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CONFORMAL INVARIANTS FOR CURVES AND
SURFACES IN THREE DIMENSIONAL SPACE FORMS

GRANT CAIRNS, RICHARD SHARPE AND LYNETTE WEBB

ABSTRACT. Conformal invariants of submanifolds have
been known for a hundred years. And yet many recent papers
seem to ignore the major works of yesteryear and the complete
list of invariants that they defined. This present paper aims
to provide a readable account of the existence of conformal
invariants in their most natural setting, that of curves and
surfaces in 3-space.

1. Introduction. In the same way that curves and surfaces
possess invariants under the group of isometries (curvature, torsion,
principal curvatures, etc.), it has been known since the beginning
of this century that there are other functions which are invariant
under the larger group of conformal transformations; hence there is
a conformal curvature, a conformal torsion, etc. Now, conformal
invariants have received a revival of interest in recent years [8, 46,
22, 18, 19, 17], in part because of Willmore’s conjecture [47], and
the associated conformal invariant known as the Willmore integrand
(see [31]). Nevertheless, despite this interest, there have been very few
references in the literature to the complete list of invariants and to the
papers which established them (important exceptions are [20, 33, 35,
36]. See also [45]). The purpose of this present paper is to provide
what we hope will be a timely review of these invariants.

To be specific, we are concerned in this paper with conformal geom-
etry in the following sense. Let N denote a 3-dimensional Riemannian
manifold with metric g of constant sectional curvature (which means
that locally it is elliptic, hyperbolic or Euclidean space). We study
those properties of N which remain invariant under conformal change
of metric, that is under replacement of g by ρg, where ρ is a positive
function on N and ρg still has constant sectional curvature, but pos-
sibly with a different constant. For example we can take N to be the
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round sphere S3. Then the properties that interest us will not only be
invariant under the group of Möbius transformations of S3 but they
will also be invariant under stereographic projection from Euclidean
space E3. In particular, we are interested in the invariants of the local
extrinsic conformal geometry of “generic” curves and surfaces in N ;
that is to say, for “generic” locally defined curves and surfaces M in N ,
we study those functions on M which remain invariant under conformal
changes as described above.

The key works in the development of conformal invariants were
Tresse’s 1892 paper on surfaces [40] and Liebmann’s 1923 paper on
curves [23] (see also [11, 7, 26, 21]). Complete sets of invariants were
then obtained independently by Takasu [37, 38], Thomsen [39, 4] and
Vessiot [42, 43, 44] (see also [25, 28]). These invariants were of such
interest in the 1920’s that Vessiot could write in 1927, concerning the
invariant now known as the Willmore integrand [44 part II, p. 56]:
“Cette integrale a déjà été introduite par divers auteurs, ainsi que les
surfaces pour lesquelles elle est stationnaire (surfaces minima au point
de vue conforme).”

In the 1940’s the theory of conformal invariants was rediscovered
and generalized by Fialkow [14, 15, 16], who also provided invariants
in arbitrary dimension and for spaces of non-constant curvature. For
the purposes of exposition, we have chosen in this paper to present
the invariants only in the case of three dimensional space forms.
Let us pause a moment to explain this choice. Whereas Fialkow
describes his strategy in the following words: “In our development of
conformal differential geometry, we have largely ignored the conformal
transformations which define the geometry and have attempted to take
maximum advantage of the methods of Riemannian geometry” ([16,
p. 311]), it is clear that conversely, by restricting one’s attention to
space forms, one is fixing the group of conformal transformations. The
necessary calculations then have a very concrete form and have natural
geometric interpretations. In addition, in this special case, the formulas
for the invariants are relatively simple, thus enabling one to gain a
certain feel for their significance (the formulas in the variable curvature
case are complicated by off-diagonal Ricci curvature terms). And
finally, as we have kept in mind during the preparation of this paper,
many of the known notions (such as the Banchoff-White invariant [2])
and open problems (such as Willmore’s conjecture) pertain to space



CONFORMAL INVARIANTS FOR CURVES AND SURFACES 935

forms.

