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NEUTRAL GEOMETRY AND THE GAUSS-BONNET
THEOREM FOR TWO-DIMENSIONAL
PSEUDO-RIEMANNIAN MANIFOLDS

PETER R. LAW

1. Introduction. The Gauss-Bonnet theorem was first extended
to pseudo-Riemannian manifolds by Avez [1] and Chern [3]. These
authors produced a global Gauss-Bonnet theorem. For example, Chern
[3] considers oriented pseudo-Riemannian vector bundles of even rank
over compact manifolds and interprets the Gauss-Bonnet formula as
the assertion that the relevant curvature form (that which appears as
the integrand in the Gauss-Bonnet formula) equals the Euler class
of the bundle. This is now the standard abstract formulation of
the generalized Gauss-Bonnet theorem, though usually stated only
for the Riemannian case (cf., e.g., Milnor and Stasheff [7]). For the
tangent bundle of a compact, oriented, pseudo-Riemannian manifold,
this statement reduces to the usual Gauss-Bonnet result.

The obvious elegance of this global Gauss-Bonnet-Chern theorem
does not preclude interest in a pseudo-Riemannian version of the
classical Gauss-Bonnet formula for a two-dimensional domain D with
piecewise smooth boundary Γ:

(1.1)
∫

D

KdV +
∫

Γ

kg ds +
∑

θexterior = 2π

where K is the Gaussian curvature of some metric on D, kg the geodesic
curvature, and θexterior the exterior angle at a nonsmooth point of
Γ. It is fairly straightforward to carry over the differential-geometric
aspects of a proof of this result to the pseudo-Riemannian context.
The only two-dimensional indefinite signature is Lorentzian, and the
essential difference that occur between the Riemannian and Lorentzian
versions of the Gauss-Bonnet formula arise from the differences between
the corresponding orientation-preserving isometry groups SO (2) and
SO (1,1). In particular, these groups essentially determine the relevant
notion of angle and hence θexterior.
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In the Lorentzian case, it is necessary to assume that the smooth
segments of Γ are nonnull and, hence, either time-like or space-like.
Although it is convenient for the differential geometry to work with the
bundle of unit time-like vectors, say, this creates no difficulty on the
space-like segments of Γ since for each unit space-like vector x there
exists a unique unit time-like vector t orthogonal to x and such that
{t, x} has a prescribed orientation. The obstruction to obtaining a
Gauss-Bonnet formula when Γ contains both time-like and space-like
segments arises from the problem of how to measure the exterior angles
where a time-like and space-like segment meet. If u and v are unit
vectors in the Minkowski plane R1,1, i.e., each has squared norm plus
or minus one, then the angle between u and v is to be determined by the
geometric quantity g(u, v), where g is the two-dimensional Minkowski
metric. If u and v are both time-like or both space-like, then u = L(v)
for some unique L in SO (1,1). Assuming an orientation specified
for R1,1 so that oriented angle may be introduced, choose an oriented
pseudo-orthonormal basis {t,x}. With respect to this basis, if

(1.2) L = ±
(

cosh β sinh β
sinh β cosh β

)

write L as ±L(β). The real number β is independent of the choice
of oriented pseudo-orthonormal basis. For the moment, suppose L =
L(β). Then g(u, v) = g(L(β)(v), v) = ± cosh β, according to whether
u and v are both time-like or both space-like. Define the oriented
angle from v to u to be β. This approach to defining angle has an
obvious geometric appeal. The differences between the Euclidean and
Minkowskian cases may then be viewed in terms of the topologies
of SO (2) and SO (1,1). Although the Minkowskian case is more
complicated due to the disconnectedness of SO (1,1) (this does not
create a serious difficulty however), from another point of view the
Minkowskian case may be regarded as simpler because the identity-
connected component of SO (1,1) is topologically simpler than SO (2).
The serious difficulty with the Minkowski case, however, is the fact that
isometries cannot carry space-like vectors to time-like vectors or vice
versa.

