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REGULAR LATTICES AND WEAKLY
REPLETE LATTICES

GEORGE M. EID

ABSTRACT. Let X be an abstract set and £ a lattice
of subsets of X. The notion of £ being regular or weakly
replete are investigated. Also, spaces related to X, L are
investigated in terms of the general Wallman space, and for
L not necessarily disjunctive analogous of these spaces are
constructed.

1. Introduction. It is well known that to each disjunctive lattice
L of subsets of a set X there is associated the general Wallman space
Ir(L), TW(L) (see below for definitions) which is a compact 17 space
and is T» if and only if £ is normal. Moreover, if £ is separating (77)
then X is densely embedded in Ir(£) and even homeomorphically if X
carries the 7L topology of closed sets. We will (see Section 4) carry out
an analogous construction of an associated space in the case of a not
necessarily disjunctive lattice £ thereby extending the work of Illiadis
[5] of an absolute closure.

Next, if £ is disjunctive then associated with X, £ is the pair I(L),
W, (L), where W, (L) is a replete lattice, and which generalizes the
notion of the usual real compactification of a Tychonoff space. We
again generalize to the situation of a not necessarily disjunctive lattice
and introduce the notion of a weakly replete lattice. This work extends
some of the results of Liu.

We adhere to a measure theoretic point of view throughout since this
is more natural in the case of restriction and extension problems, and
since many extend to nonzero are valued measures. We first introduce
some standard lattice terminology (see [2, 3, 4, 6]) and state the
equivalent measure characterizations. In Section 3, we elaborate on
some of these properties and show some relationships to 7-smooth
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measures. Sections 4 and 5 contain the constructions of the spaces
indicated earlier and give the salient properties concerning weakly
compact and weakly replete lattices.

2. Definitions and notations. a) Let X be an abstract set and £
a lattice of subsets of X. We shall assume, without loss of generality for
our purposes, that ¢, X € £. The set whose general element L' is the
complement of L of £ is denoted by £’. L is a complement generated if
and only if, for every L of £ there exists a sequence {L,}>2; in £ such
that L = NS, L!,. L is a delta-lattice (d-lattice) if £ is closed under
countable intersections. L is a Ty-lattice if, for any z,y € X, = # y,
there exist Ly, Ly € L such that ¢ € L}, y € L} and Lj N L) = ¢.
L is regular if for every z € X and every L € L, if z ¢ L then there
exist Ly,Ly € L; x € L}, L C Ly and L} N L) = ¢. L is a normal
lattice, if for any L1, Lo € £, L1 N Ly = ¢, there exist L3, Ly € L with
Ly C L, Ly C Ly and LN L) = ¢. L is Lindeldf if and only if, for
every Ly, € L, a € A, if Ng L, = ¢, then for a countable subcollection
{Lqa;} of {La}, N2, L,, = ¢. L is compact if and only if, for every
L, e L, a€ A, if NyLy, = ¢ for finite subcollection {L,,} of {Ly},
N? 1Ly, = ¢. L is disjunctive if, for any € X and every L; € L, if
x ¢ Ly, then there exists an Ly € £ with ¢ € Ly and Ly N Ly = ¢.
Next, let L1, L2 be two lattices of subsets of X. £; semi-separates Lo
or for abbreviation (£; s.s. L3) if and only if, for every L; € £y and
every L2 € Lo if Ly N Ly = ¢ then there ex1sts L1 e L, Ly e L1 and
LN L1 =¢. L, separates Lo, if for any LQ,LQ € Lo, Ly n L2 =¢
then there exist L1,L1 € Ly, Ly C Ly, L2 C L1 and L; N L1 @. Lo
is countably bounded (countably paracompact) or simply (L3 is £1-cb
(cp)), if given B,, | @, B, € L2, there exists A, € £, with B, C A,
(B, C A},) and A, | ¢ (4], | ).

b) Let A be any algebra of subsets of X. A measure on A is defined
to be a function p from A to R such that u is bounded and finitely
additive. A(L) denotes the algebra of subsets of X generated by £. If
x € X, then p, is the measure concentrated at = so that

