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BIFURCATION OF
SYNCHRONIZED PERIODIC SOLUTIONS

IN SYSTEMS OF COUPLED OSCILLATORS
II: GLOBAL BIFURCATION IN

COUPLED PLANAR OSCILLATORS

MASAJI WATANABE

ABSTRACT. We continue the study of a class of differen-
tial equations that govern the evolution of indirectly coupled
oscillators. In a previous paper we established the existence
of synchronized periodic solutions for weak and strong cou-
pling. In this paper we present an example that shows an
interesting behavior of the solutions for intermediate coupling
strength. We analyze a two-parameter family of branches of
periodic solutions and show when a branch has Hopf bifurca-
tion points and/or turning points. We also study the stability
of the periodic solutions.

1. Introduction. Many problems in physics, chemistry and biol-
ogy involve systems of ordinary differential equations that govern the
evolution of oscillatory subunits coupled indirectly through a passive
medium [10]. In this paper we study the following system of ordinary
differential equations, in which the oscillators that govern the states of
the uncoupled subunits are all identical.

(1)

dxi

dt
= f(xi) + δP (x0 − xi), i = 1, . . . , N,

dx0

dt
= εδP

(
1
N

N∑
i=1

xi − x0

)
.

Here the variable x0 represents the state of the coupling medium
through which the subunits are coupled. P is an n×n constant matrix
of permeability coefficients or conductances, and the parameters ε−1

and δ measure the relative capacity of the coupling medium and the
coupling strength, respectively [4, 5]. In the absence of coupling, the
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evolution in the ith subunit is governed by the n-dimensional system
dxi

dt
= f(xi)

and it is assumed that this system has a nonconstant periodic solution.

We call a solution of (1) synchronized when the evolutions of the
subunits are all identical. In [9] we established the existence of
synchronized periodic solutions for weak and strong coupling. In
this paper we show, with a particular choice of f and P in (1),
how these solutions behave as the coupling strength varies. In the
following sections we present results obtained in [8], in which a two-
parameter family of global branches of synchronized periodic solutions
is constructed when f is a truncated normal form of a planar oscillator
near a Hopf bifurcation point and P is a multiple of the identity matrix.
Specifically, we assume that f : R2 → R2 is given by

(2) f(y, z) =
(

y + βz − y(y2 + z2)
−βy + z − z(y2 + z2)

)
, β > 0,

and P = 4I2×2. Then the results in [9] lead to the following conclusion.
When |εδ| and |δ| are both sufficiently small or when |εδ| is sufficiently
large and |δ| is sufficiently small, (1) has a synchronized periodic
solution xi = φ̄(t, ε, δ), i = 1, . . . , N , x0 = φ0(t, ε, δ) whose period
equals T (ε, δ). Moreover, as |εδ| → 0 and |δ| → 0, or as |εδ| → ∞ and
|δ| → 0,

(3)

φ̄(t, ε, δ) →
(

cos βt
− sin βt

)
,

φ0(t, ε, δ) →
(

0
0

)
,

T (ε, δ) → 2π/β.

For a fixed ε �= −1, 0, these solutions also exist for all sufficiently large
|δ| and

(4)

φ̄(t, ε, δ) →
(

cos(εβt/(1 + ε))
− sin(εβt/(1 + ε))

)
,

φ0(t, ε, δ) →
(

cos(εβt/(1 + ε))
− sin(εβt/(1 + ε))

)
,

T (ε, δ) → 2(1 + ε)π
εβ

,
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as |δ| → ∞. In this paper we describe the global behavior of these
solutions.

The construction of synchronized periodic solutions is done in Section
2. Let Ω denote the positive quadrant of the ε-β plane, i.e.,

Ω = {(ε, β) : ε > 0, β > 0}.

For each (ε, β) ∈ Ω, we construct synchronized periodic solutions of
(1) for all admissible values of δ. One finds that the global behavior
of periodic solutions is dependent on ε and β. Ω is divided by the
curves defined by β = 2

√
ε(1 + ε) and ε = 1/8. If (ε, β) lies below

the curve β = 2
√

ε(1 + ε), for a given δ ∈ R, there exists at least one
periodic solution. The branches of solutions in this case are shown in
Figures 1(a) and (c). If (ε, β) lies on or above the curve, there are
no periodic solutions for certain values of δ and they disappear via
Hopf bifurcation from the steady state x̄ = 0, x0 = 0 (cf. Figure 1(b),
Figure 1(d)). When ε ≥ 1/8, the periodic solution for a given δ ∈ R
is unique whenever it exists (cf. Figure 1(a), Figure1(b)). However,
when 0 < ε < 1/8, there can be more than one periodic solution for
certain values of δ, i.e., the branch of periodic solutions can have turning
points (cf. Figure 1(c), Figure 1(d)). We also discuss the stability of
these periodic solutions in Section 3.

Studies related to (1) are found in a number of publications including
[5, 4, 8, 10, 11, 7, 1 and 3]. Bifurcations of periodic solutions
of directly coupled oscillators are also studied in numerous papers
including [2] and [6]. The relationship between the results obtained
in these references and ours is discussed in [9]. Preliminary results of
this paper have appeared in [8].

2. Global branches of synchronized periodic solutions. To
construct synchronized periodic solutions of (1), we first recall some
results in [5] and [9] concerning the reduction of the system. Let

x̄ =
1
N

N∑
i=1

xi,

wi = xi − x̄, i = 1, . . . , N − 1.
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FIGURE 1 (a). Behavior of ω0 for (ε, β) ∈ Ω1. (ε, β) = (0.150000,0.747596) ∈
Ω1. There exist unique periodic solutions defined by (16) for all δ ∈ R.

FIGURE 1 (b). Behavior of ω0 for (ε, β) ∈ Ω2. (ε, β) = (0.150000,0.913729) ∈
Ω2. A branch of the unique periodic solutions defined by (16) bifurcates from
the steady state at δ3 = 0.263429 and δ4 = 0.329179 via Hopf bifurcation.
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FIGURE 1 (c). Behavior of ω0 for (ε, β) ∈ Ω3. (ε, β) = (0.103553,0.608487) ∈
Ω3. ω0 has turning points at ±δ1 = ±0.252044 and ±δ2 = ±0.246113.

Then (1) becomes
(5)

dx̄

dt
=

1
N

[ N−1∑
j=1

f(wj +x̄) + f

(
x̄ −

N−1∑
j=1

wj

)]
− δP (x̄ − x0),

dx0

dt
= εδP (x̄ − x0),

dwi

dt
= f(wi+x̄) − 1

N

[ N−1∑
j=1

f(wj +x̄) + f

(
x̄ −

N−1∑
j=1

wj

)]
− δPwi,

i = 1, . . . , N − 1.

When wi = 0, i = 1, . . . , N − 1, this becomes

(6)
dx̄

dt
= f(x̄) + δP (x0 − x̄),

dx0

dt
= εδP (x̄ − x0).