Now let us summarize the situation. For curves, the algebra of
conformal invariants is generated by an infinitesimal conformal arc-
length and two invariant functions; a conformal torsion and a conformal
curvature (of order 4 and 5 respectively). The infinitesimal conformal
arc-length is a 1-form whose zeros are the vertices of the curve, where we
define the vertices to be the stationary points of the curvature that are
simultaneously zeros of the torsion or the curvature (see Section 4). Up
to conformal transformation, the three invariants determine the curve
away from the vertices. For surfaces there are two conformally invariant
1-forms and three conformally invariant functions (two of order 3 and
one of order 4); they determine the surface away from the umbilics.

The derivation of these invariants by Takasu, Thomsen and Vessiot
is somewhat difficult to follow, due to their use of “pentaspherical co-
ordinates,” which are a coordinatization of the set of spheres in E3.
One chooses 5 mutually orthogonal spheres in E3 (of course, this is
only possible if one allows spheres of null or imaginary radius); a given
sphere is then coordinatized by its 5 “angles of intersection” with the
chosen “pentasphere.” Now at each point of a given curve or surface,
one chooses a pentasphere, thus obtaining a moving “pentaspherical
frame.” Vessiot writes in 1927 [42, p. 101]: “La méthode du pen-
tasphère mobile a été introduite par A. Demoulin [11]. Elle est au-
jourd’hui classique... .” It seems however that pentaspherical coordi-
nates subsequently fell into disfavor, being surpassed by Cartan’s more
powerful formalism. Fortunately, it turns out that the method of pen-
taspherical coordinates has a simple modern expression in terms of
Bryant’s conformal Gauss map (see Section 3). In this way, the associ-
ated calculations for surfaces are extremely simple and the invariants
are quickly obtained by hand. For curves the situation is less straight-
forward however, due to the fact that unlike the principal directions
of a surface, the normal and bi-normal directions of a curve are not
conformally invariant notions. So in Section 4, for curves, we prefer
to use the direct method of reduced equations originally employed by
Tresse [41].

It was known by the geometers of the 1920’s that the conformal
invariants described above actually form a generating set for all the
conformal invariants of curves and surfaces in 3-space. Section 5 is
devoted to formalizing this notion of generating set and clearly stating
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the results.

Sections 6 and 7 contain some original contributions. In Section 6 we
consider some of the applications of the invariants for curves; we give
three results. We give a generalized 4-vertex theorem for “spherical”
curves. We show that the curves with zero conformal torsion are
precisely the spherical curves. And we interpret the integral of the
conformal torsion along a closed curve as an R valued lift of Banchoff
and White’s R/Z conformal invariant “total twist” [2]. In Section 7
we give a number of remarks concerning the invariants for surfaces and
their connection with Willmore’s conjecture.

Throughout this paper we have attempted to provide a readable
account of the invariants and of the methods employed. For expediency,
we have suppressed many of the necessary calculations, which are
elementary but occasionally tedious and which in the main we have
performed with the aid of the symbolic processor Mathematica.

2. Preliminary Remarks. We begin by considering an umbilic-
free surface M in Euclidean space E3. Let κ1 and κ2 denote the
principal curvatures of M , with κ1 > κ2, and let X1 and X2 be
corresponding orthonormal principal vector fields. Now let x be a point
in M and consider the set of 2-spheres that are tangent to M at x and
which have contact to second order at x with some geodesic in M .
Of course the mean curvature (that is, the reciprocal of the radius) of
these spheres varies with the direction of the associated geodesic at x.
By definition, the maximum and minimum values obtained are κ1 and
κ2 respectively. We are interested in how these spheres behave under
conformal transformation.

Given any round 2-sphere σ in E3, let us denote the mean curvature
of σ by Hσ. Recall that by Liouville’s Theorem (see for instance [13]),
if U is an open subset of E3, every conformal map φ : U → E3 can be
written as the restriction to U of a composition of reflections in planes
and inversions in round 2-spheres. We use the following elementary
result from inversive geometry, which we leave to the reader to verify.