Birman and Nomizu [2] appear to be the first to have considered
a Lorentzian version of the classical Gauss-Bonnet theorem. They
assumed that Γ consisted only of time-like segments and so the above
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problem did not arise. With a suitable choice of conventions, the result
they obtain is the formula of equation (1.1) but with zero on the right-
hand side. This is a natural result given the restriction to time-like
boundary segments. Dzan [4], however, contains a formalism which
produces a closer analogue of equation (1.1) and requires only that the
segments of Γ be nonnull. This is achieved by mimicking formally what
one does in the Riemannian case. Thus, Dzan employs the Euclidean
notion of angle as

θ = cos−1{g(u, v)/
√

g(u, u)
√

g(v, v)}
by allowing the norm

√
g to be complex valued (on space-like vectors

with my conventions). This definition is then combined with Euclidean
notions of orientation to yield a concept of oriented angle which allows
the derivation of a Gauss-Bonnet result looking formally identical to
(1.1). In Dzan’s formulation, however, various differential-geometrical
quantities on the left-hand side of the equation are complex valued.
This is not necessary and Dzan’s Gauss-Bonnet result may be restated
with the left-hand side having its usual (real) Lorentzian differential-
geometric interpretation, only the right-hand side becomes 2πi.

The formalism of Dzan, in imitating closely Euclidean notions in a
rather formal way, leaves unclear how this result is related to the in-
trinsic Lorentzian geometry. To understand how Dzan’s result emerges
from the geometry of indefinite signature rather than as a success-
ful “Euclideanization” of a piece of Lorentzian geometry, I utilize the
fact that a Lorentzian metric in two dimensions has neutral signature.
This observation permits the enlargement of SO (1,1) to a new group
SNO (1) by including orientation-preserving anti-isometries. In ar-
bitrary dimension, and ignoring orientation, this idea gives rise to a
symmetry group NO (n) which I call the neutral orthogonal group.
Section two describes the basic structure of NO (n). In Section three,
a geometric formulation of a notion of oriented angle between any pair
of nonnull (unit) vectors in R1,1 is provided in terms of the action
of SNO (1). Elementary properties of this angle are then established
and some simple trigonometry presented in Section four. Finally, the
Gauss-Bonnet formula is discussed in Section five.

The treatment of the Gauss-Bonnet formula in this paper provides a
natural geometric formulation of Dzan’s result in the spirit of Birman
and Nomizu’s paper and, in so doing, indicates that, geometrically, it
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is more appropriate to view R1,1 as a neutral space rather than merely
Lorentzian.

Further applications of the neutral orthogonal group will be presented
elsewhere (cf. Law [5, 6]).

I end this introduction with some general notation. By Rp,q I shall
mean Rn, n = p + q, equipped with the inner product

g(u, v) = u1v1 + · · · + upvp − · · · − unvn

where (ui) and (vi) are components of the vectors u and v with respect
to the standard basis of Rn. By n-dimensional Minkowski space, I
mean R1,n−1. In any Rp,q , a vector u for which the squared norm
g(u, u) is positive, negative, or zero is called time-like, space-like, or
null, respectively. For nonnull vectors, I shall refer to their time-likeness
or space-likeness as their character (in phrases such as “of opposite or
like character”). A unit vector is a vector of squared norm plus or
minus one. A pseudo-orthonormal basis is a basis of unit, mutually
orthogonal vectors.

2. The neutral orthogonal group. The approach taken in this
paper to the problem of defining a concept of angle between vectors
of opposite character is to introduce an appropriate symmetry group.
Clearly, an anti-isometry is an example of a linear transformation that
does switch the character of a vector.

Remark 2.1. An anti-isometry L on Rp,q is a linear transformation
satisfying g(L(u), L(v)) = −g(u, v), for all vectors u and v in Rp,q .
A linear transformation of Rp,q is an anti-isometry if and only if
L∗L = −1, where L∗ denotes the adjoint of L with respect to g.
Consequently, L is invertible and the inverse is an anti-isometry. There
exists an anti-isometry on Rp,q if and only if p = q. For these facts,
consult, for example, Porteous [9].