If

(7) x̄ = φ̄(t, ε, δ), x0 = φ0(t, ε, δ)
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FIGURE 1 (d). Behavior of ω0 for (ε, β) ∈ V1. (ε, β) = (0.114277,0.718594) ∈
V1. ω0 has turning points at ±δ1 = ±0.286025 and ±δ2 = ±0.283775. It has
Hopf bifurcation points at δ3 = 0.270280 and δ4 = 0.282415. Θ1 = −1.136857,
Θ2 = −0.966082, Θ3 = −1.293328, and Θ4 = −1.225169. In general,
Θ3 < Θ4 < Θ1 < Θ2 and δ3 < δ4 < δ2 < δ1 for all (ε, β) ∈ V1.

is a solution of (6), then

(8)
x̄ = φ̄(t, ε, δ), x0 = φ0(t, ε, δ),

wi = 0, i = 1, . . . , N − 1

is a solution of (5) and

(9) x0 = φ0(t, ε, δ), xi = φ̄(t, ε, δ), i = 1, . . . , N

is a synchronized solution of (1). The variational equation of (6) with
respect to (7) is

(10)
d

dt

(
x̄
x0

)
=

[
Df(φ̄(t, ε, δ)) − δP δP

εδP −εδP

](
x̄
x0

)
.

On the other hand, the variational equation of (5) with respect to (8)
consists of (10) and the additional N − 1 linear systems

(11)
dwi

dt
= [Df(φ̄(t, ε, δ)) − δP ]wi, i = 1, . . . , N − 1.
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Note that the subspace of R(N+1)n defined by x1 = x2 = · · · = xN

is an invariant subspace of (1), and that (9) belongs to this subspace.
Note also that (10) determines the stability of (9) with respect to the
solutions in the subspace, and that (11) determines its stability in the
complement. In [9] we established the existence of periodic solutions of
(6) for some extreme values of the parameters. This led to the existence
of synchronized periodic solutions of (1). In this section we construct
a two-parameter family of branches of periodic solutions.

We first convert (6) using the polar coordinates:

x̄ = r1

(
cos θ1

sin θ1

)
, x0 = r0

(
cos θ0

sin θ0

)
,

and let Θ = θ1 − θ0. Then we obtain

(12)

dr1

dt
= (1 − 4δ)r1 − r3

1 + 4δr0 cosΘ,

dr0

dt
= −4εδ(r0 − r1 cosΘ),

dΘ
dt

= −β − 4δ(r2
0 + εr2

1)
r1r0

sin Θ.

Clearly, a steady state solution of (12) gives rise to a periodic solution
of (6). Such solutions are called phase-locked solutions because the
phase difference between the cells (xi, i = 1, . . . , N) and medium (x0)
is time-independent. One easily finds that (12) has a family of steady
state solutions given by

r1 =
√

1 − 4δ sin2 Θ, r0 = cosΘ
√

1 − 4δ sin2 Θ,(13)
δ = βg(Θ, ε),

where

(14) g(Θ, ε) ≡ − cot Θ
4(cos2 Θ + ε)

.

Define

(15)

φ̄(t, Θ, ε, β) ≡
( √

1 − 4δ sin2 Θ cos[(4εδ tan Θ)t + Θ]√
1 − 4δ sin2 Θ sin[(4εδ tanΘ)t + Θ]

)
,

φ0(t, Θ, ε, β) ≡
(

cosΘ
√

1 − 4δ sin2 Θ cos[(4εδ tan Θ)t]
cosΘ

√
1 − 4δ sin2 Θ sin[(4εδ tanΘ)t]

)
.
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It follows that

(16) x̄ = φ̄(t, Θ, ε, β), x0 = φ0(t, Θ, ε, β), δ = βg(Θ, ε)

is a periodic solution of (6) with period

(17) T (Θ, ε, β) ≡ 2π

|4εδ tan Θ| =
2π(cos2 Θ + ε)

εβ
,

provided that

h(Θ, ε, β) ≡ 1 − 4βg(Θ, ε) sin2 Θ = 1 +
β cosΘ sin Θ
cos2 Θ + ε

> 0.

Note that δ varies from 0 to ∞ as Θ increases from −π/2 to 0, and
it varies from 0 to −∞ as Θ decreases from π/2 to 0. Note also
that, in view of (14) and (15), we may restrict ourselves to the case
Θ ∈ [−π/2, 0) ∪ (0, π/2].

We denote by ω0 = ω0(ε, β) the branch of periodic solutions (16)
in (x̄, x0, δ)-space. It is easily seen that, when δ = 0, (16) coincides
with (3). Moreover, as |δ| → ∞, (16) tends to (4). Thus ω0 passes
through (3) at δ = 0 and bifurcates from (4) at δ = ±∞. To study the
behavior of ω0 for intermediate values of δ, we would like to express
(15) in terms of δ using (13). Then we need to know where g(Θ, ε) is
increasing or decreasing as a function of Θ. We also need to know when
h(Θ, ε, β) > 0 holds. The functions g(Θ, ε) and h(Θ, ε, β) are analyzed
in [8], and the results are summarized in Properties 1 4.

For 0 < ε ≤ 1/8, define

Θ1 = Θ1(ε) ≡ − sin−1
√

λ+(ε), Θ2 = Θ2(ε) ≡ − sin−1
√

λ−(ε),

where

λ±(ε) ≡ 3 ±√
1 − 8ε

4
.

Property 1. (a) If ε > 1/8, then

∂g

∂Θ
(Θ, ε) > 0 for all Θ ∈ [−π/2, 0) ∪ (0, π/2].
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(b) If ε = 1/8, then

∂g

∂Θ
(Θ, 1/8)>0 for all Θ∈ [−π/2,−π/3)∪(−π/3, 0)∪(0, π/3)∪(π/3,π/2],

∂g

∂Θ
(±π/3, 1/8) = 0.

(c) If 0 < ε < 1/8, then

∂g

∂Θ
(Θ, ε)

⎧⎨
⎩

> 0 for all Θ∈ [−π/2, Θ1)∪(Θ2, 0)∪(0,−Θ2)∪(−Θ1, π/2],
= 0 for Θ = ±Θ1,±Θ2,
< 0 for all Θ ∈ (Θ1, Θ2) ∪ (−Θ2,−Θ1).

For β ≥ 2
√

ε(1 + ε), define

Θ3 = Θ3(ε, β) ≡ − sin−1
√

μ+(ε, β),

Θ4 = Θ4(ε, β) ≡ − sin−1
√

μ−(ε, β),

Θ∗ = Θ∗(ε) ≡ Θ3(ε, 2
√

ε(1 + ε)) = Θ4(ε, 2
√

ε(1 + ε))

= − sin−1

√
1 + ε

1 + 2ε
,

where

μ±(ε, β) =
2(1 + ε) + β2 ± β

√
β2 − 4ε(1 + ε)

2(1 + β2)
.

Property 2. Let (ε, β) ∈ Ω.

(a)
h(Θ, ε, β) > 0 for all Θ ∈ (0, π/2].

(b) If 0 < β < 2
√

ε(1 + ε), then

h(Θ, ε, β) > 0 for all Θ ∈ [−π/2, 0).
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(c)

h(Θ, ε, 2
√

ε(1 + ε)) > 0 for all Θ ∈ [−π/2, Θ∗) ∪ (Θ∗, 0),

h(Θ∗, ε, 2
√

ε(1 + ε)) = 0.

(d) If 2
√

ε(1 + ε) < β, then

h(Θ, ε, β)

⎧⎨
⎩

> 0 for all Θ ∈ [−π/2, Θ3) ∪ (Θ4, 0),
= 0 for Θ = Θ3, Θ4,
< 0 for all Θ ∈ (Θ3, Θ4).