1 ifzed
zA:
pal4) {o ifzdA

where A € A(L). M(L) denotes the set whose general element is a
measure on A(L). Since any p € M(L) can be split into its positive
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and negative pieces, then without loss of generality we may tacitly work
with the nonnegative measures of M (L). Let u € M (L), w is L-regular,
if for any A € A(L), p(A) =sup{p(L); L C A,L € L}. Mgr(L) denotes
the set of L-regular measures of M(L). p € M(L) is o-smooth on
L,if L, € £L,n=12,... and L, | &, then u(L,) — 0. M,(L)
denotes the set of o-smooth measures on £ of M(L). p € M(L) is
o-smooth on A(L), if A, € A(L), n = 1,2,... and A, | @, then
w(A,) — 0. M?(L) denotes the set of o-smooth measures on A(L)
of M(L). Mg(L) denotes the set of L-regular measures of M7 (L).
It is easy to see that if p € Mg(L) then p is o-smooth on A(L) if
and only if y is o-smooth on £. p € M(L) is T-smooth on L if for
every {Ly}, Lo € L such that L, | ¢, then u(L,) — 0. M,(L)
denotes the set of 7-smooth measures on £ of M(L). MFE(L) denotes
the set of all L-regular measures of M (L) which are also 7-smooth
on L. Finally, p € M?(L) is strongly 7-smooth on L, if for every
{L4}, Lo € L such that L, |, then p*(NL,) = infu(Ly) where
p* is the induced outer measure. I(L), Ir(L), I,(L), I°(L), I.(L),
and I} (L) are the subsets of the corresponding M’s consisting of the
nontrivial zero—one valued measures. For p € M(L), the support of
w, S(p) = N{L € L : u(L) = p(X)}. Consequently, if p € I(L),
S(p) =n{L € L,u(L) = 1}. L is prime replete, if for each p € I,(L),
S(pn) # ¢. A premeasure on L is a function 7 from £ to {0,1} such
that w(¢) = 0, 7(A) < w(B) for every A C B, A,B € L and if
m(A) = m(B) = 1, then 7n(AN B) = 1. II(L) denotes the set of
all premeasures on £. Note that, for every u € I(L), there exists
av € 1g(L); p < von L or simply (¢ < v(£)). Finally, if p, is
the measure concentrated at x, then p, € Ir(L) if and only if £ is
disjunctive.

3. Some further properties and measures. In this section
we elaborate on certain lattice properties introduced in Section 2. In
particular, we expand on the notion of a regular lattice and on 7-smooth
measures, thereby showing some relationships to mildly normal lattices
and to extensions of results on 7-smooth measures.

Theorem 3.1. L is regular if and only if for pi,pe € I(L),
p1 < pa(L), then S(p1) = S(p2).
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Proof. (i). If S(u) = N{L € L,pu(L) = 1} and p; < po(L) then
S(u2) C S(w1) is trivial (it is not necessarily the condition “L is
regular”). We now want to show that S(u1) C S(u2); if not, there
exists z € S(u1), x ¢ S(p2) = NaLa, Ly € L, with pa(Ly) = 1.
Therefore, there exists L € £, p2(L) = 1 and & ¢ L. Since L is
regular, then by definition there exist Ly,Ly € L, x € L}, L C L),
L1 U L2 = X. Then either /,Ll(Ll) =0 or /,Ll(Ll) = ]., but /_,LQ(L) =1
then po(Ly) = 1, pa(Lz) = 0 and so p1(L2) = 0. Since p; < po(L)
then py(Ly) =1 and S(py) C Ly, but © € S(p1) C Ly and also z € L],
which is a contradiction. Therefore, S(u1) C S(u2) and, moreover,
S(p1) = S(p2)-

(ii). Now we want to show that £ is regular. If not, then there exist
reX, LeLl,x¢ Land H={L' € L,z € L' or L C L'} has the
finite intersection property. Then there exists py € I(£), py(L') = 1
forall L' € H. If py(L) = 1, L € L, then py(L') = 0, L C L' and so
LNL# ¢ forall L € L. Therefore, there exists us € I(£), pz(L) =1
and iy < pz(L). Also, since py (L) = 1, then py(L') = 0 and so z ¢ L/,
z € L for all L € £ with u(L) = 1. Therefore, z € S(u1) = S(uz),
but po(L) = 1. Then z € L which is a contradiction. Thus, £ must be
regular. |

Definition 3.1. £ is mildly normal, if for all u € I,(L), there exists
a unique v € Ig(L), p < v(L).

