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QUASI-UNIFORM STRUCTURES
IN LINEAR LATTICES

J. FERRER, V. GREGORI AND C. ALEGRE

ABSTRACT. The study of some quasi-uniform structures
likely to be defined in the usual normed lattices R", 1, l2
and C([0,1]), prompted a generalization of this particular
method to the class of all normed lattices, in such a way
that every normed linear lattice can be decomposed into two
quasi-pseudometric linear structures (quasi-normed spaces),
which enable us to restrict in some aspects the study of such
normed lattices to its positive cone. All linear spaces under
consideration are assumed to be defined over the field of real
numbers.

1. Introduction. The three sources of material listed at the end
may be useful to clearly illustrate the purpose of this paper. The idea
of comparing ordered structures with uniform ones is at least as old as
L. Nachbin’s now classical Topology and order, [3]. We intend to use
some results and terminology of linear lattice theory as it is exposed
in G.J.O. Jameson’s Topology and normed spaces, [2], as well as the
topological ordered space concepts that can be seen in P. Fletcher and
W.F. Lindgren’s Quasi-uniform spaces, [1] in order to show that every
normed lattice is determined by a quasi-uniform structure compatible
with the linear and order structures of the space.

The following definitions can be found in [2, p. 375], except for the
notion of F-space which is introduced here for the first time.

Definition 1.1. A normed lattice (E,|| ||, <) is said to be an L-
space, M-space or E-space, provided it satisfies that, for positive x, y:

lz+yll =ll=ll + Myl [levyll =]V ]y,

or
llz +ylI* + [Jo = yl* = 2l + 2[ly|*,

Received by the editors on January 25, 1991.
Subject Classification. 54E15.
Key words. Quasi-uniform space, normed lattice, quasi-normed space.

Copyright ©1993 Rocky Mountain Mathematics Consortium

877



878 J. FERRER, V. GREGORI AND C. ALEGRE

respectively.

Mimicking the terminology used in [1], given a quasi-uniformity U
in a set X, then T(U) will stand for its induced topology; U~! is its
conjugate quasi-uniformity. Meanwhile, U* represents the uniformity
generated by U U U~ ! as a subbase. Also, the triple (X,7,<) is a
topological ordered space provided that 7" and < are, respectively, a
topology and order in X such that its graph G(<) is closed (i.e., T is
a Hausdorff topology). The next definition, taken from [1, p. 81], is
fundamental for further results.

Definition 1.2. Given a topological ordered space (X,T,<) and
a quasi-uniformity U in X, then U is said to determine (X,T,<)
whenever T'= T(U*) and G(<) =NU.

2. Quasi-normed spaces. We introduce now a concept which is
only new as far as its name is concerned, since it is very close to what,
in many texts, is known as a sublinear function. It extends the notion
of a norm, and it plays an analogous role to that of the norm since it
provides a relationship between linear spaces and quasi-uniformities.

Definition 2.1. A nonnegative real valued function ¢ defined on
a linear space F is said to be a quasi-norm provided it satisfies the
following properties: for every z,y € F and t > 0,

(i) if ¢(x) = q(—z) =0, then 2 =0,
(i) g(tz) = tq(z),
(i) ¢(z +y) < g(x) + q(y)-

Given a quasi-normed space (E,q), the function Q(z,y) = ¢(z—y)

defines a quasi-pseudometric in £ whose induced quasi-uniform struc-
ture U, is translation-invariant. Besides, the function ¢’ (x) = ¢(—z) de-
fines another quasi-norm in E such that its induced quasi-pseudometric
Q' and quasi-uniformity Uy are the conjugates of @ and U, respec-
tively. The following result gives us a way to generate three different
norms from a given quasi-norm with the common property that they
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all induce the uniformity Uy, i.e., the three norms are equivalent.

Proposition 2.2. Given a quasi-normed space (E,q), the functions

q(z) = q(z) +q(~2z),  qu(z) = q(z) Vq(~2),

and
ap(z) = (q(z)* + g(—x)*)'/?

define equivalent norms in E whose induced uniformity is Uy .