Using these properties we proceed as follows. For 0 < ε ≤ 1/8, define

(18)

δ1 = δ1(ε, β) ≡ βg(Θ1(ε), ε)

=
√

2β[1 + 10ε + (1 − 2ε)
√

1 − 8ε]
√

1 + 4ε −√
1 − 8ε

64ε(1 + ε)2
,

δ2 = δ2(ε, β) ≡ βg(Θ2(ε), ε)

=
√

2β[1 + 10ε − (1 − 2ε)
√

1 − 8ε]
√

1 + 4ε +
√

1 − 8ε

64ε(1 + ε)2
.

Note that

1/2 < λ−(ε) < λ+(ε) < 1 for all ε ∈ (0, 1/8),
λ−(1/8) = λ+(1/8) = 3/4.

It follows that

(19)
−π/2 < Θ1(ε) < Θ2(ε) < −π/4 for all ε ∈ (0, 1/8),

Θ1(1/8) = Θ2(1/8) = −π/3,

and

(20)
0 < δ2(ε, β) < δ1(ε, β) for all ε ∈ (0, 1/8),

δ2(1/8, β) = δ1(1/8, β) = 2
√

3β/9.
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Next, for β ≥ 2
√

ε(1 + ε), define

(21)

δ3 = δ3(ε, β) ≡ βg(Θ3(ε, β), ε)

=
2(1 + ε) + β2 − β

√
β2 − 4ε(1 + ε)

8(1 + ε)2
,

δ4 = δ4(ε, β) ≡ βg(Θ4(ε, β), ε)

=
2(1 + ε) + β2 + β

√
β2 − 4ε(1 + ε)

8(1 + ε)2
,

δ∗ = δ∗(ε) ≡ 2
√

ε(1 + ε)g(Θ∗(ε), ε) =
1 + 2ε

4(1 + ε)
.

By a simple calculation, one finds that

0 < μ−(ε, β) < μ+(ε, β) < 1 for all β > 2
√

ε(1 + ε),

μ−(ε, 2
√

ε(1 + ε)) = μ+(ε, 2
√

ε(1 + ε)) =
1 + ε

1 + 2ε
.

It follows that

−π/2 < Θ3(ε, β) < Θ4(ε, β) < 0 for all β > 2
√

ε(1 + ε),

and that

(22)
0 < δ3(ε, β) < δ4(ε, β) for all β > 2

√
ε(1 + ε),

δ∗(ε) = δ3(ε, 2
√

ε(1 + ε)) = δ4(ε, 2
√

ε(1 + ε).

Now consider the following subsets of Ω defined by the curves ε = 1/8
and β = 2

√
ε(1 + ε).

Ω1 ≡ {(ε, β) : ε ≥ 1/8, 0 < β < 2
√

ε(1 + ε)},
L1 ≡ {(ε, β) : ε ≥ 1/8, β = 2

√
ε(1 + ε)},

Ω2 ≡ {(ε, β) : ε ≥ 1/8, β > 2
√

ε(1 + ε)},
Ω3 ≡ {(ε, β) : 0 < ε < 1/8, 0 < β < 2

√
ε(1 + ε)},

L2 ≡ {(ε, β) : 0 < ε < 1/8, β = 2
√

ε(1 + ε)},
Ω4 ≡ {(ε, β) : 0 < ε < 1/8, β > 2

√
ε(1 + ε)}.
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FIGURE 2 (a). Parameter Region Ω. Ω = {(ε, β) : ε > 0, β > 0} is divided by

curves defined by ε = 1/8 and β = 2
√

ε(1 + ε). If (ε, β) ∈ Ω1∪L1∪Ω2, g(Θ, ε)

is a strictly increasing function of Θ. However, when (ε, β) ∈ Ω3 ∪ L2 ∪ Ω4,
g(Θ, ε) is a strictly decreasing function of Θ on (Θ1, Θ2)∪ (−Θ2,−Θ1). When
(ε, β) ∈ Ω1∪Ω3, h(Θ, ε, β) is always positive. When (ε, β) ∈ L1∪L2, h(Θ, ε, β)
vanishes at Θ = Θ∗. When (ε, β) ∈ Ω2 ∪ Ω4, h(Θ, ε, β) is nonpositive for
Θ3 ≤ Θ ≤ Θ4.

These regions are shown in Figure 2(a). In view of Properties 1 and
2, the behavior of ω0 depends on which subset (ε, β) belongs to. We
summarize this result in the following proposition.

Proposition 1. (a) When (ε, β) ∈ Ω1 ∪L1 ∪Ω2, g(Θ, ε) is a strictly
increasing function of Θ and ω0 has no turning points.

(b) When (ε, β) ∈ Ω3∪L2∪Ω4, g(Θ, ε) is a strictly increasing function
of Θ on [−π/2, Θ1) ∪ (Θ2, 0) ∪ (0,−Θ2) ∪ (−Θ1, π/2] and is a strictly
decreasing function of Θ on (Θ1, Θ2)∪(−Θ2,−Θ1), and ω0 has turning
points at δ = ±δi, i = 1, 2, whenever h(±Θi, ε, β) > 0.

(c) When (ε, β) ∈ Ω1∪Ω3, h(Θ, ε, β) > 0 for all Θ ∈ [−π/2, π/2] and
ω0 extends from δ = −∞ to δ = ∞.

(d) When (ε, β) ∈ L1 ∪ L2, h(Θ, ε, 2
√

ε(1 + ε)) > 0 for all Θ ∈
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[−π/2, Θ∗)∪(Θ∗, π/2] and h(Θ∗, ε, 2
√

ε(1 + ε)) = 0. Thus, ω0 vanishes
at Θ = Θ∗.

(e) When (ε, β) ∈ Ω2 ∪ Ω4, h(Θ, ε, β) > 0 for all Θ ∈ [−π/2, Θ3) ∪
(Θ4, π/2], h(Θi, ε, β) = 0, i = 1, 2, and h(Θ, ε, β) < 0 for all Θ ∈
(Θ3, Θ4). Thus ω0 vanishes for Θ3 ≤ Θ ≤ Θ4.

It is shown in [8] that ω0 disappears via Hopf bifurcation from the
steady state x̄ = x0 = 0 at δ = δ3, δ4. As (ε, β) approach L1 ∪ L2, δ3

and δ4 approach δ∗. Some examples that illustrate the behavior of ω0

for various ε and β are shown in Figures 1 (a) (d), where the curves

δ = βg(Θ, ε),

A =
(

1
T (θ, ε, β)

∫ T (θ,ε,β)

0

∥∥∥∥
(

φ̄
φ0

) ∥∥∥∥
2

dt

)1/2

= (1 + cos2 Θ)h(Θ, ε, β)

in (δ, A)-plane are sketched.

Proposition 1 leads to the following results concerning the behavior
of ω0. If (ε, β) ∈ Ω1, ω0 extends from δ = −∞ to δ = ∞ without
turning points (cf. Figure 1(a)), and there is a unique periodic solution
(16) of (6) for each δ ∈ R. If (ε, β) ∈ L1, ω0 has no turning points.
However, it vanishes at δ = δ∗. It follows that there is a unique periodic
solution (16) of (6) for each δ ∈ R − {δ∗}. If (ε, β) ∈ Ω2, ω0 has no
turning points but vanishes for δ3 ≤ δ ≤ δ4 (cf. Figure 1(b)), and there
is a unique periodic solution (16) of (6) for δ ∈ (−∞, δ3) ∪ (δ4,∞).
When (ε, β) ∈ Ω3, ω0 exists for all δ ∈ R. However, it has turning
points at δ = δ1 and δ = δ2 (cf. Figure 1(c)). It follows that (6) has
one periodic solution when δ ∈ (−∞,−δ1) ∪ (−δ2, δ2) ∪ (δ1,∞), two
periodic solutions when δ ∈ {±δ1,±δ2}, three periodic solutions when
δ ∈ (−δ1,−δ2) ∪ (δ2, δ1) given by (16).

