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QUASI-DECOMPOSITION OF ABELIAN GROUPS
AND BAER’S LEMMA

ULRICH ALBRECHT

1. Introduction. In this paper we consider an abelian group A.
The class of A-projective groups (of finite A-rank) is obtained by closing
{A} under (finite) direct sums and direct summands. The A-socle of
an abelian group G, which is denoted by S4(G), is the subgroup of G
which is generated by {¢(A)|¢ € Hom (A,G)}. Finally, the group A
is self-small if, for all index-sets I and all o € Hom (A, ®1A), there is
a finite subset J of I with a(A4)C @; A. Clearly, torsion-free abelian
groups of finite rank are self-small. Other examples of self-small abelian
groups can be found in [7].

The group A has the (finite) Baer-splitting property if every exact

sequence 0 — B 5 G % P — 0 such that a(B)+ S4(G) = G and P
is A-projective (of finite A-rank) splits. Baer verified in [8] that every
subgroup of the rational numbers has the Baer-splitting property. In
[3, Theorem 2.1 and Corollary 2.2], a complete characterization of the
self-small abelian groups A having the (finite) Baer-splitting property
was obtained which extends Arnold’s and Lady’s results of [6].

Unfortunately, a splitting result like Baer’s Lemma often has limited
applications in the discussion of torsion-free groups of finite rank since
the splitting of a short exact sequence of these groups occurs less
frequently than its quasi-splitting. Because of this, we introduce the
following weaker, but perhaps more useful version of the Baer-splitting
property which is based on the idea of quasi-isomorphism introduced
by Jonsson in the 1950s ([10,11]): A torsion-free abelian group A
has the (finite) quasi-Baer-splitting property if every exact sequence

0o-B30c%a¢— 0, in which G is isomorphic to a torsion-
free quasi-summand of an A-projective group (of finite A-rank), and
C and a(B) + Sa(C) are quasi-equal, quasi-splits. Theorem 2.3 and
Corollary 2.4 give a complete characterization of the self-small abelian
groups A having the (finite) quasi-Baer-splitting property in terms of
the E(A)-module structure of A where the symbol E(A) denotes the
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endomorphism ring of A. Moreover, Corollary 2.5 includes the partial
results that were obtained in [6, Corollary 2.6]. However, we give an
example of a torsion-free group A of finite rank which has the quasi-
Baer-splitting property, but is not one of the groups described in [6,
Corollary 2.6] (Example 2.7).

On the other hand, one of the disadvantages usually associated with
properties of an abelian group A, which can only be described in terms
of the F(A)-module structure of A, is that this description provides
virtually no information about the internal group-structure of A itself.
A typical example where this problem occurs is the Baer splitting
property. We can however overcome this disadvantage for finite rank
groups having the finite quasi-Baer-splitting property.

By [9, Theorem 92.5], every torsion-free abelian group A of finite rank
is quasi-isomorphic to a group of the form A" @ --- ® A where the

A;’s are strongly indecomposable, my,... ,m, > 0, and A; is quasi-
isomorphic to A; only if ¢ = j. Theorem 3.1 gives a necessary and
sufficient condition on the family {4;,...,A,} which ensures that A

has the finite quasi-Baer-splitting property. Moreover, this condition
is independent of the chosen quasi-decomposition of A into strongly
indecomposable subgroups.

The notation of this paper mostly is the standard one introduced in
[9, 15] while exceptions and additions are listed at the beginning of
Section 2. Especially, all maps are written on the left.

2. Endomorphism rings and quasi-splitting. The purpose of
the first part of this section is to introduce the notation used in this
paper. We consider an abelian group, A, and define an adjoint pair
of functors between Ab, the category of abelian groups, and Mgy,
the category of right F(A)-modules, in the following way: Since the
group A carries a natural left F(A)-module structure, the tensor-
product T4(M) = M ®pgay A is well defined for all right F(A)-
modules, and gives rise to a covariant functor T4 : Mpgs)y — Ab.
Conversely, composition of maps induces a right F(A)-module structure
on H4(G) = Hom (A, G) for all abelian groups G. The resulting functor
Hy : Ab — Mg(a) is a right adjoint to T4 by [13, Theorem 2.11].

