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THE GENERALIZED GAUSS MAP AND APPLICATIONS
JAIME B. RIPOLL AND MARCOS SEBASTIANI

0. Introduction. In his work on the theory of surfaces Gauss in-
troduced what is called today the (normal) Gauss map of an orientable
hypersurface in Euclidean space E**!. Formerly, the Gauss map was
used to compute the intrinsic curvature of a surface of E2. However,
this map became one of the most important tools in Euclidean geome-
try, being used to prove results in many of its different branches.

The Gauss map in E"*! is determined by the (linear) translations
of E™t!. Since translations make sense in a parallelizable manifold
(see Section 1), it is possible to define a similar map in a Riemannian
parallelizable manifold. Our aim here is first to make this construction,
defining a Gauss map for hypersurfaces in a Riemannian parallelizable
manifold and studying its general properties. We then apply these
results generalizing some classical results on Differential Geometry. In
particular, we obtain a generalization of the Gauss-Bonnet formula and
a generalization of a result of R. Langevin about curvature and complex
singularities. We also obtain an application to the study of convexity
of hypersurfaces. We also consider here the case of immersed manifolds
of arbitrary codimension.

Translations in a Riemannian manifold can be obtained, for instance,
by fixing a point of the space and taking the parallel translation of
the tangent vectors at that point along geodesics. The Gauss map
defined this way and in the case that the ambient space has constant
sectional curvatures has been studied by J. Weiner in [9]. Translations
also appear in a Lie group with an invariant metric by taking invariant
vector fields.

I. General definitions and results. We recall that a (n+1)-
dimensional differentiable manifold N is called parallelizable if its
tangent bundle is trivial, that is, if there exists a differentiable map
I': TN — N x R™"! which makes commutative the diagram:
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TN — L . N xR+

N—L N

and such that, given p € N, the map T, := I'(p,-) : T,(N) — R***
is an isomorphism between vector spaces. m; and mo are the usual
projections and I the identity map on N.

The following notations and definitions will be used throughout part
I: N will be an (n+1)-dimensional Riemannian parallelizable manifold
together with a map I' : TN — N x R"*! as above and such that
I, : T,(N) — R™! is an isometry, for any p € N, considering in
R™t! the usual Euclidean inner product. T' will be called a translation
in N.

Given p € N and X € T,(N), we define a vector field X in N by
setting X (q) := I, 1(Ip(X)). Such vector fields will be called invariant
(or T-invariant) vector fields.

M will be an m-dimensional Riemannian manifold, m < n, isometri-
cally immersed in N. Denote by N(M) the normal bundle of M and
by SN(M) the correspondent sphere bundle. Let p € M.

1. The invariant (or I'-invariant) second fundamental form.
We first recall that the second fundamental form B of M is given by

By(n)(X,Y) = (VxY,mn)

where ( , ) is the Riemannian metric of N and V its associated
connection, X,Y € T,(M), n € N,(M) and Y any extension of YV
tangent to M. By setting A,(n) : T,(M) — T,(M), A,(n)(X) =
—(Vxn)P, where ()P denotes the orthogonal projection on T),(M)
we have By (1)(X,Y) = (4p(n)(X),Y).

The Invariant (or T-invariant) second fundamental form B of M is
given by ~ ~
B,(n)(X,Y) = (VxY,n)

where Y is the invariant vector field such that Y (p) = Y. By setting
Ay(n) : Ty(M) — T,(M), Ay(n)(X) = —(Vxi)?, where  is the
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invariant vector field such that 7j(p) = 7, we obtain
B,(n)(X,Y) = (4,(1)(X),Y).

Let us define K,(n) = det (A,(n) — Ap(n)). Assuming that the N (M)
is orientable, we define

- 1 -
Bp= o [ Koty
k-1 JsN, (M)

where do is the volume form of SN, (M) and cx_1 the volume of the
(k — 1)-dimensional unit sphere, k = n — m.

This definition is completely similar to the usual definition of Lipschitz-
Killing curvature for immersed Riemannian manifolds (see [2]). K will
be called the invariant curvature of M.