When (ε, β) ∈ L2, the behavior of ω0 depends on the relative positions
of δ1, δ2 and δ∗, which are defined by (18) and (21). We summarize the
results obtained in [8] concerning Θ1, Θ2, and Θ∗ in Property 3.
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TABLE 1. The relations between Θi and δi, i = 1, . . . , 4, for (ε, β) ∈ Ω4

are shown. The entries in the first column indicate the regions in Ω4

to which (ε, β) belongs. The entries in the second and the third columns

indicate the relations between Θi, i = 1, . . . , 4 and δi, i = 1, . . . , 4, respectively.

(ε, β) ∈ relation between Θi relation between δi

V1 Θ3(ε, β) < Θ4(ε, β) < Θ1(ε) < Θ2(ε) δ3(ε, β) < δ4(ε, β) < δ2(ε, β) < δ1(ε, β)

l5 Θ3(ε, β) < Θ4(ε, β) < Θ1(ε) < Θ2(ε) δ3(ε, β) < δ2(ε, β) = δ4(ε, β) < δ1(ε, β)

V2 Θ3(ε, β) < Θ4(ε, β) < Θ1(ε) < Θ2(ε) δ3(ε, β) < δ2(ε, β) < δ4(ε, β) < δ1(ε, β)

γ1 Θ3(ε, β) < Θ1(ε) = Θ4(ε, β) < Θ2(ε) δ3(ε, β) < δ2(ε, b) < δ1(ε, β) = δ4(ε, β)

γ2 Θ3(ε, β) < Θ4(ε, β) < Θ1(ε) < Θ2(ε) δ2(ε, β) = δ3(ε, β) < δ4(ε, β) < δ1(ε, β)

(ε̂, β̂) Θ3(ε̂, β̂) < Θ1(ε̂) = Θ4(ε̂, β̂) < Θ2(ε̂) δ2(ε̂, β̂) = δ3(ε̂, β̂) < δ1(ε̂, β̂) = δ4(ε̂, β̂)

V3 Θ3(ε, β) < Θ4(ε, β) < Θ1(ε) < Θ2(ε) δ2(ε, β) < δ3(ε, β) < δ4(ε, β) < δ1(ε, β)

γ3 Θ3(ε, β) < Θ1(ε) = Θ4(ε, β) < Θ2(ε) δ2(ε, β) < δ3(ε, β) < δ1(ε, β) = δ4(ε, β)

V4 Θ3(ε, β) < Θ1(ε) < Θ4(ε, β) < Θ2(ε) δ2(ε, β) < δ3(ε, β) < δ4(ε, β) < δ1(ε, β)

γ4 Θ3(ε, β) < Θ1(ε) < Θ4(ε, β) < Θ2(ε) δ2(ε, β) = δ3(ε, β) < δ4(ε, β) < δ1(ε, β)

V5 Θ3(ε, β) < Θ1(ε) < Θ4(ε, β) < Θ2(ε) δ3(ε, β) < δ2(ε, β) < δ4(ε, β) < δ1(ε, β)

l4 Θ3(ε, β) < Θ1(ε) < Θ2(ε) = Θ4(ε, β) δ3(ε, β) < δ2(ε, β) = δ4(ε, β) < δ1(ε, β)

V6 Θ3(ε, β) < Θ1(ε) < Θ2(ε) < Θ4(ε, β) δ3(ε, β) < δ2(ε, β) < δ4(ε, β) < δ1(ε, β)

l2 Θ3(ε, β) < Θ1(ε) < Θ2(ε) < Θ4(ε, β) δ3(ε, β) < δ2(ε, β) < δ1(ε, β) = δ4(ε, β)

V7 Θ3(ε, β) < Θ1(ε) < Θ2(ε) < Θ4(ε, β) δ3(ε, β) < δ2(ε, β) < δ1(ε, β) < δ4(ε, β)

Property 3. (a)

Θ∗(ε) < Θ1(ε) and g(Θ∗(ε), ε) < g(Θ1(ε), ε)
for all ε ∈ (0, 1/8).

(b) There is a unique ε∗ ∈ (0, 1/8) such that

g(Θ∗(ε), ε)

⎧⎨
⎩

> g(Θ2(ε), ε) for all ε ∈ (0, ε∗),
= g(Θ2(ε), ε) for ε = ε∗,
< g(Θ2(ε), ε) for all ε ∈ (ε∗, 1/8).

According to Property 3(a), δ∗(ε) < δ1(ε, β) for all ε ∈ (0, 1/8). As
δ increases from 0, ω0 meets the steady state at δ = δ∗(ε), and then
turns the direction at δ = δ1(ε, β). It changes the direction again at
δ = δ2(ε, β) and then extends over (δ2,∞) without any turning points.
Property 3(b) gives us the information concerning the relationship
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between δ∗(ε) and δ2(ε, β), that there is a unique ε∗ ∈ (0, 1/8) for
which δ∗(ε) = δ2(ε, β). A numerical computation shows that

ε∗ ≈ 0.103554.

Define the subsets �1 and �2 of L2 by

�1 ≡ {(ε, β) : 0 < ε < ε∗, β = 2
√

ε(1 + ε)},

�2 ≡ {(ε, β) : ε∗ < ε < 1/8, β = 2
√

ε(1 + ε)}.

Then L2 = �1 ∪ {(ε∗, β∗)} ∪ �2, where β∗ = 2
√

ε∗(1 + ε∗). When
(ε, β) ∈ �1, δ∗(ε) > δ2(ε, β). It follows that (6) has one periodic solution
when δ ∈ (−∞,−δ1)∪ (−δ2, δ2)∪ (δ1,∞), two periodic solutions when
δ ∈ {±δ1,±δ2, δ

∗}, three periodic solutions when δ ∈ (−δ1,−δ2) ∪
(δ2, δ

∗)∪ (δ∗, δ1) given by (16). The other two cases (ε, β) = (ε∗, β∗)
and (ε, β) ∈ �2 are analyzed similarly. The relationship between the
number of the periodic solutions and these sets is summarized in Table
2.

When (ε, β) ∈ Ω4, the behavior of ω0 depends on the relative positions
of δ1(ε, β), δ2(ε, β), δ3(ε, β), and δ4(ε, β). From (20) and (22), we
already know that

0 < δ2(ε, β) < δ1(ε, β), 0 < δ3(ε, β) < δ4(ε, β).

The results obtained in [8], which concern the behavior of Θ3 and Θ4

as β increases, are summarized in Property 4.

Property 4. For every (ε, β) ∈ Ω2 ∪ Ω4,

∂Θ3

∂β
(ε, β) < 0,

∂Θ4

∂β
(ε, β) > 0.
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TABLE 2. The numbers of synchronized periodic solutions of (1)

given by (16) are listed. The entries in the first column

indicate the subsets of Ω to which (ε, β) belongs. The entries in the

second, third, and fourth columns indicate the ranges of δ for which

(6) has one periodic solution, two periodic solutions,

and three periodic solutions, respectively.