There consequently exist natural homomorphisms g : TAHA(G) —
G and ¢py : M — HyTa(M) for all G € Aband M € Mpa) which are



ABELIAN GROUPS AND BAER’S LEMMA 1229

defined by 0 (a®a) = a(a) and [¢ar(m)](a) = m®a where o € Ha(G),
m € M and a € A. Arnold and Lady showed in [6] that H4 and
T4 yield a category equivalence between the category of A-projective
groups of finite A-rank and the category of finitely generated projective
right E(A)-modules. If A is self-small, then the finiteness conditions
can be removed from Arnold’s and Lady’s result [7].

The concepts of quasi-isomorphism and quasi-splitting are strongly
associated with the discussion of torsion-free abelian groups of finite
rank, but are used in a more general setting in this paper. To avoid
any possible confusion, in the next paragraph we give definitions of
these concepts appropriate for modules over arbitrary rings R:

A submodule U of a right E(A)-module M is quasi-equal to M if
there exists a nonzero integer n such that nM CU C M. We write
U = M in this case. Two R-modules M and N are quasi-isomorphic
if there exist a nonzero integer n and maps o € Hom g(M,N) and
B8 € Hompg(N,M) with a8 = n -idy and Ba = n - idpy where
tdy denotes the identity map on N. We write M~N and call «
and (8 quasi-isomorphisms. Finally, let M and N be R-modules and
a € Hom g(M, N) such that a(M) = N. We say that o quasi-splits
if there are a map 8 € Hom g(N, M) and a nonzero integer n with
af = n-idy. Moreover, if the additive groups of M and N are torsion-
free, then a map a € Hom r(M, N) with a(M) = N quasi-splits if
and only if ker « is a direct summand of a submodule of M which is
quasi-equal to M. We say that NN is isomorphic to a quasi-summand
of M in this case.

Proposition 2.1. Let A be a torsion-free abelian group.

a) The functors Hy and T4 preserve quasi-isomorphisms and quasi-
splitting homomorphisms.

b) If B and G are abelian groups such that 8¢ is a quasi-isomorphism,
and if there ezists a quasi-splitting map o : G — B, then 0p is a quasi-
isomorphism.

Proof. Both a) and b) are an immediate consequence of the fact that
0 is a natural transformation of T4 H4 to the identity functor. O
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We continue with a technical lemma which is frequently used in the
following:

Lemma 2.2. Let R be a ring.
a) If

M——N

K—L

B

is a commutative diagram of right R-modules and R-module homomor-
phisms such that p and o quasi-split, then so does (3.

b) If P is a projective R-module, and the R-module U admits a
quasi-splitting map 7 : P — U, then every map oo € Hom g(M,U) with
a(M) =U quasi-splits.

Proof. a) Choose nonzero integers m and n as well as maps § €
Hom g(N,M) and 7 € Hom g(L,N) such that ad = m - idy and
pt = n-idg. Then B(véT) = padt = p(m - idy)T = nm - id;, which
particularly yields 8(K) = L.

b) Choose nonzero integers m and n and a homomorphism § : U — P
such that 76 = n - idy and mU Ca(M). Since P is projective, and
[(m - idy)7](P) CmU C a(M), there is a map § € Hom g(P, M) such
that a8 = (m - idy)m. Because of a(f0) = (m - idy)md = (m - n) - idy,
the map a quasi-splits. a

We are now able to characterize the self-small torsion-free abelian
groups A which have the (finite) quasi-Baer-splitting property in terms
of their E(A)-module structure.

Theorem 2.3. The following conditions are equivalent for a self-
small torsion-free abelian group A:

a) A has the quasi-Baer-splitting property.

b) A right E(A)-module M such that T4(M) is bounded is itself
bounded as abelian group.
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Proof. a) = b). Let M be a right E(A)-module such that T4 (M) is

a bounded abelian group, and choose an exact sequence P; ﬂ P, 43
M — 0 of right E(A)-modules in which Py and P; are projective.
Since T4 is right exact, Ta(FPy)/imTa(p1) = Ta(M) is bounded;
and consequently, im T4 (¢;) is quasi-equal to the A-projective group
T4(Py). Because Ty(Py) is also A-projective, a) implies that the
canonical map T4(Py) — imTy4(¢1) is quasi-splitting, and therefore,
by an application of Lemma 2.2a, so is Ta(¢1) : Ta(P1) — Ta(P).
Now consider the commutative diagram