Lemma 2.1. Let φ : E3 ∪ {∞} → E3 ∪ {∞} be a conformal
transformation, let x be some point in E3 and let P be some plane
through x. Then there exist real numbers a and b such that for all
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spheres σ passing through x and tangent to P at x, one has

Hφ(σ) = aHσ + b.

Now apply this lemma to the case where P is the tangent plane to M
at the point x. Let κ̄1 and κ̄2 denote the principal curvatures at φ(x)
of the image φ(M) of M , under the transformation φ. It follows from
the lemma that κ̄1 − κ̄2 = a(κ1 − κ2). Moreover, this same argument
also shows that the principal directions of φ(M) at φ(x) are just the
images under φ of the principal directions of M at x. One can combine
these two facts as follows. Notice that the map φ induces a homothetic
transformation φ∗ between the tangent space to M at x and the tangent
space to φ(M) at φ(x). It is not difficult to see that the number
a provided by Lemma 2.1 is just the reciprocal of the homothetic
proportionality constant of φ∗. Consequently, writing µ = (κ1 −κ2)/2,
one has that the vector fields ξ1 = X1/µ and ξ2 = X2/µ are conformally
invariant.

These invariant vector fields ξ1 and ξ2 can be used to immediately
produce two conformally invariant functions. Indeed, the Lie bracket
[ξ1, ξ2] can be expressed as a function linear combination of ξ1 and ξ2:

[ξ1, ξ2] = −1
2
θ2ξ1 − 1

2
θ1ξ2

(the factors −1/2 here are chosen for later ease of expression). Then
the coefficients θ1 are θ2 are necessarily conformal invariants. (Note
that the principal vector fields X1 and X2, and hence θ1 and θ2, are
determined by the orientation of the surface only up to a simultaneous
change in sign. ‘Invariance’ therefore is here only defined up to a sign.
We return to this matter in Section 4.)

It is an elementary exercise in Riemannian geometry to show that
[X1, X2] = −{X2(κ1)/2µ}X1 − {X1(κ2)/2µ}X2, whence

(2.1) θ1 =
X1(κ1)

µ2
, and θ2 =

X2(κ2)
µ2

.

These are the two invariants determined by Tresse [40]. They are
third order invariants and may be regarded as “principal conformal
curvatures.”
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Notice that from the above remarks, the 2-form µ2d(area) is confor-
mally invariant. This is precisely the Willmore integrand Ω. Indeed,
µ2d(area) = {(κ1 + κ2)2/4 − κ1κ2}d(area) = Ω. If we let ω1 and ω2

denote the 1-forms dual to the vector fields ξ1 and ξ2 respectively, then
ω1 and ω2 are also conformally invariant (up to a sign) and furthermore
Ω = ω1 ∧ ω2.

Now consider the mean curvature of the surface. It is clear that
mean curvature is not in itself a conformal invariant. Nevertheless, it
is associated with a certain invariance, as we will now explain. Let
σ denote a sphere tangent at x to the surface M and suppose that
the mean curvature of σ coincides with the mean curvature of M at
x. Then it is clear from the above lemma that under the conformal
transformation φ, the mean curvature of φ(σ) coincides with the mean
curvature of φ(M) at φ(x). Thus, though mean curvature is itself not
invariant, the osculating sphere that realizes the mean curvature is an
invariant. We will return to this point in the next section.

Having derived the invariants θ1, θ2, ξ1, ξ2 and Ω in E3, one may
wonder if they are invariants for surfaces in other 3-spaces. Now it
is well known that the 3-spaces of constant curvature are all locally
conformally equivalent (see for instance [13]). In particular, the natural
embedding of the hyperbolic upper half space H3 into E3 is a conformal
map, as is the stereographic projection of E3 into the round 3-sphere
S3. Thus, one may imagine that the general conformal invariance (as
formulated in the Introduction) follows directly from the invariance
in E3. However, this appearance is deceptive, since one must verify
that the formulas for the various invariants still hold when calculated
with respect to the spherical or hyperbolic metric. In fact, rather more
is true of the invariants presented above; not only are they invariant
under conformal transformations of spaces of constant curvature, but
they are invariant under conformal maps between spaces of arbitrary
curvature. We omit the proof of this fact, which is a simple exercise in
Riemannian geometry.