(ε, β) ∈ one solution two solutions three solutions

Ω1 (−∞,∞) ∅ ∅

L1 (−∞, δ∗) ∪ (δ∗,∞) ∅ ∅

Ω2 (−∞, δ3) ∪ (δ4,∞) ∅ ∅

Ω3 (−∞,−δ1) ∪ (−δ2, δ2) ∪ (δ1,∞) {±δ1,±δ2} (−δ1,−δ2) ∪ (δ2, δ1)

�1 (−∞,−δ1) ∪ (−δ2, δ2) ∪ (δ1,∞) {±δ1,±δ2, δ∗} (−δ1,−δ2) ∪ (δ2, δ∗) ∪ (δ∗, δ1)

(ε∗, β∗) (−∞,−δ1) ∪ (−δ2, δ2] ∪ (δ1,∞) {±δ1,−δ2} (−δ1,−δ2) ∪ (δ2, δ1)

�2 (−∞,−δ1) ∪ (−δ2, δ∗) ∪ (δ∗, δ2) {±δ1,±δ2} (−δ1,−δ2) ∪ (δ2, δ1)

∪(δ1,∞)

V1 (−∞,−δ1) ∪ (−δ2, δ3) ∪ (δ4, δ2) {±δ1,±δ2} (−δ1,−δ2) ∪ (δ2, δ1)

∪(δ1,∞)

l5 (−∞,−δ1) ∪ (−δ2, δ3) ∪ {δ2} {±δ1,−δ2} (−δ1,−δ2) ∪ (δ2, δ1)

∪(δ1,∞)

V2 (−∞,−δ1) ∪ (−δ2, δ3) ∪ {δ2} {±δ1,−δ2} ∪ (δ2, δ4] (−δ1,−δ2) ∪ (δ4, δ1)

∪(δ1,∞)

γ1 (−∞,−δ1) ∪ (−δ2, δ3) ∪ {δ2} {−δ1,−δ2} ∪ (δ2, δ1) (−δ1,−δ2)

∪[δ1,∞)

γ2 (−∞,−δ1) ∪ (−δ2, δ2] ∪ (δ1,∞) {±δ1,−δ2} ∪ (δ2, δ4] (−δ1,−δ2) ∪ (δ4, δ1)

(ε̂, β̂) (−∞,−δ1) ∪ (−δ2, δ3] ∪ [δ1,∞) {−δ1,−δ2} ∪ (δ2, δ1) (−δ1,−δ2)

V3 (−∞,−δ1) ∪ (−δ2, δ2) ∪ (δ1,∞) {±δ1,±δ2} ∪ [δ3, δ4] (−δ1,−δ2) ∪ (δ2, δ3) ∪ (δ4, δ1)

γ3 (−∞,−δ1) ∪ (−δ2, δ2) ∪ [δ1,∞) {−δ1,±δ2} ∪ [δ3, δ1) (−δ1,−δ2) ∪ (δ2, δ3)

V4 (−∞,−δ1) ∪ (−δ2, δ2) ∪ [δ4,∞) {−δ1,±δ2} ∪ [δ3, δ4) (−δ1,−δ2) ∪ (δ2, δ3)

γ4 (−∞,−δ1) ∪ (−δ2, δ2] ∪ [δ4,∞) {−δ1,−δ2} ∪ (δ2, δ4) (−δ1,−δ2)

V5 (−∞,−δ1) ∪ (−δ2, δ3) ∪ {δ2} {−δ1,−δ2} ∪ (δ2, δ4) (−δ1,−δ2)

∪[δ4,∞)

l4 (−∞,−δ1) ∪ (−δ2, δ3) ∪ (δ2,∞) {−δ1,−δ2} (−δ1,−δ2)

V6 (−∞,−δ1) ∪ (−δ2, δ3) ∪ (δ4,∞) {−δ1,−δ2} (−δ1,−δ2)

l2 (−∞,−δ1) ∪ (−δ2, δ3) ∪ (δ4,∞) {−δ1,−δ2} (−δ1,−δ2)

V7 (−∞,−δ1) ∪ (−δ2, δ3) ∪ (δ4,∞) {−δ1,−δ2} (−δ1,−δ2)
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Moreover, as β → ∞,

Θ3(ε, β) → −π/2, Θ4(ε, β) → 0.

By Properties 3(a) and 4, for each ε ∈ (0, 1/8), there is a unique
β1(ε) > 2

√
ε(1 + ε) such that

Θ1(ε)

⎧⎨
⎩

> Θ4(ε, β) for 2
√

ε(1 + ε) ≤ β < β1(ε),
= Θ4(ε, β) for β = β1(ε),
< Θ4(ε, β) for β > β1(ε).

It follows that

δ1(ε, β) > δ4(ε, β) for 2
√

ε(1 + ε) ≤ β < β1(ε),
δ1(ε, β1(ε)) = δ4(ε, β1(ε)).

By Properties 1(c) and 4, for each ε ∈ (0, 1/8), there is a unique
β2(ε) > β1(ε) such that

δ1(ε, β)

⎧⎨
⎩

> δ4(ε, β) for β1(ε) < β < β2(ε),
= δ4(ε, β) for β = β2(ε),
< δ4(ε, β) for β > β2(ε).

β = β1(ε) and β = β2(ε) define curves l1 and l2 respectively, on which
δ1(ε, β) = δ4(ε, b). The left end point of l1 is (0, 0) and its right end
point is (1/8,

√
3/2). l2 is asymptotic to the β-axis and its right end

point is (1/8,
√

3/2).

By Properties 3(a) and 4, for all (ε, β) ∈ Ω4, Θ1(ε) > Θ3(ε, β) and
hence δ1(ε, β) > δ3(ε, β). From (19), it follows that Θ2(ε) > Θ3(ε, β)
for all (ε, β) ∈ Ω4. However, by Properties 3(b) and 4 for each
ε ∈ (0, ε∗), there is a unique β3(ε) > 2

√
3(1 + ε) such that

δ2(ε, β)

⎧⎨
⎩

< δ3(ε, β) for 2
√

ε(1 + ε) ≤ β < β3(ε),
= δ3(ε, β) for β = β3(ε),
> δ3(ε, β) for β > β3(ε).

β = β3(ε) defines a curve l3 in Ω4, on which δ2(ε, β) = δ3(ε, β). The
left end point of l3 is (0, 1/2) and its right end point is (ε∗, β∗), where

β∗ = 2
√

ε∗(1 + ε∗).
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FIGURE 2(b). Curves l1, . . . , l5. The curves l1, . . . , l5 in Ω4 are defined as follows.
l1 : β = β1(ε),0 < ε < 1/8, Θ1(ε) = Θ4(ε, β1(ε)),

l2 : β = β2(ε), 0 < ε < 1/8, δ1(ε, β2(ε)) = δ4(ε, β2(ε)), β1(ε) < β2(ε),
l3 : β = β3(ε), 0 < ε < ε∗, δ2(ε, β3(ε)) = δ3(ε, β3(ε)),

l4 : β = β4(ε), 0 < ε < 1/8, Θ2(ε) = Θ4(ε, β4(ε)),
l5 : β = β5(ε), ε∗ < ε < 1/8, δ2(ε, β5(ε)) = δ4(ε, β5(ε),

2
√

ε(1 + ε) < β5(ε) < β4(ε).