In light of the last stated fact, attention is now focused upon the
neutral spaces Rn,n. Because of the neutrality of the signature, one
can regard the time-like and space-like vectors as being on an equal
footing. The pseudo-sphere S(Rn,n) := {u ∈ R2n : g(u, u) = 1}
is homeomorphic to Sn−1 × Rn. Define the neutral pseudo-sphere
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Sn,n := {u ∈ R2n : g(u, u) = ±1}. Sn,n has two components for
n ≥ 2 and four components for n = 1.

The metric has been defined in a conventional fashion in terms
of the standard basis {e1, . . . , e2n}. This choice is in accord with
various conventions in relativity theory, but there remains a con-
flict between the conventional choice of orientation as determined by
the standard basis and the orientation conventions of Minkowski di-
agrams in the two-dimensional case. I, therefore, choose to specify
the “preferred” orientation of Rn,n as that determined by the basis
{e1, . . . , en,−en+1, . . . ,−e2n} which, hereafter, I refer to as the “pre-
ferred” basis of Rn,n. The preferred orientation of Rn,n is therefore
opposite to the standard orientation for odd n, and this fact is impor-
tant to remember when, for example, employing the exterior calculus
with its conventions regarding induced orientations.

Definition 2.2. The collection of linear transformations L of Rn,n

which are either isometries or anti-isometries, equivalently, such that
L∗L = ±1, form a group called “the neutral orthogonal group” and
denoted NO (n).

Lemma 2.3. O (n,n) is a subgroup of NO (n) of index two and
hence a normal subgroup.

Proof. The product of any two anti-isometries is an isometry.

Lemma 2.4. The linear transformation T : R2n → R2n, with matrix

T =
(

0n 1n

1n 0n

)

with respect to the preferred basis of R2n (0n and 1n are the n×n zero
and identity matrix, respectively), is an anti-isometry of Rn,n. Note
that T 2 = 1. With respect to the basis {e1,−en+1, . . . , en,−e2n}, Rn,n
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is a direct sum of n Minkowski planes and T has matrix

T =

⎛
⎜⎜⎜⎜⎝

0 1
1 0

. . .
0 1
1 0

⎞
⎟⎟⎟⎟⎠

whence one calculates that det (T ) = (−1)n.

Corollary 2.5. (i) NO (n) = O (n,n) � TO (n,n).

(ii) For L in NO (n), det (L) = ±1.

(iii) NO (n) is a Lie group with eight connected components which
may be described as follows. Let R and I be the linear transformations
whose matrix representations with respect to the preferred basis of Rn,n

are

R =
(

Jn 0n

0n 1n

)
, I =

(
Jn 0n

0n Jn

)

where Jn is the n × n diagonal matrix Jn := diag (−1, 1, . . . , 1). If
SO+ (n,n) is the identity-connected component of SO (n,n), and hence
of NO (n), then SO+ (n,n) is a normal subgroup of index four in
O (n,n) and of index eight in NO (n). The other connected components
of NO (n) are the cosets SO− (n,n) := ISO+ (n,n), RSO+ (n,n),
RISO+ (n,n), TSO+ (n,n), TISO+ (n,n), TRSO+ (n,n), and
TRISO+ (n,n). The first three, together with SO+ (n,n), form
O (n,n). Each coset is therefore a connected manifold of dimension
n(2n − 1).

The following simple lemma singles out certain subgroups of NO (n)
by the group structure.

Lemma 2.6. Let N be a normal subgroup of a group G. For g in
G\N, put N(g) := N � gN = N � Ng. Then, N(g) is a subgroup of
G if and only if g2 and g−1 belong to N(g).

Lemma 2.7. The following relations among I, R and T hold:

(i) TIT = I,
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(ii) TRT = RI,

(iii) RIR = I,

(iv) RTR = TI,

(v) IRI = R,

(vi) ITI = T .

Proposition 2.8. Let N := SO+ (n,n). N(I) = SO (n,n),
N(R) =: O+ (n,n), N(RI) =: O+ (n,n), N(T ) =: P+ (n), and
N(TI) =: P− (n) are subgroups of NO (n) but N(TR) and N(TRI)
are not.

Proof. Straightforward calculations using (2.7) and (2.6). Note that
(TR)2 = (TRI)2 = I which belongs to neither N(TR) nor N(TRI).