HaTa(P) 22729 g 7y (By)

P1 T) PO
where the maps ®p, and ®p, are isomorphisms and HaT4(41) quasi-
splits by Proposition 2.1a. Another application of Lemma 2.2a yields
the quasi-splitting of ¢1, i.e., there is a map o € Hom (Pp, P;) and a
nonzero integer k such that ¢10 = k - idp,. Hence, kPy C ¢1(P1) and
M = Py/¢1(Py) is bounded, as desired.

b) = a). Consider the exact sequence 0 — B = C 2 G = 0of
torsion-free abelian groups where G is isomorphic to a quasi-summand
of an A-projective group P and C = S4(C) + «(B). Since 0p :
TyH4(P) — P is an isomorphism, and there is a quasi-splitting map
6 : P — @G, Proposition 2.1b implies that the map 64 is a quasi-
isomorphism. Consider the diagram

TAH4(C) MTAHA(G) ——— Ta(coker H4(B)) ———0

C - G —_— 0

B

which is commutative and has exact rows. By our assumption on C', we
obtain G = ,B(SA(C)) = BGC(TAHA(C)) = [egTAHA(,B)](TAHA(C)).

Therefore, we can find a nonnegative integer n such that nG C
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im[0gTaHA(B)]- Since Og is a quasi-isomorphism there exist a map
o : G — T4H4(G) and a nonzero integer k such that fgo = k - idg
and 00g = k - idy, g, () It follows that the group

TA(COkeI‘ HA(B)) = coker TAHA(B) = TAHA(G)/imTAHA(,B)

is bounded by n - k: for if © € TAH 4(G), then there is y € TaH4(C)
such that nkx = nofg(z) = o(nbg(z)) = [0cTaHA(B)](y) =
[kTAHA(B)](y) is contained in imT4H4(3). By the hypothesis b),
coker H 4 () is also bounded; and consequently, Ha(G) = im H4(8).
Therefore, since H4(6) : Ha(P) — Ha(G) quasi-splits by Proposition
2.1a, and H4(P) is a projective right E(A)-module, Lemma 2.2b
implies that the map H4(8) : Ha(C) — Ha(G) quasi-splits. Recalling
that f¢ is a quasi-isomorphism, we see that Lemma 2.2a can be applied
to the diagram above to show that 8 : C' — G quasi-splits. O

The proof of the last result can be adopted easily to prove the
equivalence of b) and c) in the following corollary.

Corollary 2.4. The following conditions are equivalent for a self-
small, torsion-free abelian group A:

a) If I is a right ideal of E(A) such that A/IA is bounded, then
E(A)/I is bounded as an abelian group.

b) A finitely generated right E(A)-module M is bounded as abelian
group if Ta(M) is bounded.

c) A has the finite quasi-Baer-splitting property.

Proof. Since the implication b) = a) is obvious, it remains to show
its converse in view of the remarks preceding the corollary:

a) = b). As a first step, we show that Tor }E(A) (N, A) is bounded for
all cyclic right E(A)-modules N whose additive group is bounded. Let
n be a nonzero integer, and suppose « : E(A) — E(A) is multiplication
by n. If 7 : E(A) — E(A)/nE(A) denotes the canonical projection,

then the exact sequence 0 — E(A) — E(A) — E(A)/nE(A) — 0
induces the top-row of the diagram
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0 ———— Tor b ) (B(A)/nE(A), A) ——— Ta(E(4)) — 2 1, (5(4))
i i
0 . A 4

n

in which 6 is defined by 0(r ® a) = r(a) for all r € E(A) and a € A.
The diagram commutes because [0T4(a)](r ® a) = 0(nr ® a) = nr(a)
and nf(r ®a) = nr(a). Furthermore, the map 6 obviously is an isomor-
phism. Thus, T'4() is one-to-one and Tor , ,) (E(A)/nE(A), A) = 0.