By (19) and Properties 3(a) and 4, for each ε ∈ (0, 1/8), there is a
unique β4(ε) > 2

√
ε(1 + ε) such that

Θ2(ε)

⎧⎨
⎩

> Θ4(ε, β) for 2
√

ε(1 + ε) ≤ β < β4(ε),
= Θ4(ε, β) for β = β4(ε),
< Θ4(ε, β) for β > β4(ε),

and it follows that

δ2(ε, β4(ε)) = δ4(ε, β4(ε)), δ2(ε, β) < δ4(ε, β) for β > β4(ε).

If 0 < ε < ε∗, then it follows from Properties 3(b) and 4 that, for
2
√

ε(1 + ε) ≤ β < β4(ε), δ4(ε, β) > δ2(ε, β). However, for each ε ∈
(ε∗, 1/8), there is a unique β5(ε) such that 2

√
ε(1 + ε) < β5(ε) < β4(ε)
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and

δ2(ε, β)

⎧⎨
⎩

> δ4(ε, β) for 2
√

ε(1 + ε) ≤ β < β5(ε),
= δ4(ε, β) for β = β5(ε),
< δ4(ε, β) for β5(ε) < β < β4(ε).

β = β4(ε) and β = β5(ε) define curves l4 and l5, respectively, on which
δ2(ε, β) = δ4(ε, β). l4 lies below l2 and lies above l1 and l3. l5 lies
below l1. The left end point of l4 is (0, 1) and its right end point
is (1/8,

√
3/2). The left end point of l5 is (ε∗, β∗) and its right end

point is (1/8,
√

3/2). l1, . . . , l5 are numerically generated and shown in
Figure 2(b). These curves divide Ω4 into seven open sets V1, . . . , V7. A
numerical computation shows that l1 and l3 have a unique intersection
at (ε̂, β̂) with

(ε̂, β̂) ≈ (0.085582, 0.624811).

Let

γ1 = {(ε, β) ∈ l1 : ε̂ < ε < 1/8}, γ2 = {(ε, β) ∈ l3 : ε̂ < ε < ε∗},
γ3 = {(ε, β) ∈ l1 : 0 < ε < ε̂}, γ4 = {(ε, β) ∈ l3 : 0 < ε < ε̂}.

V1, . . . , V7, l2, l4, l5, γ1, . . . , γ4, and (ε̂, β̂) are shown in Figure 2(c).
The relative positions of δ1(ε, β), δ2(δ, β), δ3(ε, β), and δ4(ε, β) depend
on which subset (ε, β) belongs to. For example, when (ε, β) ∈ V1,
ε∗ < ε < 1/8 and 2

√
ε(1 + ε) < β < β5(ε). It follows that Θ3(ε, β) <

Θ4(ε, β) < Θ1(ε) < Θ2(ε) and δ3(ε, β) < δ4(ε, β) < δ2(ε, β) < δ1(ε, β).
Therefore, ω0 vanishes for δ3 < δ < δ4. Moreover, δ = δ1 and δ = δ2 are
the turning points. It follows that (6) has one periodic solution given
by (16) when δ ∈ (−∞,−δ1)∪(−δ2, δ3)∪(δ4, δ2)∪(δ1,∞), two periodic
solutions at δ = ±δ1 and δ = ±δ2, and three periodic solutions when
δ ∈ (−δ1,−δ2) ∪ (δ2, δ1) (cf. Figure 1(d)). The remaining cases can
be treated similarly. We summarize the information about the relative
positions of the Hopf bifurcation points and the turning points in Table
1. The relationship between the number of periodic solutions given by
(16) and the subsets of Ω is also summarized in Table 2.

For each (ε, β) ∈ Ω4, Hopf bifurcation at δ = δ3(ε, β) is subcritical,
i.e., the periodic solutions that bifurcate from the steady state exist
for δ < δ3(ε, β). When (ε, β) ∈ Ω4 lies below l1, i.e., (ε, β) ∈
V1 ∪ l5 ∪ V2 ∪ γ2 ∪ V3, Hopf bifurcation at δ = δ4(ε, β) is supercritical,
i.e., the periodic solutions that bifurcate from the steady state exist for
δ > δ4(ε, β). However, when (ε, β) lies on or above l1 and below l4,
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FIGURE 2(c). Subsets of Ω4. V1, . . . , V7, l2, l4, l5, and γ1, . . . , γ4 are shown.

i.e., (ε, β) ∈ l1 ∪ V4 ∪ γ4 ∪ V5, Hopf bifurcation at δ = δ4(ε, β) becomes
subcritical and the turning point at δ = δ1(ε, β) disappears from ω0.
When (ε, β) lies on or above l4, i.e., (ε, β) ∈ l4 ∪ V6 ∪ l2 ∪ V7, Hopf
bifurcation at δ = δ4(ε, β) again becomes supercritical and now the
turning point at δ = δ2(ε, β) disappears from ω0.

3. Stability of the synchronized periodic solutions. In
this section we present results in [8] concerning the stability of the
periodic solutions (16) of (6). We analyze the multipliers of the
variational system which consists of (10) and (11). We leave out some
computational details given in [8]. We first analyze (10). It is shown
in [8] that three multipliers of (10) are determined by the eigenvalues
of the 3 × 3-matrix B(θ, ε, β) whose entries Bij(Θ, ε, β), i = 1, 2, 3,
j = 1, 2, 3, are defined by

B11(Θ, ε, β) = −2
(

1 +
β sin Θ cosΘ
cos2 Θ + ε

)
+

β cos2 Θ cotΘ
cos2 Θ + ε

,

B21(Θ, ε, β) = −εβ cosΘ cotΘ
cos2 Θ + ε

,
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B31(Θ, ε, β) = − β cosΘ(cos2 Θ − ε)
(cos2 Θ + ε)

√
1 + cos2 Θ

,

B12(Θ, ε, β) = −β cosΘ cotΘ
cos2 Θ + ε

,

B22(Θ, ε, β) =
εβ cotΘ

cos2 Θ + ε
,

B32(Θ, ε, β) =
β(cos2 Θ − ε)

(cos2 Θ + ε)
√

1 + cos2 Θ
,

B13(Θ, ε, β) =
β cosΘ

√
1 + cos2 Θ

cos2 Θ + ε
,

B23(Θ, ε, β) =
εβ

√
1 + cos2 Θ

cos2 Θ + ε
,

B33(Θ, ε, β) = β cotΘ.

That is, if λ is an eigenvalue of B(Θ, ε, β), then eλT is a multiplier of
(10), where T = T (Θ, ε, β) is the period of (16) defined by (17). The
characteristic equation for B(Θ, ε, β) is

p(λ, Θ, ε, β) ≡ λ3 + b1(Θ, ε, β)λ2 + b2(Θ, ε, β)λ + b3(Θ, ε, β) = 0,

where
b1(Θ, ε, β) = 2h(Θ, ε, β) − 2β cotΘ,

b2(Θ, ε, β) = −2β cotΘ(cos2 Θ + 2ε)
cos2 Θ + ε

h(Θ, ε, β)

+ (β cotΘ)2 +
[
β(cos2 Θ − ε)

cos2 Θ + ε

]2

,

b3(Θ, ε, β) = 8εβ2 ∂g

∂Θ
(Θ, ε)h(Θ, ε, β).

