denotes a group with two possible
structures depending on the value of n. If n < 2, G5 is a direct product
of m cyclic groups of order p”~!. Thus,

(2) GR*(p",m) =Gy x Go = Gy x Hy x Hy x --- x H,,

where H; denotes a cyclic group of order p"~! for i > 1. On the other
hand, if n > 3, G5 is a direct product of a group of order 2, a cyclic
group of order 2”2 and m — 1 cyclic groups each of order 2"~!. Thus,

(3) GR*(pn,m):GlXG2:G]_XElXEQXHlXHgX"'XHm,]_

where E1, E> and H;, i > 1 are cyclic groups of orders 2, 2"~2 and
27~1 respectively.

Corresponding to Lemma 1 and Theorems 2 and 3 for odd p, we can
prove the following results when p = 2. As the proofs are analogous to
those given for odd p, we omit the details for the p = 2 case.

Lemma 1'. Let d denote a positive integer and write d = pte with
(p,e) =1. Then

(daq_l) ift=0
Hz € GR(p",m):z =1} ={ 2(d,q—1)¢¢ if1<t<n-2
(dyg—1)g" ! ifn—-1<t

m

where ¢ = p

Theorem 2'. Let d denote a positive integer and write d = pte with
(e,p) = 1. Let g € GR (p",m) and write zop = p'A with A a unit of
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GR (p",m). Let P;'(Pai(z¢)) be the preimage of Py(zo). Then,

(d,q— 1)g*@V ift =0 andid <n —1
2(d,q — 1)g*Ti@-b fl<t,t<n—1-—id,
did<n-—1
P—l P — ' an <
| d ( d(wo))‘ (d,qil)qnflfl lflﬁt,th—lfzd,
andid<n-—1
(d,q — 1)g"ln=D/d=1 4 4d > n,

Theorem 3'. Let d,n and m denote three positive integers and write
d = p'e with (e,p) = 1. Let V denote the value set

V ={Pa(z): z € GR(p",m)}.
a) Assumet=0. Then,
‘V| — q— 1 Z qn—l—id +1
(q o lad) -0

b) Assumel <tandn—1—(j+1)d <t<n—1-—jd for some j,
0<j<[(n—1)/d]. Then,

q—1 . d n—1—id+t
|V|—m([(n—l)/d]—ﬁ(lﬂ);q +)+1

c) Assumet>n—1. Then,
g—1

V=@

(ln—=1)/d]+1)+1

Acknowledgment. The author thanks the referee for his sugges-
tions which improved the final version of the paper.

REFERENCES

1. B.R. MacDonald, Finite rings with identity, Marcel Dekker, New York, 1974.

DEPARTMENT OF MATHEMATICS, NEW KENSINGTON CAMPUS, PENNSYLVANIA
STATE UNIVERSITY, NEwW KENSINGTON, PA 15068