We have considered mildly normal lattices and their relationships to
normality in [1]. Here, we want to consider mildly normal lattices and
their relationships to regularity.

Theorem 3.2. If L is reqular and prime replete, then L is mildly
normal.

Proof. If L is not mildly normal, there exists u € I,(L), v1,vs €
Ir(L), v1 # vp and p < v1(L), p < va(L). Since v; # vy, then
there exists Ly, Ly € £, Ly N Ly = ¢ and v1(L1) = va(Le) = 1 and
v1(L2) = v2(L1) = 0 but, since £ is regular, S(u) = S(v1) C Ly and
S(pn) = S(v2) C Ly. Then, S(u) C L1 N L = ¢ and so S(p) = ¢ which
is a contradiction since L is prime replete. Thus, £ must be mildly
normal. O
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Corollary 3.1. If L is regular and Lindelof, then L is mildly normal.

Proof. Since L is Lindeldf, it follows immediately that £ is prime
replete and the result follows from Theorem 3.2. ]

Theorem 3.3. If L is reqular, p € 1(L) and p(L) = sup; -, u(L),

L e L, then a) p is a premeasure on £ and b) S(p) = S(p).

Proof. a) p is a premeasure on L since (i) clearly, p(¢) = 0, (ii) if
Ly C Ly, then p(L1) = sup;, p, u(L1) < supp,p, p(L2) = p(L2),
L € L and (iii) if p(L;) = 1 for i = 1,2, then there exist L; C L; and
w(L;) =1, L; € L for i = 1,2 and moreover, u(L; N Lz) = 1 and so
p(Ll N Lz) =1.

b) Suppose L is regular, since p < u(L), then S(u) C S(p). If
S(n) # S(p), then there exists an z € S(p) but © ¢ S(u), then
there exists L € £, x ¢ L with pu(L) = 1, therefore x € L’ and so
z € L} C Ly C L' where Ly, Ly € L therefore L C Ly C Ly, p(L5) =1
and p(L1) = 1 (by the definition of p) and since z € S(p) then = € Ly,
but « € L} which is a contradiction. Thus, S(u) = S(p). o

To prove the next theorem, we note that if 4 € I,(£') and L is a
complement generated, then p € Ig(L). This result is not difficult and
is also true, if p € M, (L") in which case u € Mg(L).

Theorem 3.4. Suppose u € I°(L) or just I,(L') and L is a
complement generated, then if S(u) # ¢, u = py for some x € X.

Proof. Suppose p € I,(L') and L is complement generated, then
p € IZ(L), and if S(u) # ¢, then there exists z € S(u) and so
p < pz(L), but p € I(L). Thus, p = p, for some z € X. o

As an immediate consequence of Theorem 3.5, we have the following
corollary, where Z is the lattice of zero sets of a topological space.
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Corollary 3.2. Suppose p € I°(2) and I.(Z), then S(u) # ¢ and
U= pg forxe X.

Proof. Since Z is complement generated, p € I%(Z) and since
p € I(2), S(u) # ¢; therefore, there exists an & € S(u) and
#Suz(z)abutﬂefﬁ(z)- Thusa B = Hg. O

Now we list the following immediate observations (in this connection
see [7T]): (1) If p € M, (L) then S(u) # ¢. (2) If L is a d-lattice, then
M7 (L) = ME(L) if and only if S(p) # ¢ for all p € MY, (L) where p is
nontrivial. Also (3) if £ is a §-lattice, then p € ME(L) if for any {L,}
of £ with L, |, p*(NLy) = Infpu(Ly,).

Theorem 3.5. Let L be To. Suppose p € I°(L) and strongly -
smooth, then S(u) = {z} and py, = p for some x € X.

