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DO SUBSPACES HAVE DISTINGUISHED BASES?

DANIEL R. FARKAS AND EDWARD L. GREEN

While trying to develop a computer program to calculate resolutions
for modules over path algebras, the second author conjectured the
existence of an abstract version of the Gram-Schmidt process. Given
a basis for a vector space, there seemed to be an “algorithmically
preferred” basis for each subspace. Although this idea is quite simple-
minded, it does not appear explicitly in any of the standard treatments
of elementary linear algebra. On the other hand, mathematics teachers
will recognize our observation as a concrete description of what we have
all noticed and tried to explain when teaching Gaussian elimination.
In clarifying the obvious we provide some insights into the construction
of Grobner bases, a fundamental tool in computational algebra.

We wish to take advantage of the ordering in an ordered basis for
a vector space. Sometimes a concrete space comes equipped with a
natural ordered basis and, sometimes, as we shall see in an application
to diagonalizability, the ordering can be quite arbitrary.

Example 1. Let K be a field and let V' = K™ be the vector space of
n-tuples with coordinates from K. The standard basis eq,... ,e, has
a standard well-ordering, namely e; < ez < --- < e,. In our discussion
of row echelon form we refer to the reverse ordering on the standard
basis: e, < e, 1 < -+ < ej.

We introduce definitions and notations which will be used in the
remainder of the paper. Let V' be a vector space over a field K with a
given basis B which is well-ordered by <. Each v € V can be written
in a unique way as a linear combination of members of B; if b € B and
its coefficient in this linear combination is nonzero, we will say that b
occurs in v. The maximal b € B (by the ordering of B) which occurs
in v is called the tip of v. If X is a nonempty subset of V, then
TIP(X) will consist of all basis elements in B which occur as the tip of
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some nonzero vector in X. The complement of TIP(X) in B is denoted
NONTIP(X).

The novelty of our presentation lies in the utilization of the next
definition. Let X be a nonempty subset of V. A vector x € X is sharp
for X provided its tip appears in x with coefficient 1 and no other basis
element which occurs in x ever occurs as the tip of any other vector in
X. Thus, if b occurs in z and b < TIP(z), then b € NONTIP(X). The
collection of vectors sharp for X is denoted by SH(X). For emphasis,
we point out that SH(X) is a subset of X uniquely determined by the
given basis B and its ordering. Our main goal is to prove that the
set of sharp vectors for a subspace always constitutes a basis for the
subspace. In what follows, W denotes a nonzero subspace of V.

Lemma 1. If z,y € SH(W), then TIP(z) = TIP(y) if and only if
T=y.

Proof. If x and y have the same tip b, then x—y is a linear combination
of basis vectors smaller than b which occur in either x or y. But these
basis elements are in NONTIP(W). Since « — y has no tip, x —y = 0.
O

Lemma 2. SH(W) is a linearly independent set.

Proof. Let xy,...,z, be distinct elements of SH(W). By Lemma 1,
the tip of x; cannot occur in x; for j # 7. Consequently, if o; € K and
> ajz; = 0, then Y o; TIP(z;) = 0. It follows that each «; is zero.
O

Theorem 3. Let V' be a vector space with a well-ordered basis B and
let W be a subspace of V.. Then SH(W) is a basis for W.

Proof. To clarify the argument, we introduce some suggestive nota-
tion. If z € SH(W) and w € W, let (w, z) denote the coefficient of the
basis element TIP(z) in the expansion of w as a linear combination of
members of B.
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The key step is to observe that each element of TIP(W) appears
as the tip of some sharp vector for W. Indeed, suppose not. By well-
ordering, there is a minimal basis vector b which lies in TIP(W') but not
in TIP(SH(W)); choose w € W so that b is its tip and b has coefficient
1 in w. The minimal choice of b implies that all other tips of W which
occur in w lie in TIP(SH(W)). Consider

w=w-— Z (w,z) - z.

zeSH(W)

Then the unique tip which occurs in w’ is b. That is, w’ is sharp for
W. We reach the contradiction that b € TIP(SH(W)).

Now take an arbitrary u € W. Since u — 3. cqy(w)(u, z) - © has no
tip, we must have

(%) u= Z (u,x) - .

TESH(W)

The reader will notice that the formula (x) is some sort of projection
formula with SH(W) playing the role of an orthonormal basis. As an
illustration of this analog, notice that NONTIP(W) is the basis of a
canonical subspace complementary to W in V.