3. The Bryant map. In this section we continue our study of
surfaces by now considering them as being embedded in S3. Here, the
local conformal geometry reduces to the study of the group Möb3 of
general Möbius transformations of S3.
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The group Möb3 has a natural linear representation. Indeed, let L
denote 5-dimensional Minkowski space; that is, L is the vector space
R5 with basis vectors e0, e1, e2, e3, e4 and pseudometric 〈, 〉 defined by

〈x, y〉 = x1y1 + x2y2 + x3y3 + x0y4 + x4y0

where x = (x0, x1, x2, x3, x4) and y = (y0, y1, y2, y3, y4) are points in
L expressed in coordinates with respect to the basis {e0, e1, e2, e3, e4}.
Now consider the 3-sphere S3 obtained by taking the intersection in L
of the hyperplane x0 − x4 =

√
2 with the positive light cone

L+ = {x = (x0, x1, x2, x3, x4) ∈ L : 〈x, x〉 = 0, x0 − x4 > 0}.
There is clearly a bijection between S3 and the set PL+ of lines in L+

emanating from the origin. Let O(4, 1)+ denote the group of linear
transformations of L that respect 〈, 〉 and preserve L+. Thus every
element of O(4, 1)+ defines a permutation of the elements of PL+.
It is an elementary exercise to show that the induced bijections of
S3 are conformal transformations and furthermore, every conformal
transformation of S3 arises in this way. The group O(4, 1)+ can thus
be identified with the group Möb3 of conformal transformations of S3.

Now let Σ denote the set of round two spheres in S3. Clearly,
every conformal transformation g of S3 induces a permutation ḡ of
the elements of Σ. In fact there is a natural map χ : Σ → L which is
equivariant with respect to this action of O(4, 1)+; that is, χ◦ ḡ = g ◦χ

for all g ∈ O(4, 1)+. The map χ is constructed as follows. Let σ be
an element of Σ and let Q denote the unique hyperplane through the
origin of L whose intersection with S3 is σ. Then χ(σ) is defined to
be one of the unit vectors 〈, 〉-perpendicular to Q (see Figure 1). Of
course, χ is only defined up to a sign. We will return to this problem
shortly.

We now derive a formula for χ. Consider a round 2-sphere σ in Σ
and let p be a point on σ. Let ζ = (e0 − e4)/

√
2 and let p = x + ζ

so that x lies in the Euclidean subspace E4 of L spanned by e1, e2, e3

and e0 + e4. Now let n be a unit normal vector to σ in S3 and let H
denote the curvature of σ as a submanifold of S3. Finally let θ denote
the angle between the vector x and the line joining the center c of σ to
the point ζ (see Figure 2). A simple calculation shows that H = cot θ.
The center c of σ is clearly given by

c = (x + n tan θ) cos2 θ + ζ.
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FIGURE 1.

Consequently

c = (Hx + n)
H

1 + H2
+ ζ.

By definition, the vector χ(σ) is of unit length and is perpendicular to
the vectors c and p = x + ζ and to the tangent space of σ at x in S3.
It is clear that

(3.1) χ(σ) = n + H(x + ζ)

satisfies each of these properties and hence is the desired formula. The
ambiguity in the sign of χ(σ) is clearly reflected in this formula in the
choice of direction for n (which in turn determines the sign of H). Since
we are interested in local geometry, we choose a local continuous choice
of vector n, thus removing the ambiguity in the definition of χ.

The function χ can be regarded as a coordinatization of the set Σ of
2-spheres. This is the meaning of the ‘pentaspherical coordinates’ used
by Takasu, Thomsen and Vessiot. Notice that the product 〈, 〉 has a
natural interpretation here. Indeed, by Equation (3.1), for two spheres
σ1 and σ2, the number 〈χ(σ1), χ(σ2)〉 is just the cosine of the angle of
intersection of the two spheres.