Proof. Since p € I°(L) and strongly 7-smooth, then S(u) # ¢ and
by Tz, S(u) = {z}, u < p, and so S(u) = S(pe) = {x}; therefore,
{z} = NLq, p(Ly) = 1, L, € L and by the strongly T-smoothness of
wy, p*({z}) = Infu(Ly) =1. If p,(L) =1, L € L, then z € L; hence,
1=p*({z}) < p(L), u(L) = 1 and so pp < p(£). Thus, pp = p. O

As an immediate consequence of Theorem 3.5, we obtain the following
corollary where F is the lattice of all closed sets of a topological space.

Corollary 3.4. Let X be a Tp-topological space and F the lattice of
closed sets. If p € I?(F) and strongly T-smooth then S(u) = {z} and
U= p for some x.

4. Spaces related to X, L. We first consider the case where £
is disjunctive and give a brief review of the most important properties
of the associated Wallman space. In fact, the Wallman topology is
obtained by taking the totality of all W(L) = {u € Ir(L),u(L) =
1,L € L} as a base for the closed set on Ir(L). And, for a disjunctive
L, Ir(L) with the topology TW (L) of closed sets is a compact T} space
and will be T3 if and only if £ is normal and is called the general
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Wallman space associated with X and L.

Also, for a disjunctive £ and A, B € A(L), W(A) is a lattice with
respect to union and intersection. Moreover, W(A') = (W(4)),
W(A(L)) = AW(L)), W(A) = W(B) if and only if A = B and
W(A) ¢ W(B) if and only if A C B. Now we note that, if £ is
disjunctive so is W(£), and in addition to each u € M (L), there exists
afi € M(W(L)) defined by p(A) = (W (A)) for all A € A(L) such
that the map p — [ is one-to-one and onto; moreover, u € Mg(L) if
and only if g4 € Mr(W(L)).

We next introduce the notion of an £-convergent measure y € I(L)
and list several properties.

Definition 4.1. p € I(L) is L-convergent, if there exists an x € X
such that p, < p(L).

Some properties are (1) p is L-convergent if and only if S(u) # ¢ on
L' forall p € I(L); (2)if 1 < pa(L), where pq, ua € I(L), then a) if pq
is L-convergent so is ug, and b) if £’ is regular and uy is £L-convergent,
then p; is L-convergent; (3) if £’ is T, and p is L-convergent where
w € I(L), then there exists a unique z € X such that p, < u(L).

The proofs of these properties are not difficult and will not be given.

Definition 4.2. L is weakly compact if, for all u € Ir(L), p is
L-convergent.

Remark 1. Note that if £ is compact, then for u € Ig(L), S(p) # ¢.
Let x € S(u). Then, u < p, on L. Thus, p = p, and so L is weakly
compact.

Definition 4.3. £ is almost compact if, for any p € Ig(L'), S(u) # ¢
on L.

The next theorem is not difficult to prove.

Theorem 4.1. L is weakly compact if and only if L' is almost
compact.
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Remark 2. Now we note that a topological space X is absolutely
closed (generalized absolutely closed) if and only if the lattice O of
open sets is T(7p) and weakly compact.

Let £ be a lattice of subsets of X, and define U(L) as the collection
of all: {ULy; Ly € L}.

Theorem 4.2. a) If L1 C Lo and Ly is weakly compact, then Ly is
weakly compact. b) Suppose L1 C Lo CU(Ly) and Ly s.s. Lo, then, if
L1 is weakly compact, Lo is weakly compact.

Proof. a) Let v € Ir(L2) be an extension of u € Ig(L1) and by the
weakly compactness of Ly, there exists an z, p, < v(Ls), pe < p(L1)-
Thus, £, is weakly compact.

b) Since Ly s.s. Lo, p € Ig(L1) and p, < wp(Ly1) where p is the
restriction of v € Ig(L2) to A(Ly). Let Ly € Lo and p,(Lz) = 1, then
® € Ly = UL14, L1n € £1 and so z € Ly, and p;(L1,) = 1 for some
L. Furthermore, since p, < u(Ly), p(L1a) = 1, but Ly, C Lo then
v(L3) =1 and so p, < v(Ls3). Thus, Lo is weakly compact. |

Remark 3. Let X be a topological space and O the collection of open
sets, then by Theorem 4.1, O is weakly compact if and only if F = O’
is almost compact.