The notion of sharp basis allows us to give a particularly transparent
proof that the restriction of a diagonalizable linear transformation to an
invariant subspace is diagonalizable. Suppose V is a finite dimensional
space with ordered basis vy, vs, ..., v, and T is a linear transformation
on V such that T'(v;) = A\ju;. Assume that we are given a T-invariant
subspace W of V. The proof consists of observing that a sharp vector
for W is an eigenvector for T'. For suppose that v = Uk+ZiEN a;v; €W
has tip v; and v; € NONTIP(W) for each i € N. If the eigenvalue
Ar = 0, then T'(v) is a linear combination of nontips for W and,
consequently, T'(v) = 0. If A\y # 0, then (1/A;)T'(v) is also a sharp
vector for W with the same tip as v; apply Lemma 1.

As another illustration of these results, we show that Gaussian
elimination provides a method for finding a basis of sharp vectors, given
a subspace spanned by a set of vectors in n-space. We also obtain the
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uniqueness of the reduced row-echelon form without any further work.
Suppose that we have vectors zy, ... ,z, in Euclidean n-space K™. Let
M be the r X n matrix whose rows are z1,...,x, and let M* be the
reduced row-echelon form of M with nonzero rows z7,...,z;. Giving
the reverse ordering to the standard basis of K™ (see Example 1), we
see that z7,... ,z} are all of the sharp vectors for the row space of M*.
Since Gaussian elimination does not change the row space, we see that
Gaussian elimination provides an algorithm to find the basis of sharp
vectors for the span of z1,...,z,. Moreover, the uniqueness of the set
of sharp vectors yields the uniqueness of the reduced row-echelon form.
Finally, the formula (x) given at the end of Theorem 3 explicitly states
why the basis of sharp vectors is “nice.” That is, if « is in the span of
*

T1,...,T,, then z = Zle(m,m;*) -zt

We now make a jump in sophistication.

Example 2. Consider the commutative polynomial ring R =
K[zy,...,z,] as a vector space over the field K. It has a basis B
which consists of all monomials together with 1. Notice that B is a
cancellative monoid; that is, if ab = ac, then b = ¢. If we order the
variables 1 < 1 < 3 < -++ < ®,, then B can be totally ordered by
using degree and lexicographic ordering. That is, if m = z{* - - - 2" and
m' =z ...zt then m < m’ if either Y a; < Y2 b; or if Y a; = 3. b;
and there is a 1 < j < n so that a; = b; for < < j and a; < b;. Notice
that < is a well ordering and is compatible with multiplication in B.

In this example B comes equipped with an intrinsic partial order,
divisibility. Explicitly, * - - - 2&* divides x{l w-xfn when e; < fi,...,
and e, < f,. This can also be regarded as the point-wise partial order
on the n-fold Cartesian product of the natural numbers with the usual
ordering. Divisibility enjoys an often proved property that has been
attributed to Dickson (cf. [4]): any infinite subset of B contains two
monomials which are comparable by divisibility. Equivalently, N™ has
no infinite antichains. (An antichain is a set of pairwise incomparable
elements.) It is not difficult to verify this assertion by induction on n.

Fix a degree-lexicographic order < on B and let Z be a nonzero ideal
of the polynomial ring R. A finite set of polynomials G = {z1,... , 2}
in 7 is called a Grobner basis for Z if the ideal generated by the tips of
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G contains the tips of all polynomials in Z, i.e.,
ideal generated by TIP(G) = ideal generated by TIP(Z).

It is straightforward to show that a Grobner basis for Z generates Z. A
distinguished Grobner basis is lurking behind all of the clutter which
has accumulated to this point. Let min TIP(Z) denote the collection
of those monomials which are minimal in TIP(Z) with respect to
divisibility. As we observed in the previous paragraph, min TIP(Z)
is finite. A polynomial in SH(Z) is minimally sharp provided its tip
lies in min TIP(Z); obviously, there are finitely many of these.

Theorem 4. Let T be a nonzero ideal of R. If < is a degree-
lezicographic ordering on the monomials, then the finite set of mini-
mally sharp polynomials of I constitutes a Grébner basis for I.

Proof. 1t suffices to prove that every member of TIP(Z) is divisible
(in the monoid B) by some element in min TIP(Z). If b € min TIP(Z),
choose ¢ € min TIP(Z) minimal with respect to ¢ dividing b. We know
from Theorem 3 that c is the tip of some sharp polynomial which is,
necessarily, minimally sharp. u]

The astute reader will notice that Theorem 4 is a constructive proof
of the Hilbert Basis Theorem. It is the first step of a theory initiated
by Hermann and developed by Buchberger [4], providing a framework
for machine computations which answer questions about commutative
rings.

Our construction of the set of minimally sharp polynomials illustrates
the concept of a reduced Grobner basis as described in [4, Theorem 8.3].
It is worth noting that NONTIP(Z) is determined by the minimally
sharp polynomials and vice versa. This can be stated more precisely in
the next result whose proof is left to the reader.