We now use χ to construct conformal invariants for the surface M
embedded in S3. Let p be a point in M and let n be a continuous
choice of unit vector field normal to M in S3, in some neighborhood
of p. Now let σ be the unique 2-sphere which is tangent to M at p,
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which has the same mean curvature as the mean curvature H of M at p
(taking n to be its normal vector at p). The map β : M 
 p �→ χ(σ) is
Bryant’s conformal Gauss map [5]. Since χ is equivariant, so too is β.
Now suppose that M is umbilic-free and let X1 and X2 be orthonormal
principal vector fields on M , corresponding to the principal curvatures
κ1 and κ2 respectively. As we remarked in the previous section, the
vector fields ξ1 = X1/µ and ξ2 = X2/µ are conformally invariant (up to
a sign), where µ = (κ1 − κ2)/2. It follows that the L-valued functions
ξ1(β), ξ2(β), ξ1(ξ1(β)), ξ1(ξ2(β)), etc., are also equivariant (up to a
sign), where by ξ1(β) for example, we mean the directional derivative
of β with respect to ξ1. Now by definition, one has

X1(n) = −κ1X1 and X2(n) = −κ2X2

and of course

X1(x) = X1 and X2(x) = X2.
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Consequently, using Equation (3.1), one has

ξ1(β) =
X1

µ
(β) =

X1

µ
(n + H(x + ζ))

= −κ1

µ
X1 +

X1(H)
µ

(x + ζ) +
H

µ
X1

= −X1 +
X1(H)

µ
(x + ζ)

= −µξ1 + ξ1(H)(x + ζ).

One can also use Equations (3.1) and (2.1) to calculate the higher
derivatives. For instance,

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ2(β) = µξ2 + ξ2(H)(x + ζ),

ξ1(ξ1(β)) = −κ1

µ
n − ξ2(κ1)

2
ξ2

+
x

µ
+ ξ1(ξ1(H))(x + ζ) + ξ1(H)ξ1,

ξ2(ξ2(β)) =
κ2

µ
n − ξ1(κ2)

2
ξ1 − x

µ

+ ξ2(ξ2(H))(x + ζ) + ξ2(H)ξ2.

One can now obtain invariant functions by evaluating these equivariant
functions on the pseudometric 〈, 〉. Of course, many of these functions
will be uninteresting; for instance 〈ξ1(β), ξ2(β)〉 = 0. Nevertheless, one
does obtain nontrivial invariants. For example,

〈ξ1(ξ1(β)), ξ2(β)〉 = θ2/2
〈ξ2(ξ2(β)), ξ1(β)〉 = −θ1/2,

which are the third order invariants constructed in the previous section
(see Equation (2.1)). In addition, one has a new invariant of order 4:

(3.3)

1
2
{〈ξ1(ξ1(β)), ξ1(ξ1(β))〉 − 〈ξ2(ξ2(β)), ξ2(ξ2(β))〉
−〈ξ1(ξ1(β)), ξ2(β)〉2 + 〈ξ2(ξ2(β)), ξ1(β)〉2}

=
∆H + 2µ2H

µ3
,
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where ∆ is the Laplacian in the metric induced on M from the ambient
space. This invariant is not entirely new however. The equation
∆H + 2µ2H = 0 is just the Euler-Lagrange equation for the Willmore
functional [5] and surfaces for which it is zero are known as Willmore
surfaces. It is well known that the Willmore integral is conformally
invariant and so it is not surprising that the function (∆H +2µ2H)/µ3

is a conformal invariant. It is perhaps more surprising that for arbitrary
umbilic-free surfaces in 3-manifolds of constant curvature, the functions
θ1, θ2 and (∆H + 2µ2H)/µ3 are essentially the only invariants; that
is, all other invariant functions can be derived from them and their
derivatives. We will return to this matter in Section 5. Let us remark
that the above calculation only establishes the invariance of the function
(∆H+2µ2H)/µ3 for conformal transformations of S3. Its more general
conformal invariance, in the sense described in the Introduction, can
be explicitly verified by considering a conformal change of metric to
another metric of constant curvature (cf. the discussion at the end of
Section 4).