Now, consider X and suppose L is nondisjunctive and define I=
{pz;2 € X} U{p € Ir(L);uis not L — convergent} and W(A) =

{p € L;u(A) = 1,A € A(L)}. We also assume that £ is Ty, so
z,y € X and = # y implies p1, # py. Then, for A, B € A(L), we have
a) A = B if and only if W(A) = W(B), b) W(AUB) = W(A)UW(B)
and W(A N B) = W(A) N W(B), and c) W(4') = (W(A)) and
W(A(L)) = A(W(L)). Finally, let u € I(£) and define i € I(W (L))
to be a(W(A)) = u(4), A € A(L). Also, it can be easily shown that

the map g — f is one-to-one and onto from I(L) to I(W (L)) and,

moreover p € Ig(L) if and only if 4 € IR(W(L)).

~

Theorem 4.3. W(L) is weakly compact and Tp.

Proof. a) Suppose ji € Ir(W(L)), then u € Ir(£). (i) If pis L-
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convergent, then p, < u(L) and so fi, < (W (L)). Also, for A € A(L),

1 ifzecA

, and pg, € W(A
0 ifrga MK €W

pa(4) = 7 (4) = {
if and only if p,(A) = 1. Thus, fi, is the measure concentrated at p,
and i is W (L)-convergent and so W (L) is weakly compact. (ii) If z is
not L-convergent, then S() = NW (L), 4(W(L)) = 1 = u(L), hence
pe W(L), pel, pe S(i) and ji is the measure concentrated at
and so W (L) is weakly compact. b) Let p1, g2 € I, jty # pa, then there
exists on L € L, say, u1(L) = 1, pa(L) = 0. Therefore, u; € W(L),
pz € W(L') and so W(L) is Tp. O

Theorem 4.4. If L = U(L), then W (L) separates U(W (L)).

Proof. Suppose

(% (U)o (Uires) =

a B
A = (UyLy) € L, and B = (UgLg) € L. Since L = U(L), then
(UaW (La)) € W(A) and (UsW (Lg)) € W(B). Also, if AN B # ¢,
then L, N Lg # ¢ for some «o,B. Let « € L, N Lg, then p, € I,
pie € W(Lg) and p, € W(Lg) that contradicts (*). Thus, AN B = ¢
and the desired result is now clear. O

Now we easily note that if £ = U(L), then I with O = W(L) is
generalized absolutely closed and is absolutely closed if £’ is T. Thus,
if we consider X and let £ = U(L) = Ox the lattice of open sets on
X and T5, then I , O is an absolute closure of X since one can easily
observe that X = W(X).

5. Further spaces associated with X, L. Again, we start with
the case where £ is a disjunctive lattice, only now we consider I (L)
and take all W, (£) = {p € I{(L); (L) = 1,u € L} as a base for the
closed sets.

The corresponding properties listed at the beginning of Section 4
for W(L) sets hold for W, (L) sets. Also, to each u € M(L) there
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corresponds a p' € M (W, (L)) defined by p'(W,(A)) = p(A) for all
A € A(L). The map pu — p' is one-to-one, onto between Mg (L)
and Mg(W,(L£)) and also between ME(L) and MZ(W, (L)), since
e Mg(W,(L)) if and only if p € MZ(L).

It is known that W, (L) is replete [8] and that I% (L) with W, (L) as
base for the closed sets is a T} space. To show that W, (L) is replete, let
p' € If(Wo (L)), then S(p') = N{We(La); ' (Wo(La) = 1,La € L},
but u'(Wy(Ly)) = p(Ly) where p € I§(L). Hence, p € S(p') and
W, (L) is replete.

As in Section 4, we now proceed to the case of a not necessarily
disjunctive lattice L.

Definition 5.1. L is weakly replete if, for any p € If(L), p is
L-convergent.

Remark 4. Note that if £ is replete, then for p € I§(L), S(u) # ¢.
Let © € S(u), then p < p, on L. Thus, u = p, and so L is weakly
replete.

Note that a topological space X is an a-space if and only if it is 7%
and the lattice O of open sets is weakly replete.