Suppose that I is a right ideal of E(A) which contains nE(A). The
exact sequence 0 — I/nE(A) — E(A)/nE(A) — E(A)/I — 0 induces
the exact sequence

0="Tor k1) (E(A)/nE(A), A) = Tor b 4 (E(A)/I, A) = Ta(I/nE(A)).

Since T'4(I/E(A)) is bounded because I/nE(A) is, the same is true for
Tor }E(A) (E(A)/I,A). This shows that Tor }E(A) (N, A) is bounded for
all cyclic right E(A)-modules N which are bounded as abelian groups.

To complete the proof, suppose that M = (my,...,m,) is a finitely
generated right E(A)-module such that T'4(M) is bounded. If r = 1,
then M is bounded as an abelian group by a). In the case r > 1,set U =
(m1,...,m,_1); and consider the exact sequence Tor }E(A)(M/U, A) —
Ty(U) = Ta(M) — Ta(M/U) — 0 which is induced by the inclusion
UCM. The module M/U is a cyclic right E(A)-module such that
T4(M/U) is bounded. By a), M/U itself is bounded as an abelian
group. The results of the first step of this proof guarantee that the
same holds for Tor }5( 4)(M/U, A). Consequently, T4(U) is bounded;
and the same is true for the additive group of U by induction. But this
implies that the module M is bounded as an abelian group. O

In the next corollary, we apply the preceding result to obtain a
purely ring-theoretical condition on QE(A) that is sufficient, but
not necessary, for the group A to have the finite quasi-Baer-splitting

property.
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Corollary 2.5. A self-small, torsion-free abelian group A, such that
every proper right ideal of QE(A) = Q ®z E(A) has a nonzero left
annihilator, has the finite quasi-Baer-splitting property.

Proof. Suppose that I is a right ideal of E(A) such that A/IA
is bounded. If E(A)/I is not bounded as an abelian group, then
the Z-purification I, of I in E(A) is a proper right ideal of E(A).
Consequently, QI is a proper right ideal of QFE/(A) which is annihilated
from the left by a nonzero element o of E(A). This yields A Cker a.
Hence, a(A) = A/ker « is bounded, a contradiction. O

Furthermore, it is obvious that the annihilator condition of Corollary
2.5 is satisfied in the following cases because of the results of [6]:

i) QE(A) is semi-simple Artinian.
ii) E(A) is commutative.
iii) A is strongly indecomposable.
While these three cases represent the classes of groups considered in
[6, Corollary 2.6], there nevertheless exists a torsion-free group A of
finite rank which has the quasi-Baer-splitting property, but does not

satisfy the annihilator condition of Corollary 2.5. The existence of such
an A is a consequence of

Corollary 2.6. A self-small torsion-free abelian group A, which is
faithfully flat as an E(A)-module, has the quasi-Baer-splitting property.

Proof. Let M be a right E(A)-module such that mT4(M) = 0
for some nonzero integer m. Suppose that ¢ : M — mM is the
epimorphism which is induced by multiplication with m. Let i : mM —
M be the inclusion map; and consider the commutative diagram
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whose rows and columns are exact. We obtain 0 = mTs(M) =
imT4(4)Ta(¢p). Hence 0 = im Ty (¢) = Ta(mM). Since A is a faithfully
flat left E(A)-module, mM = 0. O

Ezample 2.7. In [4, Theorem 2.8], we showed that every cotorsion-
free ring R can be realized as the endomorphism ring of an abelian
group A which is self-small and faithfully flat as an E(A)-module.
Moreover, if the additive group of R has finite rank, then A can be
chosen to have finite rank [9, Theorem 110.2 and 4, Theorem 2.8].
Hence, Corollary 2.6 and [4] yield the existence of a torsion-free abelian
group A of finite rank which has the quasi-Baer splitting property

and satisfies QE(A) {(Z g) la,b,c € Q}. On the other hand, the
right ideal I = {(Z g) la, b, € Q} of QE(A) is proper. If r = (Z 2)
with z,y,z € Q an element of QE(A) with I = 0, then we obtain

(gg) = (22) (‘Zg) = (a:_szg) for all a,b € Q. Choosing a = 1
and b = 0 gives ¢ = y = 0. On the other hand, the choice a = 0 and

b =1 yields z = 0. Thus, I has a zero left annihilator in QE(A).