Proposition 2.9. N := SO (n,n) is a normal subgroup of NO (n)
of index four; the other cosets may be written RN, TN, and TRN.
N(R) = O (n,n), N(T ) =: P (n), and N(TR) =: Q(n) are subgroups
of NO (n).

Proof. SO (n,n) is of index two in O (n,n) and hence a normal
subgroup of O (n,n). By (2.5)(i), and since T−1 = T , it suffices to
show that TAT belongs to N for any A in N. But TAT must be
an orientation-preserving isometry, and so does lie in N. Hence, N
is normal, and the index is readily seen to be four. The remaining
assertions follow easily from (2.7) and (2.6).

The relations between the various cosets and subgroups are summa-
rized in the following diagram, in which N := SO+ (n,n).

Corollary 2.10. i) NO (n) = P(n)(R) = Q(n)(R); P(n) and Q(n)
are therefore normal subgroups.

ii) The “special neutral orthogonal group,” denoted SNO (n), of
orientation-preserving neutral orthogonal transformations of Rn,n is
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FIGURE 1.

given by

SNO (n) =
{

P(n) for n even
Q(n) for n odd.

Proof. (i) follows from (2.7) and Figure 1 while (ii) follows from
det (T ) = (−1)n and Figure 1.

Further geometric significance of the groups P(n) and Q(n) derives
from the notion of G-orientation (cf. O’Neill [8, pp. 240 241]). Let
B(n) be the collection of all pseudo-orthonormal bases {v1, . . . , vn, w1,
. . . , wn} of Rn,n such that the vi’s are all time-like and the wi’s are
all space-like or the vi’s are all space-like and the wi’s are all time-like.
Such bases will be called configured and, in the former case, the basis is
said to have standard configuration while in the latter case it is said to
have “nonstandard configuration.” NO (n) acts transitively and freely
on B(n), and this action establishes an obvious noncanonical bijection
between NO (n) and B(n). Any subgroup G of NO (n) of index two
defines an equivalence relation on B(n) with two equivalence classes.
One says two elements of B(n) have the same G-orientation if one is
the image of the other by an element of G, i.e., if they belong to the
same equivalence class.
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There are four obvious choices for G: SNO (n), O (n,n), P(n),
and Q(n). The first gives the usual notion of orientation. O (n,n)-
orientation defines the notion of configuration class for B(n) already
introduced above. Note that P(n) ∩ Q(n) = SO (n,n). Identifying
Rn,n with Rn×Rn via the preferred basis, the orientations induced on
the factors by the preferred orientation of Rn,n are called the preferred
semi-orientations of Rn,n. The action of SO (n,n) either preserves or
reverses both semi-orientations while the action of R reverses the first
semi-orientation and preserves the second. It follows that the P(n)-
orientation class of the preferred basis consists of those elements of
B(n) for which the semi-orientations are either both preferred or both
nonpreferred, while the other P(n)-orientation class consists of those
bases for which one semi-orientation is preferred and the other non-
preferred. The Q(n)-orientation class of the preferred basis consists of
those elements of B(n) which, if of standard configuration, have both
semi-orientations either preferred or nonpreferred but, if of nonstan-
dard configuration, have one semi-orientation preferred and the other
nonpreferred. The other Q(n)-orientation class is the opposite of this.
Because of (2.10)(ii), either P(n)- or Q(n)-orientation is always just
ordinary orientation.

Finally, note that both P(n) and Q(n) act transitively on Sn,n with
isotropy group SO (n − 1,n).

3. Angle in R1,1. When n = 1, certain simplifications occur.
For example, I is the negative of the identity transformation while
B(1) consists simply of all pseudo-orthonormal bases. Any normal
subgroup G of NO (1) defines a partition of NO (1) by its cosets and a
corresponding partition of B(1). With G = SO (1,1), one gets B(1) =
B+

+ � B+
− � B−

+ � B−
− where the superscript indicates preferred

or nonpreferred orientation and the subscript indicates standard or
nonstandard configuration. P (1)-orientation combines B+

+ and B−
−

into one class, and B+
− and B−

+ into one class to give the partition
B(1) = (B+

+ � B−
−) � (B+

− � B−
+). Q (1)-orientation is ordinary

orientation by (2.10)(ii). The following facts are readily confirmed.