Theorem 5.1. Suppose Lo is weakly replete and Lo is Li-cb or
L1-cp, then L1 is weakly replete.

Proof. Extend py € I§(L1) to pe € Ir(L2). Since Ly is Li-cb or
L1-cp, then po € I%(L2) and since Lo is weakly replete there exists
an ¢ € X, py < pa(Lo); therefore, p, < p1(Ly1) and so £y is weakly
replete. u]

Theorem 5.2. Suppose L s.s. Lo and Lo C U(Ly). If Ly is weakly
replete, then Lo is weakly replete.

Proof. Let ps € Ig(L2) since Ly s.s. Lo, then uy = pa|acc),
p1 € Igr(Ly) and since £ is weakly replete, there exists an z € X,
pe < p1(Ly). Now, if Ly € Lo and p,(Lg) = 1, then z € Ly and
Ly =UyL1g, L1 € L1, thena € Ly, py(L1y) = Land so p1(L1g) =1,
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but Ly, C Lo, then ps(Ly) =1 and so gy < pa(L2). Thus, Lo is weakly
replete. ]

Now, we proceed to generalize some of the work of Liu. Consider X
and suppose L is Ty so if ¢ # y, then p, = p, and define I7 = {u,;x €
X} U {p € I%(L); p is not L-convergent} and W7 (A) = {u € I°,
p(A) =1, Ac A(L)}y =W(A)nI°.

Theorem 5.3. I°, W"(E) is weakly replete.

Proof. Let fi € I4(W? (L)), then pu € I%(L) since L, | ¢ is equivalent
to W"(Ln) 4 @. Now the proof will be completed by considering two
cases: a) If yu is L-convergent, then there exists an z € X : p, < p(L),
hence ji, < i(W7(L)) where ji, is the measure concentrated at i, so /i
is W (L)-convergent. Thus, I7,We(L) is weakly replete. b) If i is not
L-convergent, then p € I? and so S(f1) = NW (L) but a(W7 (L)) =1
implies that € W°(L) and 4 € I°, then p € S(i) and 4 is the
measure concentrated at pu. Thus, I°,we (L) is weakly replete. o

Now we may easily note that if W"(E) is taken as a base for open
sets on I so O, = UW7(L), then O, is Tp.

Theorem 5.4. If L = U(L), then 17,0, is a generalized a-space
and is an a-space if L' is Ts.

Proof. a) W° (L) separates UW? (L) = O, for if
() (LQJW”(La)) n (LBJW”(L[») s

Let A = UyLy, B = UgLg, A,B € L since L = U(L), also
UaW(Lo) C W9(A) and UsW?(Lg) C W7(B), and if AN B # ¢,
then Lo N Lg # ¢ for some «,B. Let € Lo N Lg. Then, p, € I,
pe € Wo(Ly) and p, € WO(Lg) which contradicts (x). Thus,
W (L) separates UW? (L) and since W7(L) is weakly replete, so is
O, = UW?(L) by Theorem 5.2. Also, O, is Tp by the above note.
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Thus, 17, O, is a generalized a-space. b) (i) Suppose ps # py
so x # y. Then, since £’ is Ty, there exists Ly, Ly € L such that
2 € L1,y €Ly, LyN Ly = ¢. Then p, € W7(Ly) and p, € W(Ly),
W(Ly) N W7 (Ly) = ¢. Thus, W7 (L) and therefore @, is Ty. (ii)
Also, if puy, 2 € 17 and pi, po are not L-convergent and g1 # g,
then there exist Ly, Ly € L such that py(Ly) = pa(La) = 1, p1(Le) =
p2(L1) = 0 and Ly N Ly = ¢, then puy € W7(Ly), po € W7 (L)
and W (L) N W7 (Ly) = ¢. Thus, W7(£), and therefore O, is Tb.
(iii) Finally, if gy € 19 and g € I and p is not £-convergent, then
since 1, £ (L) we can find Ly, Ly € £ as before. Thus, W7(£) and
therefore O, is T5. ]

Remark 5. Now we may easily note that Ie=1.

Acknowledgment. The author takes pleasure in acknowledging his
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