2. The “Gauss” map determined by a translation. We define
v:SN(M) — S"1
by

v(n) =T'p(n)

where S™~! is the unit sphere in R™. We have dv(n) : T,,(SN(M)) —
Tv(n)(sn_l)'

The canonical projection of SN(M) induces a surjective linear map
T,(SN(M)) — T,(M).

3. Theorem.

(L, Hdy()(X)),Y) = —By(n)(X,Y) + By(n)(X,Y)

where € SN,(M), X,Y € T,(M) and X is any Uft of X to
T,(SN(M)).

Proof. We observe that any two lifts of X differ by a vector Z €
Ker dy(n) = T,,(SN(M)). We see that I',*(dv(n)(Z)) is orthogonal to
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T, (M), so that the first member of the above equality is independent
of the lift X of X.

We choose a lift of X in the following way. Let n € T,,(M), and let
f : (—e,6) = M such that f(0) = p and f'(0) = X. Let n; be the
parallel transport of n along f. Then define X := Dn,/dt(0), where
D/dt denotes the covariant derivative. Therefore, we have

T, ()(X) = 2T, o Tr) () 0)

Let X1,..., X, be an orthonormal basis of T},(M) and set X, 11 = 7.
We extend this basis to an orthonormal basis Xi,...,X,...,X, of
T,(N). Let X; be the invariant vector field such that X;(p) = X;, and
let X;(t) be the parallel transport of X; along f, 1 < j <n. Then

e = c1(t) X1 (t) + - + em(t) X1 (2)

with
c1(0)=---=¢n(0) =0, em+1(0) = 1.
Therefore
m—+1 D
Lo dy(n)(X)) = > ¢5(0)X; + 20 o L) (X1 (1)) (0)
j=1
thus
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On the other hand, we can write
X1 (f(0) =D b;()X;(t),  b;(0) = 6jm1-
j=1
Applying I' loT () in both sides of this equality, we obtain
X1 =Y bi(O)(T; " o Tyn)) (X5(1))-
j=1
Taking the derivative
& ’ D -1
0= 05(0)X; + = (I o T (1)) (X4 (1)(0)
j=1

so that

Therefore,

<§(F51 o T4(1))(Xm+1(1)(0),Y) = (4,(X),Y) = By(n)(X,Y),

and the theorem results from these formulae. O

4. Corollary. Assume that M and N are orientable and m is
even. Let dv be the volume form of S*~! and du the volume form of
M. Then K,du(p), p € M, is the integral along the fibers (see [T]) of
SN(M) — M of v*(dv) divided by cj_1.

Proof. We have the following diagram, exact and commutative:

0 ——T,(SNp(M)) —— T,,(SN(M)) —— Tp(M) ——0

Jq Jdv(n) J—Ap(n)Jrﬁp(n)

0 Ty ) (8) ——— Ty (57 1, (M) ——0

Por 't
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The second rectangle is commutative, according to Theorem 3.1 and
Section 2, and ¢ is an isomorphism preserving the metric. We re-
call that P is the orthogonal projection. Let Zy,...,Z,_1 be a ba-
sis of T,,(SN(M)) such that Z;,...,Z,_1 is an orthonormal basis of
T,(SNy(M)) and the image Zj,...,Z,_; is an orthonormal basis of
Tp(M). Then, there exists an orthonormal basis ¢(Z1), ... ,¢(Zk-1), Y&,

-3 Yooy of Ty (S™1) such that (PoT,')(Y;) =2}, k<j<n-—1.

Then
Y (dv(n)(Z1; -+ s Zn-1) = det (—Ap(n) + Ap(n))
= det (—By(n) + By(n))

since m is even.

We conclude that the integral of v*(dv) on the fibers of SN (M) — M
is a form A such that

Ao oo Zo) = [ Ryl dy(o).
SN, (M)
Hence, A = ¢, 1K, du(p). o
II. Applications.

