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ON ABSOLUTE WEIGHTED MEAN SUMMABILITY
C. ORHAN AND M.A. SARIGOL

1. Definitions and notation. Let Xa, be an infinite series with
a sequence of its partial sums (s,), and let A = (a,x) be an infinite
matrix. Assume that

(1) Tn:Zam,sv, n=0,1,...
v=0

exists (i.e., the series on the right-hand side converges for each n). If

oo

(2) > nF T, — T [F < oo,

n=1

then Xa,, is said to be |A|; summable, where & > 1. When k = 1,
we say that Xa, is absolutely summable by the matrix A or simply
summable |A].

Now let A be a Riesz matrix, i.e., weighted mean matrix defined by
Uny = Do/ Pn for0<v<n, and ap,=0 forv>n
where (p,,) is a sequence of positive real numbers, and
P,=po+p1+-+pn, P, =0, P, — ocoasn — oo.

If no confusion is likely to arise, we say that Xa,, is summable |R, p, |k,
k > 1, if (2) holds.

Using analytical techniques, it is shown in [3] that the summability
methods |R,p,|r and |R,qn|k, k > 1, are equivalent under certain
conditions.
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In the present paper, using functional analytic techniques, we give
the necessary and sufficient conditions in order that the series Xa,
should be summable |R, g,|x, k¥ > 1, whenever it is summable |R, p,]|.
Therefore, we extend the known results of [1, 5] to the case k > 1.

2. The main results. Let (p,) and (g,) be sequences of positive
real numbers such that

P,=po+p1+-+pn,—>00 as n — 0o

and
Qrn=qo+q+-+g, = as n — oo.

We are now ready to prove the main theorem.

Theorem. The |R,p,| summability implies the |R,q,|k, k > 1,
summability if and only if the following conditions hold:

(i) % . % = O(v!/k 1), (i) |AQu_1| W, = O(%}))

- kN 1/k
ces T qi
(iii)) Q,W, =0(1) where W, = {i_;ﬂzk 1 <m> }

and we regard that the above series converges for each v and A is the
forward difference operator.

Proof. Necessity. Let (t,) and (T},) be the sequences of Riesz means
(R,pn) and (R, ¢,) of the series Ya,, respectively, i.e.,

1< 1<
tn = Fn;pvsv = P_n;(Pn _Pv—l)av

and

Tn - é qusv - é Z(Qn - Qv—l)av-

v=0 v=0
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Hence, we have that, for n > 1,
(3) Cp =ty —tp_1= p—n ZPU—lava Co = ao,
PnPnfl v—=1
and
qn -
4 Co: =T, —Th1 = —— Qv—10y, Co = ao.
( ) Qnanl vzl

We are given that

oo

(5) an71|Cn|k < 0

n=1

whenever

(6) D Jen| < oo
n=0

Now the space of sequences (a,) satisfying (6) is a Banach space if
normed by

(7) llell = > leal-

We are also considering the space of those sequences (C,) that satisfy
(5). This is again BK-space (i.e., Banach space with continuous
coordinates) with respect to the norm

) 1/k
®) o)l = {|Oo|’“+2n’“—1|cn|’°} .

n=1

Hence we are given that (4) transforms the space of sequences satisfying
(6) into the space satisfying (5). Applying the Banach-Steinhaus
theorem in the usual way, we find that there is a constant M > 0
such that

9) IC1 < Mc]]
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for all sequences satisfying (6). Taking any v > 0, we apply (9) with
ays1 =1, a; =0, i #v+1,
then (3) and (4) yield that
0, n<v+1 0 n<v+1

’
Cp — Pvpn and Cn = QUQn

> 1 > 1.
PnPnfl, nEvE Qnanl, nEvE

By (7) and (8), it follows that ||c|| =1 and ||C|| = Q, - W,,. Now (9)
implies that @, - W,, < M, hence (iii) is necessary. To get the necessity
of the other conditions, we again apply (9) with

a, =1, aerl:_la a; =0, 2'7&’1),@-7&’04-].,

for any fixed v > 0. Then we have, by (7) and (8), that

0, n<uv 0, n<v
Pv Qo
=, n=uv -, n=uv
cn =1 Py and C, =< Qu
—PuPn anQ’U—l
n>uv — n>v.
PnPnfl, Qnanl ’