4. The method of reduced equations. Perhaps the most direct
way of constructing conformal invariants is by means of the method
of reduced equations. This was the method employed by Tresse in his
derivation of the third order invariants for surfaces [41]. To apply it we
do the following. First rescale the metric of the ambient manifold N so
that it becomes locally Euclidean (flat). Since we only work locally, we
may assume that N = E3. Now express the curve or surface as the zero
set of a function f : E3 → E3−m, where m equals 2 for surfaces and 1
for curves. If p is point in the submanifold under consideration, then
acting on the ambient space E3 by a certain conformal transformation
we may move the point p to the origin in such a way as to reduce some
low order jet of f to a simple normal form. This is the reduced equation
we seek and the coefficients in the Taylor series of the reduced equation
may be interpreted as conformally invariant functions. Of course all
this depends on the convention one chooses for the meaning of “simple
normal form.”

Let us describe the situation for a surface M . Here is one choice of
normal form for a surface in E3 at a non-umbilic point.

z =
1
2
(x2 − y2) + O(x3, y3, x2y2)
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The stabilizer in the conformal group of this normal form is of order
two and acts by changing the signs of x and y. Calculating some of
the higher coefficients in this normal form, which may be regarded as
invariant functions on the surface, we obtain

z =
1
2
(x2 − y2) +

1
6
(θ1x

3 + θ2y
3)

+
1
24

(ax4 + 4bx3y + 6Ψx2y2 + 4cxy3 + dy4) + O(5),

where

a = 3 + θ2
1 + ξ1(θ1), b = −θ1θ2 + ξ2(θ1),

c = θ1θ2 + ξ1(θ2), d = −3 − θ2
2 + ξ2(θ2),

and

Ψ =
∆H + 2µ2H

µ3
+

1
2
{θ2

1 − θ2
2 + ξ1(θ1) + ξ2(θ2)}.

The coefficients, which depend upon p, are consequently just functions
of the 3 invariants derived in the previous section and their derivatives
with respect to the invariant vector fields ξ1 and ξ2.

Notice once again that the functions θ1 and θ2 are only determined
up to a sign, because of the indetermination of normal form. To control
this annoyance, we introduce the following notion (cf. [37]).

Definition. A double orientation of an umbilic-free surface is an
orientation of each of the principal direction fields.

Of course, for an arbitrary umbilic-free surface there may not be a
double orientation. Nevertheless, locally at least, one always exists.
Given such a double orientation (in which case we say that the surface
is doubly oriented), the indetermination in the normal form can now be
removed by demanding that the x and y axes be positively aligned with
the principal direction fields ξ1 and ξ2 respectively. The functions θ1

and θ2 are then uniquely defined. In the case of an oriented manifold
M the double orientation may be taken compatibly with the given
orientation of M . Then there is a canonical 2-fold cover of M (with
group ±1), the double orientation cover, whose fiber at a point p
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consists of the two possible double orientations at p. It is then possible
to carry out our constructions of the invariants canonically on this
double cover. We denote by L the double orientation line bundle which
is the line bundle over M associated to the double orientation cover by
the non-trivial representation of ±1 on R.

Now consider an oriented curve γ in E3 and let s, κ and τ denote
its arc-length, curvature and torsion respectively. In attempting to
determine the normal form for γ, one finds that the following 1-form is
conformally invariant:

ω =
√

ν ds, where ν =
√

(κ′)2 + κ2τ2, and κ′ =
dκ

ds
.

We call ω the infinitesimal conformal arc-length of γ. The zeros of ω
are points of particular interest.

Definition. A vertex of γ is a point where the infinitesimal conformal
arc-length ω of γ vanishes.

It should be remarked that there is another notion of vertex in the
literature; namely, a point where the torsion vanishes (see for instance
[32]). However, this is not an invariant notion, whereas the above
definition of vertex is conformally invariant because of the invariance
of ω. Moreover, the above definition is a clear generalization of the
classical definition of vertex for planar curves.

