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NONHOMOGENEITY OF POWERS OF COR IMAGES
MURRAY G. BELL

ABSTRACT. A space is called a Cor image if it is a Haus-
dorff continuous image of some compact ordered space. A
space is called homogeneous if any point can be mapped to
any other point by some autohomeomorphism of the space.
By investigating special kinds of points, we supply necessary
conditions for some power of a compact space to be homo-
geneous. Applying this, we prove that if some power of a
Cor image is homogeneous, then the Cor image must be first
countable.

1. Introduction. A space is homogeneous if any point can
be mapped to any other point by an autohomeomorphism of the
space. We call a space powerhomogeneous if some power of the space
is homogeneous. This paper is devoted to a partial result on the
basic problem: Which compact spaces are powerhomogeneous? Of
course, if X is homogeneous, then all powers of X are homogeneous.
A convergent sequence with limit point is a simple example of a
nonhomogeneous space X such that X“ is homogeneous. A famous
connected example is the closed unit interval I. Keller [3] has shown
that the Hilbert cube is homogeneous. A simple example of a compact
space X that is not powerhomogeneous, due to van Douwen [2],
is the free union of I and a one point space. No power X* is
homogeneous because not all connected components of X* have the
same cardinality. One must work a little harder to find a compact
zero-dimensional space that is not powerhomogeneous. One reason is
the interesting result of Motorov (cf. Arhangel’skii [1]), that every first
countable compact zero-dimensional space X has X“ homogeneous.
Let w(X) and 7w(X) stand for the weight and m-weight of the space
X, respectively. The reader is encouraged to read a fundamental paper
on nonhomogeneity by van Douwen [2] where he proves: If Y is an
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image of the compact space X and w(X) < 2™(Y) < |Y|, then X is
not powerhomogeneous. This shows that many big spaces like SN or
BN — N are not powerhomogeneous. If k is an infinite cardinal, then
ak denotes the Alexandroff one point compactification of the discrete
space of size k. If o is an infinite ordinal, then a + 1 denotes the
compact ordinal space of all ordinals not greater than o with the order
topology. This paper generalizes the following two isolated facts.

1. van Douwen [2]. If kK > w, then ak is not powerhomogeneous.

2. Malykin (cf. Arhangel’skii [1]). If & > wi, then o + 1 is not
powerhomogeneous.

A Cor is a space which is homeomorphic to a compact linearly ordered
space with the interval topology. A Cor image is a Hausdorff continuous
image of some Cor. If Kk > w, then ak is not a Cor, but it is a Cor
image: just take ordinal space x + 1 and collapse all limit ordinals to
one point. Our main result is that every powerhomogeneous Cor image
is first countable. This can also be considered a generalization of a
result of Maurice [4] that a homogeneous Cor is first countable. The
kind of points we consider in Section 3 are of independent interest in
the study of arbitrary compact spaces.

2. Preliminaries. Cardinals are initial ordinals and w and w;
are the first two infinite cardinals. The cofinality of the ordinal « is
denoted by cf (a). All spaces in this paper are assumed to be Hausdorff.
A continuous map f from a space X onto a space Y is said to be
irreducible if for all proper closed subsets F' of X, f|F is not onto Y.
If F is a closed subspace of X, then the character of F' in X, denoted
by char (F, X), is the least cardinal of a local open base at F in X. It
is a fundamental fact of compact spaces that char (F, X) is the least
cardinal of a family A of open sets of X such that F =MA. If F = {p},
then we write char (p, X) instead of char ({p}, X). We use terminology
like open family and closed family to mean a family of open sets or
closed sets, respectively. We abbreviate the word ‘neighborhood’ by
‘nbhd.” To denote the closure of A in a space, we write C1(A).

3. Powerhomogeneous spaces and three types of points. Let
k and A be cardinals with kK > A > w. Let X be a space. We say that
p € X is a (k,A)-point of X if there exists AC X with |A| = & such
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that for all nbhds W of p, |A — W| < A. We say that p € X is a cellular
(%, A)-point of X if there exists a disjoint open family A with |A4| = &
such that for all nbhds W of p, [{A € A: AZ W} < A A family A
of subsets of X is called separated if there exists a disjoint open family
R and a bijection f: A — R such that AC f(A) for each A € A. In
this case, we say that R separates A. We say that p € X is a weak
cellular (k, A)-point of X if there exists a separated closed family A with
|A| = k such that for all nbhds W of p, [{A € A: ANW = ¢}| < A.
If kK = )\, then we use the notations s-point, cellular k-point, and weak
cellular k-point. Note that if p is one of these three types of points,
then char (p, X) > cf (k).