Therefore, in contrast to Corollary 2.4, neither [6, Corollary 2.6] nor
Corollary 2.5 completely characterize the torsion-free abelian groups of
finite rank with the finite quasi-Baer-splitting property.

3. The finite rank case. In this section we describe up to quasi-
isomorphism the structure of the torsion-free abelian groups of finite
rank which have the finite quasi-Baer-splitting property. To simplify
our notation, we say that torsion-free abelian groups Ay,... , A, have
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incomparable socles if, for all i,j € {1,...,n}, the following two
conditions are satisfied:

i) If Sa,(A;) = A; for some j € {1,... ,n}, then i = j.

ii) IfUy,...,U, are subgroups of A; such that S, (U;) = Uj for all
j, then A; =U; + -+ Uy, only if A; = U; for some j.

Theorem 3.1. The following conditions are equivalent for a torsion-
free abelian group A of finite rank:

a) A has the finite quasi-Baer-splitting property.
b) Whenever A~AT* & -+ ® A" is a quasi-decomposition of A

into strongly indecomposable groups Ay, ... , Ay, such that A;~A; only
ifi=j, and 0 <my,...,m, <w, then Ay,..., A, have incomparable
socles.

c) There ezists a quasi-decomposition A~AT"* @ --- @& A" where
the Als are strongly indecomposable groups such that Ay, ..., A, have
incomparable socles.

Proof. a) = b). Suppose A~AT* @- - - A where each A, is strongly
indecomposable, A;~A; only if i = j and 0 < mq,... ,m, < w. If
Sa,;(Ai) = A; for some i,j € {1,...,n}, then Sy, (4;) itself is a quasi-

summand of A, and there exists an exact sequence ®r4; LA Sa;(Ai) —
0 for some index-set I. Since @;A; is a quasi-summand of &1 A, we have
Sa(®rAj) = @rA; by Proposition 2.1b. Hence, 3 quasi-splits by a);
and @y A;~S4;(A;) Dker §. Since the groups A; and A; = Sy, (4;) are
strongly indecomposable, we obtain A;~S4,(4;) = A; by [9, Theorem
92.5]. The choice of the A;’s yields i = j.

Now assume that Uy,...,U, are subgroups of A; for some i €
{1,...,n} such that A; = Uy + --- 4+ U, and Sy4,(U;) = Uj for
all j = 1,...,n. The codiagonal map ¢ : & ,U; — A; satisfies
imo =Uy +---+U, = A;. Once we have shown that S4(U;) = U, for
allj=1,...,n, we obtain SA(Ul@' . '@Un) = SA(Ul)EB' . '@SA(Un) =
Ui ® --®U,. Thus, the sequence U; ®---®U,, — imo — 0 quasi-splits
by a). Since imo = A;, we obtain that A; is isomorphic to a quasi-
summand of U; & --- & U,,. Considering quasi-decompositions of the
groups U; into strongly indecomposable subgroups, we obtain that A;
has to be quasi-isomorphic to an indecomposable quasi-summand V of
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U; for some j € {1,...,n}. Because V is strongly indecomposable,
[1, Theorem 7.3 and Proposition 7.6] implies that the embedding
V CU; CA; quasi-splits. Since A; is strongly indecomposable, we
conclude V' = U; = A;, as required.

To show S4(U;) = Uj, we observe that there exist a nonzero integer
k and homomorphisms A : A; — Aand 7: A — Aj with 71X =k -id4;.
If z € Uj, then there are a1, ... ,a, € Hom (4;,U;) and a1, ... ,a, € A
with z = ay(a1) + - - -+ as(as). Hence, kx = ay(kay) +- - -+ as(kas) =
(a1m)A(a1) + - - + (asm)N(as) € Sa(U;). Thus, kU; C Sa(U;).

b) = c). This is obvious because of [9, Theorem 92.5].

c) = a). As a first step, we prove the following. Given a map
a:F — P where P= A @---® A%, F = @, F; with F; = @, A;,
and a(F) = P, then there exists a quasi-splitting map ¢ : P — F
with aoc = k - idp for some nonzero integer k. With F fixed, we
establish the existence of o by induction on s = sy + --+ 4+ s,. In the
case s = 1, we may assume without loss of generality that P = A;.
Then, taking U; = «(F};), we obviously have U; = S4,(U;) and
Ay = P = «(F) = Uy +---+ U,. By hypothesis c), there is a j
with Ay = U; = Sa,(Uj) € Sa,(A1); and, consequently, j = 1 by the
definition of incomparable socles. Hence, a(Fy) = Ay. If i : F; — F is
the inclusion map, then ai = a|p, quasi-splits by Corollary 2.5. Thus,
there is a mapping ¢’ : P — Fj such that (ai)o’ = k - idp for some
positive integer k, and therefore o = io’ : P — F is the desired map.