So, by (7) and (8), we have

1/k

_ 2py _ ) k1 Qv ’ g
el =22 ana ol = {2 (&) +18Qua

Now (9) implies that
V¥ g/ Qo) +1AQu | W < (2M) (pu/Po)".
Since this holds for any v > 0, we get
V"N g/ Qo) + [AQy 1 |F - Wy = O{(py/P.)"},

which in turn implies the necessity of (i) and (ii).
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Sufficiency. By (3), we have

P, P,
(10)  a, = oo p_20”—1’ Po=P_,=0, c_=0.
v v—1

By (4) and (10), it follows that

dn - dn - P’U P’U—2
Cn =5 A Qv— Ay = S~ Qv— <_Cv - Cy— >
Qnanl 1;1 ! Qnanl vgl ! DPv p !

v—1

n—1

_4n
QnQn 1 Z(Q’U 1P Q’U v— 1)

ann
ann

Now write H,, := n!=1/%).C,, n > 1. Then we have H,, = >"'_| anyCy
where

n Pu
n-1/k), 0 <—AQU—1 + Qv>, 1<v<n-1
n—1 \ Pv

(nv = n(1=1/k) . GnPn
ann

07 v>n.

v =n;

Hence, Xa,, is summable |R,q,|x, ¥ > 1, whenever Xa,, is summable
|R,p,| if and only if " |H,|* < co whenever X|c,| < oo or, equiva-
lently, by [2, Theorem 5],

(11) supz |any ¥ < 0.

By the definition of A = (an,), we have

k

v

wP, \* |P,
Z‘anvvc k 1<Q p ) +p_AQv1 +Qv

Now the conditions (i), (i) and (iii) imply that 7 |an,|* = O(1) as
v — 00, which completes the proof. ]

We now provide some examples to illustrate situations in which the
sequences (p,,) and (g,,) satisfy (i)—(iii) and also in which they don’t.
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Consider the sequences (p,) and (g,) defined by p, = z' and
¢y = (v+1)* where z > 1 and a > —1. A few calculations reveal
that

P, T , Q, ~ UGy

and W, =0(1/v+1).

One can now see that conditions (i)—(iii) hold.

As a second example, consider the sequence (p,) defined by p, = v®
where a # —1. Then P,/p, ~ v/« (i.e. P,/p, is asymptotic to v/a).
In this case, there is no sequence (g, ) of positive real numbers for which
@, — oo and conditions (i)—(iii) hold when k > 1. Actually, by (i), we
must have

(12) QU/QU = O(l/v271/k), k> 1.

Since the series S 1/v2~'/* is convergent for k > 1 and the series
> gy / Q. fails to converge by the familiar Abel-Dini theorem, (12) does
not hold.

We now turn our attention to a result of [4] which claims that, if
k>0and P, =pg+p1+- -+ p, = o0 as n — 0o, then there exist
two positive constants M and NN, depending only on &, for which

M . pn N
< <
P, S L B, S P,

for all v > 1, where M and N are independent of (p,).

Using this result and taking g,, = 1, for all n in the Theorem, we get
the following Corollary immediately.

Corollary. The |R,p,| summability implies the |C, 1|k, k& > 1,
summability if and only if

P,/p, = O(vl/k).

We conclude the paper with the following observation. If we take
dn = Dn, for all n, in the Theorem, and if the |R,p,| summability
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implies the |R,pn|k, k > 1, summability, then, by (i), we must have
v~k = O(1), which is impossible when k¥ > 1. This means that
there is a series Ya,, which is |R, p, | summable but not |R, p, |k, & > 1,
summable. Actually we can construct such a series as follows.

Let us define

1/(v+1)2, n=2°v=0,1,...,

cn:tn_tnlz{
0, n # 2°.
Then X|c,| < co. But, for k£ > 1, we have

o0 oo

Sk et = 31/ 0+ 1)*) = oo,

n=1 v=0

On the other hand, by (3), we get ¢y =ty = ag and

Pn Pn—2
a, = —Cp — Cr—1-
DPn Pn—-1
Hence, we have
Py i
m, TL:2,’U:0,1,2,...,
Ap = 7P2v

2 =241

(’U ¥ 1)2P2v , N + 1,

0 otherwise.

So, Ya,, is the series we are seeking.
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