Lemma 3.1. (i) T commutes with each element of SO (1,1) and
itself but anticommutes with R,
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FIGURE 2.

(ii) P (1) is Abelian,

(iii) T has invariant matrix form on each P (1)-orientation class:

(
0 1
1 0

)
,

(
0 −1
−1 0

)

on B+
+ � B−

− and B+
− � B−

+, respectively.

(iv) Q (1) is not Abelian, e.g., for any L in SO (1,1), RLR = L−1

so (TR)L = L−1(TR).

Let {t,x} be any element of B+
+. The two null directions in R1,1

divide R1,1 into quadrants, each containing one component of S1,1.
The action of SO+ (1,1) on ±t and ±x provides parametrizations and
orientations for the components of S1,1 which are natural in the context
of Lorentzian geometry. With respect to {t,x}, the components are
labelled as in Figure 2.

Definition 3.2. Let u and v be unit vectors. If they both belong to
the same component of S1,1, then there exists a unique L in SO+ (1,1)
such that u = L(v), say. With respect to {t,x}, L takes the form L(β)
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(recall (1.2)), with β independent of the choice of {t,x} in B+
+, and

|g(u, v)| = cosh |β|. Thus, |β| := cosh−1(|g(u, v)|) is unambiguously
associated with the pair u and v and is called the unoriented angle
between u and v. If u and v are of the same character, but lie in
distinct components of S1,1, then u = IL(β)(v) for unique β and
|g(u, v)| = cosh |β|. Define the unoriented angle between u and v to be
|β|+ iπ. Finally, if u and v are of opposite character, u = TL(β)(v) or
TIL(β)(v), for unique β, and |g(u, v)| = sinh |β|. Define the unoriented
angle between u and v to be |β| + iπ/2.

Remark 3.3. If u and v are of opposite character and orthogonal,
the unoriented angle between them is defined above as iπ/2. This
value is not determined by NO (1) (since T is disconnected from the
identity). Choosing this angle to be imaginary is important because
the transformations which generate it are independent of the boost
transformations of SO+ (1,1). Definition (3.2) is an extension of that
in Birman and Nomizu [2] rather than Dzan’s [4] notion of unoriented
angle but the choice of iπ/2 as the angle between orthogonal unit
vectors of opposite character leads to a consistency with Dzan’s notion
of oriented angle and an appealing statement of the Gauss-Bonnet
formula.

In order to introduce the notion of oriented angle from v to u,
one should consider SNO (1) = Q (1) which acts transitively on S1,1

with trivial isotropy subgroup. Write {E1, E2} for the preferred basis
of R1,1, recalling that the preferred orientation of R1,1 is opposite
to the standard orientation of R2. Notice that TRI(E1) = E2,
TRI(E2) = −E1, TRI(−E1) = −E2, and TRI(−E2) = E1, i.e.,
successive applications of TRI to E1 produce a discrete motion through
the four quadrants and back to itself in the clockwise direction, which
is the positive sense according to the prescribed orientation. Similarly,
TR has the same effect on E1, but in the counterclockwise direction.
Note that this phenomenon is a consequence of the fact that Q (1) lacks
analogues of the subgroups of P (1) evident in Figure 1. More generally,
for any basis {t′,x′} which is the image of the preferred basis by an
element L of SO+ (1,1), define an anti-rotation RL by RL(t′) := −t′

and RL(x′) := x′ (so, for L the identity transformation, RL is just R).
Obviously, successive applications of TRLI and TRL on t′ produce a
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similar phenomenon. Notice that the basis {−t′,−x′} gives rise to the
same mapping RL. For any anti-rotation S, TS and TSI both belong
to Q (1).