Proof. The only nontrivial axioms to be verified are the scalar
multiplicity and the triangle inequality. For every z,y € E and nonzero
t

= |tlgp(z).
qr(z +y) < q(z) +q(y) +
q(z) +4q(y))
(@) +du(y
(q(z) + q(¥))* + (a(—=2) + q(—-y))*)"/?
1) + dp(y)-

q(—z) + q(~y) = q1.(=) + q1.(y)-
V(g(—z) +q(—y
)-

~—
~—

Now, since (1/2)-q}.(z) < g}, (z) < g} (x

() < gj.(z), we have that these
norms are equivalent. Finally, for each n > 1

(
, the basic entourages

Vi ={(z,y) e EX E:q(z—y) <1/n}
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and
Vi={(z,y) e ExE:qj(x—y) <1/n}

satisfy the relation Va, NV;,' C V* C V,,NV,!, so that the uniformity
induced by ¢, is U u]

3. Quasi-uniform structures in normed lattices. If (F,<)is a
linear lattice and = € F, then 7 =z V0 and |z| = z V (—z). Also P
will denote its positive cone, i.e.,

P={zeE:z>0}

Theorem 3.1. In a normed lattice (E,|| ||, <) the function q(z) =
llzT|| defines a quasi-norm in E such that the norms q},q%;,q% are
equivalent to || ||. Furthermore, g} (respectively, g3, and q}) coin-
cides with || || whenever E is an L-space (respectively, M-space and
E-space).

Proof. 1t is straightforward to verify the axioms of a quasi-norm
considering the following relations that hold in a normed lattice: z =
zt — (—x)t, (te)T =tzT, fort > 0; (x +y)t <zT +y*, and |z| < |y
implies ||| < [[y]/-

Now, for every =z € E, we have that
(1/2) - [lll < aas (@) = [l ||V [[(=2) || < [,

thus showing, in light of Proposition 2.2, that the norms ¢}, ¢}, g%
and || || are all equivalent.

If E is an L-space, then

q;(z) = q(z) + ¢(—==2) = ||l=" || + [|(—=) ]|
=z + (=) "1 = |l 2] || = [l]l-

If F is an M-space, then

i (2) = q(z) V g(—2) = [l ]| V ||(-2) 7|
=l v (=) "] = [z [| = ||zl
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If F is an E-space, then

ap () = (a(@)® + q(~2)) = ([l + [|(~2) 7 |}) 2
= ((1/2)(llz* + ()| + ]2 — ()" |1%))"
= ((W/2)(IN 1 + 1]l *)

= [le]]. ©

Considering the normed lattice (E,|| ||, <) as a topological ordered
space (the cone P is closed), from Proposition 2.2 and the last theorem
we have that the topologies induced by the norm || || and the unifor-
mity Uy are the same. Also, since ¢(x) = 0 if and only if z € — P, then
G(<) = NU,. Thus, we obtain the following result.

Corollary 3.2. Every normed lattice (E,|| ||,<) is determined by
the quasi-uniformity U, deduced from the quasi-norm g(z) = ||z*]].

Consequently, we have that the usual normed lattices R™ (with
the usual norms: ||z||p = Y1 |zl ||z||lm = maxi<i<n |z;], and
llz|le = Or, 22)'/2); B(S) = {z € R® : z is bounded} with the
supremum norm, l1,lz and C([0,1]) (with the integral norm), are
determined by the respective quasi-norms:

n

ol =3 v Oy 1l lar = g (o O)
Z

n 1/2
s = (R vor) s 1= e voy
Pl te

oo

F ‘ b 1/2
el => (znv0); [zt an\/o

n=1

and

|l2F]| = /0 (z(t) V 0) dt.