Example. Let X = 2“! with the lexicographic order topology. Each
point of X is a cellular w;-point and there is a dense set of points which
are also cellular w-points. Whether this space was powerhomogeneous
was the motivating force behind this paper.

Theorem 3.1. No compact space X with the following property can
exist: for each p € X, there exist distinct infinite regular cardinals &,
and A, such that p is both a cellular k,-point and a cellular \,-point.

Proof. Let us assume that such a space X exists. For each p € X,
let us fix open families A, and R, which witness the facts that p is
a cellular k,-point and a cellular A,-point, respectively. Note that X
has no isolated points. We proceed inductively to construct a strictly
decreasing well-ordered chain of open sets of arbitrarily long length,
a contradiction. Assume we have nonempty open sets O, for v < «
such that = <  implies that C1(O) is property contained in O,. If
a = v+ 1, then use regularity and no isolated points in X to get O.
If @ is a limit ordinal, then put § = cf(«) and choose an increasing
sequence S of order type § with supremum «. By compactness of X,
choose p € M{C1(0,) : v € S} = {0, : v € S}. Either s, # § or
Ap 7 0; let us assume that A, # J. We claim that there exists R € R,
such that RC M(Oy : v € S}. If A, > 6, then this follows from p being
a Ap-point, each O, being an nbhd of p, and A, being regular. If A, < 6,
then putting S, = {R € R, : R € O,} we see that (S, : v € §) is an
increasing sequence under C of length § consisting of sets of cardinality
< Ap < 0, hence there exists m < § such that forall 7 < v < §, Sy = Sx.
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Choosing R € R, — S we see that RC M{O, : v € S}. In either case,
we put O, = R to finish the inductive step. o

By a proof analogous to the preceding proof, one can show that there
is no compact space in which each point is a cellular (wq,w)-point. A
very interesting problem presents itself. Is there a compact space in
which each point is a weak cellular (w;,w)-point?

Turning to powers X* of a space X, for each finite F' C X let 75 be the
projection onto X and for each o € \ let 7, be the projection onto the
a factor space. By the canonical basis C for X* we mean the family of
all finite unions of members of {11{r,[0,] : @ € F}: F is a finite subset
of A and O, is an open subset of X for each o € F}. A subset A of X*
lives on a subset F of \ if A = 7,'[rr[A]]. Note that each member of
C lives on a finite set and if A lives on F', then A lives on all supersets
of F. Since our work on powers involves the diagonal, we use the
notation (z) to represent the point in X* all of whose coordinates are
z. One obvious deduction about a powerhomogeneous space X is that
if X contains two points of different character, then X must at least be
raised to the larger character power in order to become homogeneous.
A reasonable conjecture is that if X is powerhomogeneous, then X *(X)
is homogeneous. This is unsolved.

If X has more than one point and ) is infinite, then each point of X*
is a (), w)-point since each point of X* is contained in a copy of 2*. A
straightforward counting argument will show that if A is uncountable
and £ is infinite, then X* has no cellular s-points whatsoever. It is
weak cellular k-points that prove useful in uncountable powers.

Theorem 3.2. Let X be a powerhomogeneous compact space and let
k be an uncountable reqular cardinal. Assume that X contains a weak
cellular k-point. Then, for each q € X, we have that char (¢, X) > k.

Proof. Let X be a cardinal such that X* is homogeneous. Let C be
the canonical basis for X*. Choose p € X such that p is a weak cellular
k-point. Choose a separated closed family A which witnesses this fact.
Let q be an arbitrary element of X. Choose any o € A\. The constant
point (p) is seen to be a weak cellular x-point of X* via the separated
closed family {7;'[A] : A € A}. Hence, the constant point (g) is a
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weak cellular k-point also. Choose a separated closed family R which
witnesses this fact. Since R is a separated family of compact sets and
C is an open base for X* which is closed under finite unions, we can
choose a disjoint open subcollection S of C which separates R. Let f
be the associated bijection from R to S. For each S € S choose a finite
F(S) C\ such that S lives on F(S). Invoke a delta-system argument
to choose P C S with |P| = k and such that {F(S) : S € P} is a delta-
system with root D, i.e., whenever S,T € P, then F(S)N F(T) = D.
Since § is disjoint, D # ¢. Then {wp[R] : f(R) € P} is a separated
closed family in X witnessing the fact that 7p((g)) is a weak cellular
k-point of Xp, and thus, mp((¢)) has character at least k and so
char (¢, X) > k. O

We do not know whether our conclusion above can be improved to
show that each point in X is a weak cellular k-point.