1. The Gauss-Bonnet theorem. We obtain here a generalization
of the well-known Gauss-Bonnet formula. This generalization depends
on the following result:

Lemma 1.1. Let M,N be differentiable manifolds with boundary,
compact oriented, with the same dimension, N connected. Let f :
(M,0M) — (N,ON) be a continuous map which admits a lift to a
morphism of oriented vector bundles T(M) — T(N) preserving the
direction pointing outwards the boundary. Then the degree of the map
flom : OM — ON is equal to X(M)\X(N).

Proof. Let cp; and ¢y be the respective obstructions to extend to the
manifold a vector field without critical points pointing outwards at the
boundary. Then f*(cy) = cpr. On the other hand,

(car, [M,0M]) = X(M) and (cy, [N,8N]) = X(N)
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(where the bracket means fundamental class in homology and ( , )
the duality between homology and cohomology), as we can see by taking
a Morse function which is constant at the boundary. Therefore,

X(M) = (f*(en), [M,0M]) = (e, fu[M,0M]).

Since N is connected, f.([M,0M]) = m[N,0N], m € Z. Then
X(M) = (en, f«[M,0M]) = mXx(N)

and m = x(M)/X(N). But f.([M,0M]) = m[N, ON] implies f,[0M] =
m[ON], and the lemma results from this. O

Theorem 1.2. With the same hypothesis and notations of Corollary
4, and assuming M is compact, we have

Proof. From Fubini’s theorem and Corollary 4, we have

~ 1 d .
/ Kpdu(p) = / v (dv) = dea(7) / dv = 7 deg().
M Ck—1 JSN(M) Ck—1 Jgn-1 Ck—1

In order to compute deg(y) we observe that v can be extended to a
map

v:BN(M) — B"

where BN (M) is the bundle of balls of N(M) and B™ is the unit ball
on R™. We have an isomorphism

T(BN(M)) =" (T(M)) ® =" (N(M))

where 7 : BN(M) — M is the canonical projection.

We define a morphism above «

7 (T(M)) & n*(N(M)) — T(B™) = B" x R"
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by
(X,Y) = (Ip(n), [p(X +Y))
where p € M, n € BN,(M), X € T,(M) and Y € N,(M).

Therefore, one can apply Lemma 4.1 to obtain
deg(7) = X(BN(M))/X(B") = X(M)

and this proves the theorem. ]

2. Invariant curvature and complex singularities. We assume
in this section that N is an (n + 1)-dimensional complex manifold with
an Hermitian metric ( , ). Similarly to the real case, a complex
translation is determined by a map I'® : TN — N x C™*! which makes
commutative the corresponding complex diagram of page 2 and such
that, given p € N, I'g : Tp(N) — C™! is an isomorphism between
Hermitian vector spaces. Let us denote by C' P™ the complex projective
space of complex lines of C"*1.

Let M be a complex submanifold of N. Then the Gauss map
Yo : M — CP™ of M determined by I'® is defined by

Ye(p) = Tp(T, (M) ).

Let f : N — C be an analytic map with an isolated critical point at
po € N such that f(pg) = 0. Given H € CP™, H determines a polar
curve Py by the condition:

p € Pp = T,(f7 (1) = (T;) "' (H)*
where ¢t € C is such that f(p) =t.

We can define from ( , ). a Riemannian metric ( , ) in N by
setting ( , ) :=re(( , )c). The complex translation I'® deter-
mines a real translation I' by setting I' := I'® + iI'¢, 12 = —1.

We prove here the following generalization of the Theorem of [3]:

Theorem 2.1. Let f : N — C be an analytic map with an isolated
critical point at py with f(po) = 0. Then the following formula holds:

. . _ n+l _  n
lim lim . Kpw(p) = ca(p n")
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where My = f~1(t), B. is the geodesic ball centered at py with radius
€, K is the invariant curvature of M; determined by T' (see 1.1), w the
volume form of M; in the induced metric, u™** the Milnor number of
f at pg, and u™ the Milnor number of f restricted to a generic complex
codimension 1 submanifold of N through py at pg.