One finds that when Θ is in a neighborhood of Θ0 = ±π/2, the
eigenvalues of B(Θ, ε, β) have the form λ = λ0 + λ1(Θ−Θ0) +O((Θ−
Θ0)2), where λ0 = −2, ±iβ. Moreover, when λ0 = ±iβ, λ1 = −β. It
follows that, for each (ε, β) ∈ Ω, there is a τ1 = τ1(ε, β) > 0 such that,
for all Θ ∈ (−π/2,−π/2 + τ1), B(Θ, ε, β) has three eigenvalues with
negative real parts, and for all Θ ∈ (π/2 − τ1, π/2), B(Θ, ε, β) has one
eigenvalue with a negative real part and two with positive real parts.
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One shows further that, for all small |Θ|, an eigenvalue of B(Θ, ε, β)
have the form

λ =
1

sin Θ

[
− 2ε

1 + ε
Θ + O(Θ2)

]
,

and the other two eigenvalues have the form

λ =
1

sin Θ
[β + o(1)] as |Θ| → 0.

This shows that, for each (ε, β) ∈ Ω4, there is a τ2 = τ2(ε, β) > 0 such
that, for all Θ ∈ (−τ2, 0), B(Θ, ε, β) has three eigenvalues with negative
real parts, and for all Θ ∈ (0, τ2), B(Θ, ε, β) has one eigenvalue with a
negative real part and two with positive parts.

Now we summarize these results obtained for the multipliers asso-
ciated with (16) in Proposition 2 in terms of δ. Note that, given
(ε, β) ∈ Ω, there exists a unique periodic solution (16) of (6) when
|δ| is sufficiently small or sufficiently large.

Proposition 2. For each (ε, β) ∈ Ω, there are d1 = d1(ε, β) > 0 and
d2 = d2(ε, β) > 0 such that if |δ| < d1 or |δ| > d2, a unique periodic
solution (16) of (6) exists and 1 is a simple multiplier associated with it.
Moreover, if δ ∈ (0, d1) ∪ (d2,∞), three multipliers have modulus less
than 1, and if δ ∈ (−∞,−d2) ∪ (−d1, 0), one multiplier has modulus
less than 1 and two have modulus greater than 1.

Next, we consider the periodic solutions on ω0 near turning points.
Recall that ω0 has a turning point at δ1 if (ε, β) ∈ Ω3 ∪ L2 ∪ Ω4 and
lies below curve l1, i.e., (ε, β) ∈ U1, where

U1 ≡ Ω3 ∪ L2 ∪ V1 ∪ l5 ∪ V2 ∪ γ2 ∪ V3.

It has a turning point at δ2 if (ε, β) ∈ Ω3∪L2∪Ω4 and lies below curve
l4, i.e., (ε, β) ∈ U2, where

U2 ≡ U1 ∪ l1 ∪ V4 ∪ γ4 ∪ V5.

It can be shown that there is a τ3 = τ3(ε, β) > 0 such that, for all
Θ ∈ (Θ1 − τ3, Θ1), B(Θ, ε, β) has three eigenvalues with negative real
parts, and for all Θ ∈ (Θ1, Θ1+τ3), B(Θ, ε, β) has two eigenvalues with
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negative real parts and one with a positive real part. Similarly, there is
a τ4 = τ4(ε, β) > 0 such that, for all Θ ∈ (Θ2 − τ4, Θ2), B(Θ, ε, β) has
two eigenvalues with negative real parts and one with a positive real
part, and for all Θ ∈ (Θ2, Θ2 + τ4), B(Θ, ε, β) has three eigenvalues
with negative real parts.

For each (ε, β) ∈ Ω2 ∪ L2 ∪ Ω4, ω0 also has a turning point at −δ1

and −δ2. One finds that there is a τ5 = τ5(ε, β) > 0 such that for all
Θ ∈ (−Θ1,−Θ1+τ5), B(Θ, ε, β) has one eigenvalue with a negative real
part, and for all Θ ∈ (−Θ1 − τ5,−Θ1), B(Θ, ε, β) has two eigenvalues
with negative real parts and one with a positive real part. Similarly,
there is a τ6 = τ6(ε, β) > 0 such that for all Θ ∈ (−Θ2,−Θ2 + τ6),
B(Θ, ε, β) has two eigenvalues with negative real parts and one with a
positive real part, and for all Θ ∈ (−Θ2 − τ6,−Θ2), B(Θ, ε, β) has one
eigenvalue with a negative real part and two with positive real parts.

We summarize the information about the relation between the mul-
tipliers associated with (16) and turning points of ω0 in Proposition
3.

Proposition 3. (a) Suppose (ε, β) ∈ U1. Then there is τ3 =
τ3(ε, β) > 0 such that 1 is a simple multiplier associated with (16)
if 0 < |Θ − Θ1| < τ3. Moreover, if Θ ∈ (Θ1 − τ3, Θ1), three multipliers
have modulus less than 1, and if Θ ∈ (Θ1, Θ1 + τ3), two multipliers
have modulus less than 1 and one has modulus greater than 1.

(b) Suppose (ε, β) ∈ U2. Then there is τ4 = τ4(ε, β) > 0 such that 1 is
a simple multiplier associated with (16) if 0 < |Θ−Θ2| < τ4. Moreover,
if Θ ∈ (Θ2 − τ4, Θ2), two multipliers have modulus less than 1 and one
has modulus greater than 1, and if Θ ∈ (Θ2, Θ2 + τ4), three multipliers
have modulus less than 1.

(c) Suppose (ε, β) ∈ Ω3 ∪ L2 ∪ Ω4. Then there are τ5 = τ5(ε, β) > 0
and τ6 = τ6(ε, β) > 0 such that 1 is a simple multiplier associated
with (16) if 0 < |Θ + Θ1| < τ5 or 0 < |Θ + Θ2| < τ6. Moreover, if
Θ ∈ (−Θ1,−Θ1 + τ5) ∪ (−Θ2 − τ6,−Θ2) one multiplier has modulus
less than 1 and two have modulus greater than 1, and if Θ ∈ (−Θ1 −
τ5,−Θ1) ∪ (−Θ2,−Θ2 + τ6), two multipliers have modulus less than 1
and one has modulus greater than 1.

Next, we discuss the stability of the synchronized periodic solutions
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near the bifurcation point of ω0 from the steady state. Recall that when
(ε, β) ∈ L1 ∪ L2, ω0 bifurcates from the steady state at δ = δ∗(ε) and
the bifurcation is transcritical. When (ε, β) ∈ Ω2 ∪ Ω4, ω0 bifurcates
from the steady state at δ = δ3(ε, β) and δ = δ4(ε, β). The bifurcation
at δ = δ3(ε, β) is always subcritical. Define

W1 ≡ Ω2 ∪ Ω4 − W2, W2 ≡ l1 ∪ V4 ∪ γ4 ∪ V5.

Then when (ε, β) ∈ W1, the bifurcation at δ = δ4(ε, β) is supercritical
and when (ε, β) ∈ W2, the bifurcation is subcritical.