Now suppose s > 1. To simplify our notation, let H = A; ®--- P A,,.
No generality is lost if we assume s; > 0. Write P = A; & D where
D = Ail_l ® A3 @ --- @ Asr, and denote the projection of P onto
D, whose kernel is A;, by m. Because of ma(F) = «(P) = D, the
map wa : F — D quasi-splits by induction. Choose a subgroup

U of F with F = kerma @ U. We obtain kerra = a~!(4;) and

a(kerma) = A;. Moreover, since ker @ is a quasi-summand of F,
we obtain Su(kerma) = kerma by Proposition 2.1b. Thus, we can
find index-sets Ji,...,J, and a map 8 : ®F_,[®s; A;] — kerma such

that kerma = im 3. Consider the map af : @7_;[®s;4;] — Ar. It
satisfies imaf = a(kerma) = A;. By the result of the case s = 1,
the map af quasi-splits, and the same holds for &|kerroa. We write
kerma =V @ kera. Hence, F = kermra ®U =kera® V & U. Thus,
the map o : F' — P quasi-splits.
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To complete the proof, suppose 0 — B = C' ﬁ) G — 0 is an exact
sequence of torsion-free groups such that C' = a(B)+S4(C) and G is a
quasi-summand of an A-projective group of finite A-rank. In particular,
G itself has finite rank and GA~P = A @ --- @ A3 for some choice of
nonnegative integers si,...,S,. Fix a quasi-isomorphism v : G — P
and select a homomorphism ¢ : F — C which satisfies §(F) = Sa(C),
where F' = @A for some index-set I. Then, a = v is a map from F
to P with a(F) = v8(54(C)) =~(G) = P. Since A~AT* @--- D A",
there are index sets I, . .. , I, such that F' = @7_, [®1,A;]. By our first
step, there is a map o : P — F and a nonzero integer k such that ao =
k -idp. Since v is monic, and vBdcy = acy = (k- idp)y = v(k - idg),
we obtain that ¢’ = doy : G — C is the desired map with 8o’ = k-idg.
O

Corollary 3.2. An almost completely decomposable group A of
finite rank has the finite quasi-Baer splitting property if and only if
ARCAT @ - - @ A where the A;’s are the subgroups of Q of pairwise
incomparable type.

Proof. Suppose that A has the finite quasi-splitting property, and
write ANAT @ - @ A where the A;’s are pairwise nonisomorphic
subgroups of Q. If type (A;) < type(4,) for some i # j in {1,... ,n},
then Sa,(A4;) = A, in contradiction to Theorem 3.1.

On the other hand, the condition in Theorem 3.1b is satisfied in
particular if there are non nonzero homomorphisms between nonquasi-
isomorphic, strongly indecomposable quasi-summands of A. Thus, the
converse is an immediate consequence of Theorem 3.1. ]

Furthermore, there is a special case in which it is easy to check that
torsion-free abelian groups A; and Ay have incomparable socles:

Corollary 3.3. Let Ay and As be strongly indecomposable torsion-
free abelian groups of finite rank such that E(A;) and E(A3) do not
have zero divisors. A torsion-free group A~AT @ AT such that 0 < n,
m < w has the finite quasi-Baer-splitting property if and only if
SAl(AQ) # A2 and SAZ (Al) 75 Al.
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Proof. It suffices to show that two such groups A; and A, always sat-
isfy the second condition for incomparability of socles. Every nonzero
endomorphisms of a strongly indecomposable abelian group of finite
rank is either nilpotent or a monomorphism. Since A; has no divisors
of zero, every nonzero endomorphism of A; is one-to-one. Hence, every
nonzero subgroup U of A; with Sa,(U) = U contains a subgroup W
which is isomorphic to A;. By [1, Theorem 7.3], W is quasi-summand
of A;. This yields U = A;.