Proof. Let v : SN(M;) — S*" be the Gauss map of M; determined
by T' (see I.1) and ~. : My — CP" the Gauss map determined by I'°.
It is not difficult to prove that the following diagram is commutative:

SN(M;) —X— §%n

M, — 2 CP"

where 7 is the projection of the Hopf fibration. Hence,

. 1 ) 1 .
| ket = 7(0) = — 1)
MNB. €2 JSN(M,NB.) €2 JSN(M;NB.)

where )\ is the volume form of CP™.

We prove now that the last integral above is the intersection index
I(Pg, My) between My and the polar curve Py determined by a generic
complex hyperplane H of C"*!, Theorem 2.1 follows then from a result
of Teissier [8, Section 1.4].

As in the Lemma of [3], and according to the notations of [3], one
has:

[y 290 o0

where
7(M¢N Be, H) = Y I(My, Py),
PEB:

so that in order to compute the limit for ¢ — 0 and ¢ — 0 as in [3], we
have just to assure that the function t — 7(M; N B, H) is bounded.

Clearly, 7(M; N Be, H) is finite for ¢ # 0 and, since ¢ goes to 0, we
just have to prove that lim; o 7(M; N B, H) is finite. To do this, let
us consider the Nash transformation Ny C B, x CP™ of f restricted
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to B.. Let m : Ny — B. and v : Ny — CP""! be the projections
(r,H) — z and (z, H) — H*, respectively. Therefore, it is easy to see
that

7(My; N B., H) = card (7 (M;) Ny~ Y(H?L)),  t#0
so that
lim 7(M; N Be, H) = card (m Y(Mp) Ny YH(HY)).
(= (Mo Ny Y (HY)) ={pe MoN B.jp#0

and
T,(Mo) = H} U {0}

is analytic and compact and hence finite.

It follows that 7 ~1(My) Ny~ 1(H?') is finite since
mon” (M) Ny HT) = w(n T (Mo) Ny TN (HT))
is bijective. ]
In [3] Langevin reobtains a result due to Linda Ness [4] about the
curvature of algebraic curves of C'P? converging to an algebraic curve

with an isolated singularity (see [3, Section III]). We obtain here the
following generalization:

Corollary 2.2. Let N be a complexr n-dimensional manifold with
an Hermitian metric. Let M be a complex hypersurface of N with an
isolated singularity at p. Let My be a family of complex hypersurfaces
of N converging to M as t goes to infinity. Then

liminf K = —o0
t—o0
where K| denotes the intrinsic sectional curvature of M.

Proof. Let p; € M; be such that limp; = py. Then it follows from
Theorem 2.1 and from the definition of K that

lim A\,, = c©
t—o0 Pe
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where \; = max{A|\ is an eigenvalue of A4,, (n) for some n € T, (M;)*,
[In|]] = 1}. If X; is an eigenvector associated to A; then —)\; is an
eigenvalue with eigenvector ¢ X;.

Denote by K (P;) and K(P;) the sectional curvatures of M; and N,
respectively, at p;, determined by the plane P; generated by X; and
1X¢. Without loss of generality, we may assume that P; converges to
P as t tends to infinity. Then, from the Gauss equation of an isometric
immersion, one has

hence

3. Convexity of hypersurfaces. A classical result of differential
geometry, known as Hadamard theorem, establishes that a compact hy-
persurface of a Euclidean space whose Gauss-Kronecker curvature (as
it is called the Lipschitz-Killing curvature in codimension 1) is every-
where positive is a convex hypersurface. In particular, the hypersurface
is diffeomorphic to a sphere. This result is not true for hypersurfaces
in an arbitrary Riemannian manifold. A simple counterexample is the
natural isometric embedding of the Riemannian product S? x S? in S°.
As we remark below, if we consider the curvature K instead of the usual
Gauss-Kronecker curvature, Hadamard theorem remains partially true.
To see this, let us consider again a real differentiable (n+1)-dimensional
Riemannian manifold N and let M be a hypersurface of N. Let I' be
a translation in N.