Suppose (ε, β) ∈ Ω2∪Ω4. It is shown that there is a τ7 = τ7(ε, β) > 0
such that for all Θ ∈ (Θ3 − τ7, Θ3), B(Θ, ε, β) has three eigenvalues
with negative real parts. It is also shown that, for each (ε, β) ∈ W1,
there is a τ8 = τ8(ε, β) > 0 such that, for all Θ ∈ (Θ4, Θ4 + τ8),
B(Θ, ε, β) has three eigenvalues with negative real parts. Furthermore,
for each (ε, β) ∈ W2, there is a τ9 = τ9(ε, β) > 0 such that, for all
Θ ∈ (Θ4, Θ4 + τ9), B(Θ, ε, β) has two eigenvalues with negative real
parts and one with a positive real part. Finally, for (ε, β) ∈ L1 ∪ L2,
there is a τ10 = τ10(ε, β) > 0 such that if 0 < |Θ − Θ∗| < τ10,
B(Θ, ε, 2

√
ε(1 + ε)) has three eigenvalues with negative real parts. We

summarize the results obtained for the multipliers associated with (16)
and the bifurcations at δ = δ3, δ = δ4, and δ = δ∗ in Proposition 4.

Proposition 4. (a) If (ε, β) ∈ Ω2 ∪ Ω4, then the bifurcation of the
periodic solutions (16) from the steady state at δ = δ3 is subcritical.
Moreover, there is a d7 = d7(ε, β) > 0 such that if δ ∈ (δ3 − d7, δ3),
1 is a simple multiplier associated with (16) and three multipliers have
modulus less than 1.

(b) If (ε, β) ∈ W1, then the bifurcation of (16) from the steady state
at δ = δ4 is supercritical. Moreover, there is a d8 = d8(ε, β) > 0 such
that if δ ∈ (δ4, δ4 + d8), 1 is a simple mulitplier associated with (16)
and three multipliers have modulus less than 1.

(c) If (ε, β) ∈ W2, then the bifurcation of (16) from the steady state
at δ = δ4 is subcritical. Moreover, there is a d9 = d9(ε, β) > 0 such
that if δ ∈ (δ4 − d9, δ4), 1 is a simple multiplier associated with (16),
two multipliers have modulus less than 1, and one has modulus greater
than 1.
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(d) If (ε, β) ∈ L1∪L2, then the bifurcation of ω0 from the steady state
at δ = δ∗ is transcritical. Moreover, there is a d10 = d10(ε, β) > 0 such
that if 0 < |δ − δ∗| < d10, 1 is a simple multiplier associated with (16)
and three multipliers have modulus less than 1.

The behavior of periodic solutions that bifurcate from the steady
state is closely related to its stability. The variational equation of (6)
with respect to the steady state x̄ = x0 = 0 is

d

dt

(
x̄
x0

)
= A(δ, ε, β)

(
x̄
x0

)
,

where

A(δ, ε, β) =
[

K − δP δP
εδP −εδP

]
, K = Df(0).

It is shown in [5] that the characteristic equation for A(δ, ε, β) has the
form

det{λ2 − [K − (1 + ε)δP ] − εδPK} = 0,

which is

(23) {λ2 + [4(1 + ε)δ − 1]λ − 4εδ}2 + β2(λ + 4εδ)2 = 0.

(23) shows that there is no real eigenvalue of A(δ, ε, β) for δ �= 0.
Moreover, two eigenvalues of A(δ, ε, β) are the roots of

(24) λ2 + a1(δ, ε, β)λ + a2(δ, ε, β) = 0,

where
a1(δ, ε, β) = 4(1 + ε)δ − (1 + iβ),

a2(δ, ε, β) = −4ε(1 + iβ)δ.

The analysis of (24) leads to the results obtained in [8] for the eigen-
values of A(δ, ε, β). We summarize these results in Proposition 5.

Proposition 5. Suppose (ε, β) ∈ Ω.

(a) For all negative δ, A(δ, ε, β) has four eigenvalues with positive real
parts.
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(b) If (ε, β) ∈ Ω1 ∪ Ω3, then for all positive δ, A(δ, ε, β) has two
eigenvalues with negative real parts and two with positive real parts.

(c) If (ε, β) ∈ L1 ∪ L2, then for each δ ∈ (0, δ∗) ∪ (δ∗,∞), A(δ, ε, β)
has two eigenvalues with negative real parts and two with positive real
parts.

(d) If (ε, β) ∈ Ω2 ∪ Ω4, then A(δ, ε, β) has two eigenvalues with
negative ral parts and two with positive real parts for all δ ∈ (0, δ3) ∪
(δ4, 0), and four eigenvalues with negative real parts for all δ ∈ (δ3, δ4).

Next we analyze the multipliers of (11) to determine the stability of
(16) as a solution of the full sytem (1). That is, we study the stability
of the synchronized periodic solution (9) with φ̄ and φ0 defined by (16).
It is shown that the eigenvalue of the 2 × 2-matrix Q(Θ, ε, β) defined
by

Q(Θ, ε, β) =

⎡
⎣

β cos2 Θ cot Θ
cos2 Θ+ε − 2h(Θ, ε, β) β cos2 Θ

cos2 Θ+ε

− β cos2 Θ
cos2 Θ+ε

β cos2 Θ cot Θ
cos2 Θ+ε

⎤
⎦

are characteristic exponents of (11). The characteristic equation for
Q(Θ, ε, β) is

λ2 + q1(Θ, ε, β)λ + q2(Θ, ε, β) = 0,

where

q1(Θ, ε, β) = 2
[
h(Θ, ε, β) − β cos2 Θ cotΘ

cos2 Θ + ε

]
,

q2(Θ, ε, β) =
β cos2 Θ cotΘ

cos2 Θ + ε

[
β cos2 Θ cot θ

cos2 Θ + ε
− 2h(Θ, ε, β)

]

+
(

β cos2 Θ
cos2 Θ + ε

)2

.

One shows that, for all Θ ∈ (−π/2, 0) such that h(Θ, ε, β) > 0,
the eigenvalues of Q(Θ, ε, β) has negative real parts. Furthermore,
it is shown that there is a τ11 = τ11(ε, β) > 0 such that for each
Θ ∈ (π/2−τ11, π/2), Q(Θ, ε, β) has one eigenvalue with a negative real
part and the other has a positive real part. It is also shown that there
is a τ12 = τ12(ε, β) > 0 such that, for each Θ ∈ (0, τ12), Q(Θ, ε, β)
has two eigenvalues with positive real parts. We summarize the results



COUPLED PLANAR OSCILLATORS 1553

obtained for eigenvalues of Q(Θ, ε, β) in Proposition 6. The statement
in Proposition 6(b) concerns the case δ ∈ (−∞, 0) and |δ| is either
sufficiently small or sufficiently large for which at least one periodic
solution (16) exists for a given (ε, β) ∈ Ω.

Proposition 6. (a) For every (ε, β) ∈ Ω, the 2(N − 1) multipliers
associated with (9) on the complement, which are determined from (11),
have modulus less than 1 if δ > 0.

(b) For every (ε, β) ∈ Ω, there are d11 = d11(ε, β) > 0 and d12 =
d12(ε, β) > 0 such that for δ ∈ (−d11, 0), the N − 1 multipliers
associated with (9) on the complement which are determined from (11),
have modulus less than 1, and the remaining N−1 have modulus greater
than 1, and for δ ∈ (−∞,−d12), the 2(N −1) multipliers have modulus
greater than 1.
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