Lemma 3.4. Let {t,x} be an element of B+
+. Then there exists

a unique L(β) in SO+ (1,1) such that either {t′,x′} or {−t′,−x′}
is the image of {t,x} under L(β). Suppose that S is the element of
SO+ (1,1) such that S applied to the preferred basis yields either {t,x}
or {−t,−x}. Let RL be the anti-rotation defined as above by {t′,x′}.
Then, C+(β) := TRLI = L(β)TRSIL(−β) and C−(β) := TRL =
L(β)TRSL(−β). Moreover,

(i) C+(β)−1 = C−(β)

(ii) C+(β)2 = C−(β)2 = I

(iii) C+(β)3 = C−(β) and C−(β)3 = C+(β)

(iv) C+(β)4 = C−(β)4 = 1

(v) L(α)C+(β)n = C+(α + β)nL(α) and L(α)C−(β)n =
C−(α + β)nL(α)

(vi) C+(α)C+(β) = C−(α)C−(β) = IL(2(α − β))

(vii) C+(α)C−(β) = C−(α)C+(β) = L(2(α − β))

Proof. With respect to {t,x}, T , I, and Rs have matrix represen-
tations identical, respectively, with those of T , I, and R with respect
to the preferred basis and so (2.7) with R replaced by Rs is valid, as
are the assertions involving R in (3.1)(i) and (iv). With these facts,
checking the various assertions consists of straightforward calculations.
The formulae for TRLI and TRL need only be checked on the elements
t′ and x′. For (iv), the case n = 1 is an easy calculation and the result
follows by induction on n. Of course, the seven assertions (i) (vii) are
not all independent of each other.

Remark 3.5. Note that the symbols C+(β) and C−(β) are unambigu-
ous only with reference to a specified element {t,x} of B+

+.

Lemma 3.6. Let u and v be two unit vectors. Using any {t,x} in
B+

+ to define the symbols C+(β) and C−(β), there is a unique L(α) in
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SO+ (1,1), a unique n in Z4, and a unique real number β such that

u = L(α)C+(β)n(v).

The quantities α and n are independent of {t,x} but β is not. L(α+β)
is the unique element of SO+ (1,1) mapping that one of ±t, ±x in the
same component of S1,1 as u to u. Furthermore,

(i) u = L(α)C−(β)4−n(v); indeed, L(α)C+(β)n = L(α)C−(β)4−n,

(ii) v = L(−α)C−(α + β)n(u) = L(−α)C+(α + β)4−n(u)

(iii) If w is a unit vector such that w = L(θ)C+(α + β)m(u), then
w = L(θ + α)C+(β)n+m(v) (there is an analogous result for C− which
may be derived by an application of (i),

(iv) {v, C+(β)(v)} is a pseudo-orthonormal basis with preferred
orientation while {v, C−(β)(v)} is a pseudo-orthonormal basis with
nonpreferred orientation.

Proof. One of ±t, ±x belongs to the same component of S1,1 as v and
there is a unique L(β) in SO+ (1,1) mapping it to v, thus determining
β. The quantity n is the number of successive applications of C+(β)
that takes v to the component of S1,1 in which u lies, and L(α) is
the unique element in SO+ (1,1) mapping the image of v to u. (i) is
obtained similarly, or from (3.4)(i) (iv). For (ii), solve for v in terms
of u and use (3.4)(v). (iii) and (iv) are straightforward.

If two unit vectors u and v lie in the same component of S1,1, then
u = L(α)(v) for some unique L(α) in SO+ (1,1) and the oriented
angle from v to u is defined to be α. Such an angle may be called a
“boost angle.” As already noted in Section 1, this agrees with Birman
and Nomizu [2]. If u and v are orthogonal, unit vectors of opposite
character, choose any element {t,x} of B+

+ and find β as in the proof
of (3.6). Then, either u = C+(β)(v) or u = C−(β)(v). Define the
oriented angle from v to u to be iπ/2 or −iπ/2, respectively. Following
Dzan [4], any of the above oriented angles will be called a fundamental
(oriented) angle. In general, for two arbitrary unit vectors, the oriented
angle from v to u can be thought of as a sum of fundamental angles.
Thus, the representation of the element of Q (1) which maps v to u
given in (3.6) permits a suitable definition of oriented angle.
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Definition 3.7. Let u and v be unit vectors. Choose any element {t,x}
of B+

+ and, as in (3.6), write u = L(α)C+(β)n(v) = L(α)C−(β)4−n(v).
The oriented angle from v to u in the positive/negative sense is defined
by

(v, u)± :=
{

α + n(iπ/2)
α + (4 − n)(−iπ/2).