Proposition 5. Let R, Z, and < be as in Theorem 4. Then
NONTIP(Z) is the set of monic monomials which are not divisible
by an element in min TIP(Z). Furthermore, min TIP(Z) is the set
of monomials not in NONTIP(Z) whose proper divisors all lie in
NONTIP(Z).
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Example 3. Let R = K[z, y] where K is a field of characteristic zero,
and let B be the ordered monoid described in Example 2, subject to
z < y. Suppose Z is the ideal generated by zy? — 2% and z2y — y2.
The minimally sharp polynomials for Z turn out to be zy? — 22,
2y — y?, 2> — 23, and z* — y2. The point, of course, is that this
list can be calculated algorithmically where, after comparing common
factors of the tips of a generating set of polynomials, simple operations
on polynomials are used to create a new generating set from the
previous one [3, Section 3]. Having the minimal sharp polynomials
we conclude min TIP(Z) = {zy?, 2%y, y®,z*}. By Proposition 5, we see
that NONTIP(Z) = {1, z, 22,23, y,y?, zy}. As observed earlier, the K-
linear span of NONTIP(Z) is complementary to the subspace Z. (Each
polynomial f € R decomposes uniquely as f; + fo where f; € 7 and
f2 lies in this complement, an example of the so-called “rest of f” or
normal form of a polynomial [3, Definition 2.3 or 2, Corollary 8.2].)
In particular, R/I is seven-dimensional.

We close this note by clarifying the noetherian argument which
appeared implicitly in Theorem 4. Recall that if < is a partial order
on a set Y then a subset X C Y is an order ideal provided that x € X
and y > z imply that y € X. The next lemma is due to Higman; a
parital order satisfying any of the equivalent properties is called a well
partial ordering.

Lemma 6 ([1]). The following conditions on a partially ordered set
Y are equivalent:

(i) The ascending chain condition holds for the order ideals of Y.

(ii) Fvery infinite sequence of elements of Y has an infinite ascend-
ing subsequence.

(iii) Every infinite sequence of elements of Y has an ascending
subsequence of length 2.

(iv) There exist in Y neither an infinite strictly descending sequence
nor an infinite antichain.

In Example 2, divisibility on B is a well partial order. The degree-
lexicographic order is monoidal in the following sense: 1 < a for all
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a € B and b < ¢ implies bd < ¢d (and db < dc) for all d € B. There is
a lovely interconnection between these properties.

Lemma 7 ([3, Lemma 1.3]). Assume that M is a monoid which is
cancellative on each side and that < is a monoidal total order on M.

(1) If a divides b, then a < b.

(2) If left divisibility on M is a well partial order, then < is a well
order.

Proof. (1) We are supposing that ac = b for some ¢ € M.

If @ > b, then ac > bec. But ¢ > 1 implies that bc > b. Hence,
b = ac > b, a contradiction. Therefore, a < b.

(2) Apply (1) and, for example, (iii) of Lemma 6. O

As one consequence, the assumption that < is a degree-lexicographic
ordering in Theorem 4 can be replaced with the hypothesis that < is a
monoidal total order on the collection of monomials. These same ideas
can be exploited to give a very short proof for a theorem of J. Lewin.

Example 4. Consider the free algebra F = K(zy,...,z,). As a
vector space over K, it has a basis B consisting of all words in the
alphabet z1,... ,z,. Now suppose that L is a semigroup ideal of B, a
nonempty subset closed under left and right multiplication by elements
in B. Let F be the nonomial algebra obtained by factoring out the
two-sided algebra ideal generated by L. It is not difficult to check that
F has as basis B = B\L. Moreover, one can obtain the multiplication
table for B by contracting L to zero; if the product of two words in B
lies in L, their product in F is 0.

Theorem 8 ([2]). If a monomial algebra F is right noetherian, then
it is finitely presented. That is, the ideal generated by the collection of
monomial relations, L, is finitely generated as a bimodule or two-sided
ideal.
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Proof. Given a,b € B we say that b is a subword of a when there exist
u,v € B such that a = ubv. The partial order of being a subword is the
noncommutative analogue of divisibility. Thus the role of the minimal
tips for the ideal generated by L is played by

min(L) = {a € L| no proper subword of a lies in L}.

It suffices to prove that min(L) is finite.

Let < denote the partial order of left divisibility on B. If X is an
order ideal of B, then the vector space span of X is a right ideal of F.
Since F is right noetherian, condition (i) of Lemma 6 tells us that < is
a well partial order. Consequently, B has no infinite antichains under
<.

Suppose min(L) is infinite. If a € min(L) write a = i(a)r(a) where
i(a) is the initial letter of a. Then r(a) € B. Since the alphabet is
finite, there exists a member x; of the alphabet such that

{r(a)lz;r(a) € min(L)}

is infinite. It follows that at least two elements in this set are compa-
rable, say r(a) < r(b). Then z;r(a) < z;r(b) and, so, a < b. But now
a is a proper subword of b while both lie in min(L). O
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