Theorem 3.3. Let X be a powerhomogeneous compact space. As-
sume that X contains a cellular w-point. Then, each point of X is
either an isolated point or an w-point.

Proof. Let X\ be a cardinal such that X* is homogeneous. Let C be
the canonical basis for X*. Choose p € X such that p is a cellular
w-point and let {O,, : n < w} be a disjoint open family in X witnessing
this fact. Striving for a contradiction, assume that ¢ € X and q is
neither an isolated point nor an w-point. Put W = X — {¢}. Then
W is an open dense countably compact subspace of X. Choose any
a € X\. Put V = 7 }[W]. Then we see that V is an open dense
countably compact subspace of X* such that (¢) € C1(V) — V. Since
X? is homogeneous, there must exist an open dense countably compact
subspace D of X* such that (p) € C1(D) — D. Let us choose such a
D. We now construct, by induction on n < w, an increasing sequence
F,, of finite subsets of A and nonempty sets C,, € C such that C,
lives on F,, and C,, CD N1{r;'[0,] : @ € F, 1}. This we can
do since D is open and dense. Now, for each n < w, we choose
fneCon{r;l(p): a € A= F,}. Tt follows that {f,, : n < w} C D,
and we claim that (f, : n < w) converges to the point (p); so, since
D is countably compact, we get (p) € D, our contradiction. To show
convergence, it suffices to show that whenever o € XA and O is an open
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subset of X with p € O, then there exists m < w such that for every
n > m, we have f,, € 7, 1[O]. Let such an a and O be given. If, for each
n, a is not a member of F),, then f,(a) = p and, thus, f, € 7, '[O].
Otherwise, we can choose 7 < w such that o € F,.. Since p is a cellular
w-point, we now choose m > r such that for every n > m we have
O, CO. Then, if n > m, since f,, € C,, and F, C F,,_1, our choice of
C,, implies that f,, € 7 '[O,]. Hence, f, € 7, *[O]. O

Example. Put X equal to the free union of aw and the Cantor cube
2¢1_ Let p be the nonisolated point of aw. Schepin’s [5] characterization
of 2* tells us that X“! is homeomorphic to 2“1, hence X is powerho-
mogeneous. For the reader’s benefit, we mention Schepin’s character-
ization: A compact zero-dimensional Dugundji space of weight x and
in which each point has character k is homeomorphic to 2%. The point
p is a cellular w-point of X, whereas no point in the Cantor cube is a
cellular w-point of X. This example shows that the conclusion of our
preceding theorem cannot be improved to show that each point of X
is either an isolated point or a cellular w-point.

4. Cor images. In this section L will always represent a Cor with
underlying complete order <. A key fact about L is that any open
subspace O of L can be written in a unique way as the disjoint union
of open maximal intervals of L contained in O. A key fact about Cor
images X is that X is the image of some Cor under an irreducible
mapping. This follows from compactness and the fact that a closed
subspace of a Cor is again a Cor. Let ¢ : L — X be an irreducible onto
mapping. If A is a disjoint family of nonempty open subsets of L, then
put Y *(A) = {X —¢[L—A] : A € A}. Then ¢*(A) is a disjoint family
of nonempty open subsets of X. Furthermore, if A witnesses the fact
that p is a cellular k-point of L, then ¢ % (A) witnesses the fact that
¥(p) is a cellular k-point of X. It is well known that every Cor image
is sequentially compact; hence, if infinite, it must contain an w-point.
In fact, in Cor images, w-points are cellular w-points.