It is clear from (3.6) that this definition is independent of {t,x}.

Proposition 3.8. (i) (u, v)± = −(v, u)∓,

(ii) (u, v)± = −(v, u)± ± 2πi,

(iii) Oriented angles are additive; for example, if v, u and w are three
unit vectors such that “u lies between v and w in the clockwise direction
from v to w,” then

(v, u)+ + (u, w)+ = (v, w)+
(v, w)− + (w, u)− = (v, u)−
(v, w)+ + (w, u)− = (v, u)+
(v, u)− + (u, w)+ = (v, w)−,

(iv) (v, u)± = (−v,−u)±,

(v) (v,−u)± = (−v, u)± = [(v, u)± + iπ]mod4, where [ ]mod4

means the number of multiples of ±iπ/2 in the imaginary part of the
angle must be read modulo four.

Proof. (i) follows from (3.6)(ii). For (ii), suppose u and v are
related as in (3.6). By (3.6)(ii), v = L(−α)C+(α + β)4−n(u) so
(u, v)+ = −α + (4 − n)(iπ/2) = −α − n(iπ/2) + 2πi = −(v, u)+ + 2πi.
Similarly, and again by (3.6)(ii), (u, v)− = −α + n(−iπ/2), while
(v, u)− = α+(4−n)(−iπ/2) by (3.6)(i). Thus, (u, v)− = −(v, u)−−2πi.
For (iii), the first equation follows from (3.6)(iii) while the second is
analogous. The remaining two follow from the first two and (3.8)(i).
It is important to remember that exponents of C+ and C− are read
modulo four in (3.7). Finally, (iv) and (v) are straightforward, with
(3.4)(ii) relevant to (v).

Remark 3.9. (i) Although the action of Q (1) has been used to define
oriented angle in R1,1, the action of P (1) suffices for computations.
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Given two unit vectors, there is a unique A in P (1) such that u = A(v).
A can be written as (T )(I)L(α)(v), where the brackets around T and
I indicate that they may or may not occur in this decomposition of A.
The real number α is the real part of (v, u)±, while the imaginary part is
determined by the presence of T (contributes iπ/2) and I (contributes
iπ) with the sign determined by the orientation of the oriented angle.

(ii) If the conventions of Dzan [4] are modified so as to agree with
those employed in the current formalism, then Dzan’s directed sectorial
measure Φ of a given oriented angle is related to the angle Ω obtained
from (3.7) by Φ = iΩ.

4. Some trigonometry.

Proposition 4.1 (Dzan’s [4] Umlaufsatz). Let Γ be a simple closed
nonnull piecewise-smooth curve in R1,1. Then, including the jumps at
the vertices, the tangent turns through ±2πi.

Proof. At a point on Γ, the Euclidean unit tangent TE defines a point
on the Euclidean unit circle. By the Euclidean Umlaufsatz, the point
on the circle travels around exactly once as Γ is traversed once. The
Lorentzian unit tangent TL of a given point on Γ is the point on S1,1

obtained by extending the ray from the origin through the point on the
unit circle corresponding to TE . It follows that TL turns through ±2πi,
the real part of the oriented angle through which TL turns being zero.

Proposition 4.2. Let Γ be a simple closed nonnull polygon. A
subscript ± indicates that the relevant oriented angle is measured by
( , )±. At each vertex, one can measure oriented interior and
exterior angles as indicated in Figure 3.

(i) interior− = exterior+ − πi and interior+ = exterior− + πi,

(ii) The sum of the oriented exterior angles of Γ is ±2πi according
to whether one traverses Γ clockwise/counterclockwise (since in this
direction the exterior angle is naturally measured by ( , )±).

(iii) The sum of the oriented interior angles of Γ is ±(n − 2)πi
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interior+

interior–

exterior+

exterior–

FIGURE 3.

according to whether Γ is traversed counterclockwise/clockwise (since
in this direction the interior angle is naturally measured by ( , )±),
where n is the number of vertices.