In this case the Gauss map 7 of M can be considered as a map from
M to the sphere S™ of the same dimension. By this identification, we
have ;! o dvy(p): Tp(M) — T,(M) and K, = det (4,(n) — A,(n)) =
det (T;'ody(p)). Therefore, if the invariant curvature K is everywhere
different from zero, then = is a local diffeomorphism. Hence, if M is
compact and K # 0 everywhere, v is a covering map and, since it goes
into the sphere which is simply connected, -y is a global diffeomorphism.
In particular, M is diffeomorphic to a sphere.

We have proved:
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Proposition 3.1. Let M be an immersed compact hypersurface of
N such that K # 0 everywhere. Then M 1is diffeomorphic to a sphere.

In the Euclidean spaces, the fact that the Gauss map is a diffeomor-
phism implies that the hypersurface is embedded. This is not true in
the general situation of this paper. A counterexample is given in the
remark after Theorem 9 of [6].

In [1], J. Eschenburg introduced a stronger condition than the posi-
tiveness of the Gauss-Kronecker curvature for a hypersurface in a Rie-
mannian manifold: a hypersurface M of a Riemannian manifold N
is called e-convez if all of its principal curvatures have the same sign
and absolute values greater than e. If a hypersurface is e-convex for
some £ > 0, then its Gauss-Kronecker curvature is necessarily posi-
tive (perhaps after a reorientation of M). The converse is clearly false
(the same example as above). With this notion, Eschenburg proves: a
compact e-convex hypersurface, for some € > 0, of a Riemannian space
with nonnegative sectional curvature is the boundary of an immersed
disk in the space. In particular, the hypersurface is diffeomorphic to
a sphere. As is pointed out in [4], this result is false in a Rieman-
nian space with negative curvature. Counterexamples are given by the
boundary of tubular neighborhoods around closed geodesics. Using
Proposition 3.1 we prove here the following result. We first introduce
some notations. As before, let N be a Riemannian (n 4+ 1)-dimensional
manifold and I : TN — N x R®t! a translation in N. Given p € N,
denote by O the set of orthonormal basis of T,,(IV). Given an orthonor-
mal basis 8 = {n,X1,...,Xn} of T,(N), denote by U the (n x n)-
matrix (ar) = (Vx,7,X1)). Given 1 <43 < ...i; < n, we denote by
Li, ... i;(p, ) the determinant of the submatrix U;, ... ;;, of U obtained
from U by taking out the " row and the it" column, 1 < k < j, of U.
Set

Uiy iy (p) = max{l'y, i (p,B)| B €O}

and denote
L,y =sup{li,.. i;(p) | p € N}.

We have

Theorem 3.2. Let M be a compact hypersurface of N. Assume that
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the principal curvatures Ai,... ,A\n of M satisfy

Aiy oAy >C Ty

for any choice of 1 < iy < --- < 1i; < n, where C := (’1’) RS (Z)
Then M 1is diffeomorphic to a sphere. In particular, if M is an e-convex
with €7 > C' - Lir, i for any choice of 1 < iy < --- < i; <n, then M

1s diffeomorphic to a sphere.

Proof. Diagonalizing the matrix of A,(n) and using elementary linear
algebra, we see that K(p) = det (4,(n) — Ap(n)) is positive for any
p € M. The theorem results then from Proposition 3.1. o

An extension of Hadamard’s theorem for immersions of arbitrary
codimension is obtained in [5]. By using Theorem II 1.2 for the case of
Lie groups, one can obtain the following:

Proposition 3.3. Let M be a compact, connected, oriented surface
immersed in a Lie group G with a bi-invariant metric. Assume that
the Lipschitz-Killing curvature of M is everywhere positive. Then M
is diffeomorphic to S>.

Proof. Let us consider the curvature K of M determined by the
left translation in G. Since the metric is bi-invariant, we have VxY =
(1/2)[X,Y], where [ , ] denotes the Lie bracket and X and Y are left
invariant vector fields. It follows that the invariant second fundamental
form B is skew-symmetric. Since dim (M) = 2, we have

Kp(n) = Kp(n) > 0.

Hence by Theorem II 1.2, X(M) > 0 and M is diffeomorphic to a
sphere. |

The Gauss map and invariant second fundamental form associated
to a left translation in a Lie group are studied in [6] for the case of
hypersurfaces.
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