4. Continuous linear functionals. As a particular case of the
examples mentioned before, the usual normed lattice structure of the
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real line R is determined by the quasi-norm go(z) = 20, which induces
the right-ray topology. The symbol R will refer to this quasi-normed
structure.

Now, given a normed lattice (E, || ||, <), let ¢ denote its determining
quasi-norm. Consider the collection of all linear functionals that are
continuous with respect to the quasi-normed spaces (E, ¢) and R°. Let
this collection be represented by E('I. We show that the elements of
Er’z are precisely the positive continuous linear functionals; thus, if
(E',|| |],<) is the dual Banach lattice (with the dual ordering), then
E; is the cone of positive elements of £’ such that the restriction of the
dual norm to Ej determines the dual lattice. The following two results
are quite simple to prove.

Proposition 4.1. Let (E,p) and (F,q) be two quasi-normed spaces
and f : E — F a linear function. Then the following statements are
equivalent:

(i) f is continuous,
(ii) f 4s continuous at 0,

(iil) there is a positive number M such that q(f(z)) < Mp(z), for
everyx € E,

(iv) f is quasi-uniformly continuous with respect to the quasi-uniform
spaces (E,U,) and (F,U,).

Proposition 4.2. Let f be a linear functional in a quasi-normed
space (E,q). Then f is continuous with respect to (E,q) and R° if and
only if f is bounded below in the 0-neighborhood

V1(0)={z € E: q(—z) < 1}.

Proposition 4.3. Let (E,|| ||,<) be a normed lattice. For each
x € E, let q(x) = ||zT||. Let f be a linear functional. Then f is
continuous with respect to (E,q) and R° if and only if f is a positive
continuous linear functional (i.e., f € E' and f(z) > 0 for z > 0).

Proof. If f : (E, q) — R° is continuous, by Proposition 4.2, there is a
positive number M such that f(V1(0)) > —M. Since V1(0) N (—V1(0))
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is a 0-neighborhood with respect to the norm || ||, and
F(1(0) N (=W1(0))) < |-M, M,

we have that f € E’. Now, suppose there is a nonzero positive vector
x such that f(z) < 0.

By setting y = (M/f(z))z, then y € —P C —V1(0) and f(y) < M,
but this is a contradiction since f(y) = M.

If f is a positive continuous functional and
Up={z€E:|z|| <1},

there is a positive number M such that f(U;) C |-M, M|[. For every
z € V1(0), since —z < (—z)*, f is positive and ||(—z)"|| = ¢(—z) < 1,
then —f(z) = f(~a) < f((—2)*) < M. Thus, f(V1(0)) > —M, and f
is continuous from (E,q) to R by Proposition 4.2. o

As a consequence of last result, E(’] C FE’; also it is interesting to
notice that, for f € Ej, [|f|| = —inf f(V1(0)). Now, if we consider
that a quasi-norm satisfies the requirements of a sublinear real valued
function as it appears in the general algebraic version of the Hahn-
Banach theorem, and that by the former proposition the positive
continuous linear functionals are exactly the elements of E('], we can
give a somewhat different proof of Proposition 33.15 of [2, p. 371].

Corollary 4.4. Let F be a linear sublattice of the normed lattice
(E,|| ||, <), and let g be a positive continuous linear functional defined
on F. Then there is a positive continuous linear functional on E that
extends g and has the same norm.

Proof. By the last proposition, g is continuous with respect to (F, q)
and R, thus, for every x € F,

g(z) < g(2) V0 <|lgllg(=).

Since ||g||g is sublinear, by the Hahn-Banach theorem there is a linear
functional f defined on E such that it extends g and f(z) < ||g/|¢(z),
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for every z € E. But qo(f(x)) = f(x) V0 < ||gl||g(z), for every = € E,
proves f to be in E('I, i.e., f is a positive continuous linear functional.
Also, for every z € V1(0), we have —f(z) = f(—z) < [gllg(—=) <|lg],
thus

IfIl = —inf f(V1(0)) < [lgll = —inf fF(V2(0) N F) < [[f]l. O
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