Proof. (i) is tedious to describe because not every oriented angle can
be interpreted as an oriented interior angle of a polygon. Nevertheless,
it is easy to check, case by case. (ii) follows from (4.1)(i) since for a
polygon the only contributions to the turning of the tangent are the
jumps at the vertices, i.e., the exterior angles. (iii) follows from (i) and
(ii).

Corollary 4.3. Let Γ be a nonnull triangle with two sides orthogonal
to each other. Then the angle between these two sides is ±iπ/2 and the
other two sides add up to ±iπ/2. If these latter two oriented angles
are called θ and φ, then “complementarity” is expressed analytically by
sinh(θ) = −i cosh(φ).

Proof. Follows from (4.2)(iii) and elementary calculations.

Remark 4.4. The results given above are close analogues of standard
results in plane Euclidean geometry. In essence, these analogues occur
because in (4.1) there is zero net real angle while an imaginary angle of
±2πi arises from finite subgroups of Q (1) which act discretely on S1,1.
Each point of any given component of S1,1 gives rise to a finite subgroup
{1, TRLI, I, TRL}. In the Euclidean case, each point of the unit circle
also defines an analogous finite subgroup, but each element of it is,
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of course, connected with the identity. Notice that when discussing
accumulation of the angle in the Euclidean case, as in the Umlaufsatz,
one essentially utilizes the covering of S1 by R to get away from angles
modulo 2π. Loosely speaking, at least, the analogue for R1,1 is the
covering of Z4 by Z.

5. The Gauss-Bonnet theorem.

Theorem 5.1. Let D be a domain in a two-dimensional Lorentzian
manifold M with metric g. Assume that D has piecewise smooth
boundary Γ consisting of a finite number of nonnull smooth curves.
If K is the Gaussian curvature and kg geodesic curvature, both defined
in the usual way with respect to g, then∫

D

K dV +
∫

Γ

kg ds +
∑

exterior± = ±2πi

where exterior± denotes the oriented exterior angle at the nonsmooth
points of the boundary and the choice of sign corresponds to whether
the boundary is traversed clockwise or counterclockwise.

Proof. As already noted in Section 1, the essentially new ingredient
as compared to the Riemannian version of this theorem is the theory
of angle in R1,1. With it in hand, the differential-geometric aspects of
the proof of the Riemannian version may be carried over. The essence
of that part of the argument is contained in Birman and Nomizu, for
example, though one can also carry over the detailed arguments in
Singer and Thorpe [10, pp. 157 177]. I shall only note that the crucial
difference between the above formula and that in Birman and Nomizu
is that the exterior angles have imaginary parts and these balance the
nonzero term on the right hand side of the equation.

Corollary 5.2. If M is a compact, oriented, two-dimensional
Lorentzian manifold with Gaussian curvature K and Euler character-
istic χ, then ∫

M

K dV = ±2πiχ

whence χ must be zero and
∫

M
K dV = 0 since the left-hand side is real

and the right-hand side imaginary. These deductions are well known.
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Proof. There is a standard argument using a triangulation of M
and adding up the formula in (5.1) over the two-simplices of the
triangulation. Here, one needs to pick a triangulation in which the
edges are all nonnull curves. Briefly, suppose there are no vertices, n1

1-simplices, and n2 2-simplices in the triangulation. Each 2-simplex
has 3 edges, but each edge is shared by 2 2-simplices so n1 = 3n2/2.
Thus, χ = n0 − n2/2. Using (4.2)(i), rewrite the formula in (5.1) as

∫
S

K dV = −
∫

∂S

kg ds −
∑

interior∓ − (±3πi) ± 2πi

where S is a 2-simplex. At each vertex,
∑

interior∓ = ∓2πi. Adding
over the 2-simplices, the line integrals cancel since each edge is traversed
twice, once with each orientation. Thus, one finds

∫
M

K dV = −n0(∓2πi) − n2(±πi) = ±2πiχ.

Further applications of the neutral orthogonal group will be presented
elsewhere.
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