Let Vi and V, be subgroups of A; which satisfy Sy4,(V;) = V; for
it = 1,2 and Ay = Vi + Vo, If Vi # 0, then we have Vi = Aj.
However, Vi = 0 implies Vo = A;. The corollary immediately follows
from Theorem 3.1. ]

However, if A has more than two pairwise nonquasi-isomorphic
strongly indecomposable quasi-summands, then the second condition
for incomparability of socles is no longer automatically satisfied as the
next result shows.

Theorem 3.4. a) There exists a torsion-free abelian group A of finite
rank which does not have the finite quasi-Baer splitting property, but
admits a quasi-decomposition A~AT* @---@® A such that Ay, ..., A,
satisfy the first condition for incomparability of socles.

b) There exists a torsion-free group A of finite rank which does
not have the finite quasi-Baer splitting property, but admits a quasi-
decomposition A~AT @ --- & A’ such that Ay, ..., A, satisfy the
second condition for incomparability of socles.

Proof. If pi,...,p, are primes of Z, then Z, ., denotes the
subgroup of Q whose elements can be written in the form r/s where
r and s are relatively prime integers and the p;’s do not divide s for
i=1,...,n. We fix three distinct primes p;, p2, and p3 of Z.

a) Let V = Qe; & Qes be a two-dimensional rational vector space,
and define G1 = Zy, p,e1, G2 = Zy, €2, and G = (G1,G2,p; "“(e1 +
e2)ln < w}. By [5, Example 2.4], G is a strongly indecomposable
abelian group of rank 2 whose endomorphism ring is a subring of Q.
Moreover, G; and G4 are pure fully invariant subgroups of G; and
the type of e; + ez in G is represented by the characteristic (my),
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where my, = oo for p # po,ps and mp, = my, = 0. Set By = Zy, p,,
By = Zyp, ps, and Bz = Zy, p, .

We show that the group A = G & By & By & B3 does not have the
finite quasi-Baer splitting property and that G, By, B and Bj satisfy
the first but not the second condition for incomparability of socles.

Suppose Sg, (G) = G. Since By = p3Bj, we obtain p3G = G. Hence,
p3G2 = p3sGN G2 = G, which is not possible since G2 = Z,, p,. In the
same way, we show that Sp,(G) and Sp,(G) are not quasi-equal to G.

On the other hand, suppose that ¢ is an element of Hom (G, By).
Because the types of G2 and of e; + e2 are incomparable with the type
of By, we obtain ¢(e2) = 0 and ¢(e; +e2) = 0. Thus, Hom (G, B;) = 0.
Since Hom (B;, Bj) = 0 for i # j € {1,2,3}, we have shown that
G, By, By, and Bj satisfy the first condition for incomparability of
socles.

Furthermore, if we let G3 be the Z-purification of (e; + e3) in G,
then we obtain G = Gy + G2 + G3 + H where Sg(H) = H = 0 and
Sp,(G;) = G; for i = 1,2,3, although none of the groups G1,Gs,G3
or H is quasi-equal to G. This shows that G, By, By and Bs do not
satisfy the second condition for incomparability of socles. Moreover,
the codiagonal map 8 : G1 & G2 & G3 — G does not quasi-split by
[9, Theorem 92.5]; and A does not have the finite quasi-Baer splitting
property.

b) We continue to use the notation of part a) of this proof. Let
K = Z,,, and consider the group B = G @ K. Since B; and Bs
are isomorphic to subgroups of G/G2, we see that G/Gy has type
at least the type of K. If G/Gs is divisible, then poGo = G5 and
pQ(G/GQ) = G/G2 yield sz = G. Hence, szl = p2G N G1 = Gl,
which is not possible since G1 = Z,, ,,. Hence, G/G2 = K. Therefore,
G and K do not satisfy the first condition for incomparability of
socles. By Corollary 3.3, B does not have the finite quasi-Baer splitting
property. On the other hand, the arguments used in the proof of
Corollary 3.3 show that G and K satisfy the second condition for
incomparability of socles. |
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