Lemma 4.1. Ifp is an w-point of a Cor image X, then p is a cellular
w-point.
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Proof. Let (p, : n < w) be a sequence converging to p in X, and let ¢
be an irreducible map of L onto X. For each n, choose g, € L such that
¥(qn) = pn. Invoke Ramsey’s theorem to choose an infinite A C w such
that (g, : n € A) is either an increasing or a decreasing sequence in L.
Let ¢ be the limit in L of this convergent subsequence. Then 9 (q) = p.
Choose disjoint open intervals I,, with ¢, € I,. A ={I[, :n € A}
witnesses the fact that ¢ is a cellular w-point. By the above, 1 x (A)
witnesses the fact that p is a cellular w-point. u]

By being a little bit more careful we could show that in Cor images
all three notions of x-points coincide, but we don’t need this.

If BC ACL, then B is cofinal (respectively, coinitial) in A if for each
a € A there exists b € B with a < b (respectively, b < a). Put cf(A)
equal to the least cardinality of a cofinal subset of A and put ci(A)
equal to the least cardinality of a coinitial subset of A. Put §(A) equal
to the maximum of ¢f(A4) and c¢i(A). Note that 6(A) is always a regular
cardinal and, if finite, equals 1. Put m(A) = sup(A) if §(A) = cf(4)
and put w(A) = inf(A) if 6(A) # cf(A). §(A) = 1 if and only if
m(A) € A. Obviously, if 7(A) is not an element of A, then 7(A) is
a cellular §(A)-point of L. If F is a closed subspace of L and A is a
disjoint family of open maximal intervals of L such that L — F = UA,
then char (F,L) = SUM{6(A) : A € A} where SUM denotes cardinal
sum.

Lemma 4.2. Ifp is a nonisolated point of a Cor image X, then p is
a cellular char (p, X)-point of X. Moreover, if char (p, X) is singular,
then char (p, X) = sup{k : & is a regular cardinal and p is a cellular
K-point}.

Proof. Let 9 be an irreducible map from L onto X. Let A =
char (p, X). Then char (¥ "!(p),L) = A. Let A be a disjoint family
of open maximal intervals of L such that L —¢~1(p) = UA. Thus,
A=SUM{6(A): Aec A} and so |A| < X and §(A) < X for each A € A.
Since L is compact, every open set containing ¢ ~!(p) must actually
contain all but finitely many members of A. For each A € A such that
0(A) > 1, let R(A) be a disjoint family of intervals of L contained in A
which witnesses the fact that 7(A) is a cellular §(A)-point. Note that
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if §(A) > 1, then 7(A) € ¥~ 1(p). Put

S=U{R(A): Ac Aand §(A) >1}U{A: Ac Aand §(4) =1}

S is a disjoint open family in L and every nbhd of ¢ ~1(p) contains all
but less than A many of the members of S. Hence, the family ¢ * (S)
witnesses the fact that p is a cellular A-point. u]

Theorem 4.3. FEvery powerhomogeneous Cor image X 1is first
countable.

Proof. Assume X has a point p with char (p, X) = k where £ > w.
Invoke Lemma 4.2 and choose a regular A > w such that p is a cellular
A-point. By Theorem 3.2, all points of X have character > A. Invoke
Lemma 4.2 and choose, for each ¢ € X, an uncountable regular cardinal
Ag such that g is a cellular Ag-point. Since X is an infinite Cor image,
X contains a cellular w-point. Since X has no isolated points, Theorem
3.3 implies that all points of X are w-points. Lemma 4.1 implies that
all points of X are cellular w-points. Finally, Theorem 3.1 implies that
X cannot exist. u]

REFERENCES

1. A.V. Arhangel’skii, Topological homogeneity, topological groups and their
continuous tmages, Russian Math. Surveys 42 (1987), 83-131.

2. E. van Douwen, Nonhomogeneity of products of preimages and m-weight,

P.A.M.S. 69 (1978), 183-192.

3. O.H. Keller, Die homoimorphie der kompakten konvezen Mengen in

Hilbertschen raum, Math. Ann. 105 (1931), 748-758.

4. M.A. Maurice, Compact ordered spaces, thesis, Mathematisch Centrum, Am-
sterdam, 1964.

5. E.V. Schepin, Topology of limit spaces of uncountable inverse spectra, Russian
Math. Surveys 31 (1976), 155-191.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANITOBA, WINNIPEG, CANADA
R3T 2N2