Now, given a non-vertex point p ∈ γ we may vary the curve by a
conformal motion to obtain an equivalent curve in “standard position”;
that is, the normal form of the curve γ at p. Here is the normal form
for a curve in E3 at a non-vertex, the origin.

y =
x3

3!
+ O(x5),

z = 0 + O(x4),

where the x-axis is positively oriented with the direction of the curve.
Calculating some of the higher coefficients in this normal form, we
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obtain

y =
x3

3!
+ (2Q − T 2)

x5

5!
+ O(x6),

z = T
x4

4!
+

1√
ν

dT

ds

x5

5!
+ O(x6),

where

Q =
4(ν′′ − (κ2 + C)ν)ν − 5ν′2

8ν3

and

T =
2κ′2τ + κ2τ3 + κκ′τ ′ − κκ′′τ

ν5/2
,

and where κ and τ are the curvature and torsion of the original curve
γ and C is the sectional curvature of the ambient space (which, of
course, for E3 is 0). We call Q the conformal curvature of γ and T the
conformal torsion.

Note that although the expression for ω in terms of the Riemannian
invariants breaks down at points where κ = 0, the conformal invariance
of ω allows us to move the curve by a conformal transformation to a
new curve for which κ �= 0 so that ω is in fact defined at every point
of γ. Similar remarks apply to Q and T showing that they are defined
at every point where ν does not vanish. Thus a generic point on a
curve is one for which ν �= 0. We note that by strong transversality
[1] the curves in space for which every point is generic constitute an
open dense subset of all smooth curves in the C∞ topology and the
analogous statements hold for closed curves. This contrasts with the
situation for plane curves for which the “honest” vertices (cf. [30, 27])
are stable phenomena.

We now turn to the question of proving invariance. The above
calculations show that for curves in E3, the 1-form ω and the functions
Q and T are invariant under Möbius transformations, as are the vector
fields ξ1 and ξ2 and the functions θ1, θ2 and Ψ for surfaces in E3. We
must also show that the formulas for the various invariants still hold
when calculated with respect to the spherical or hyperbolic metric. Let
us indicate how one may proceed for the case of a curve γ, the case of
surfaces being quite analogous.
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The invariants ω, Q and T of γ are functions of the curvature and
torsion of γ and their derivatives up to third order. We need to
show that one obtains the same values for the invariants when one
uses a constant curvature metric ρg = ρ(dx2 + dy2 + dz2), where ρ
is some positive function, as one does when one uses the flat metric
g = dx2 +dy2 +dz2. The curvature and torsion of γ with respect to the
metric ρg can be easily calculated in terms of the Euclidean curvature
and torsion of γ and the function ρ and its derivatives in the tangent,
normal and bi-normal directions of γ (with respect to the Euclidean
metric). One is thus required to establish three identities (one for each
invariant) involving the function ρ, the Euclidean curvature and torsion
of γ and various derivatives of these three functions. These identities
can be established by calculating the curvature tensor for ρg in the
moving frame basis (the Serret-Frenet frame) and applying the constant
curvature hypothesis. We omit the details of these calculations which
are somewhat involved.

5. Geometric forms and generating sets. In this section we
see how the invariants introduced in the previous sections generate the
entire algebra of invariants. In order to do this we must formalize the
notion of ‘generation.’ Before doing this, however, it is perhaps in-
structive to see that the invariants actually determine the submanifold
(up to conformal transformation). To see this, let us first fix some
notation. Let M denote a generic 1 or 2 dimensional submanifold of
E3; that is, a vertex-free curve or an umbilic-free surface. In either
case, for each point in M there is a Möbius transformation g−1 that
moves M into normal form, as described in Section 4. So, locally at
least, we have a map g : M → Möb3, which we call the canonical map
of M . (If we do the same construction on the double orientation cover
we obtain a globally defined analogue satisfying g(σ(p)) = g(p)τ where
σ is the covering transformation of the double orientation cover and
τ = diag (1,−1,−1, 1, 1) ∈ O(4, 1)+.) Notice that the canonical map
completely describes M ; indeed, for each point x ∈ M , the position of
x in E3 is given by the image of the origin O ∈ E3 under the map g(x).
The 1-form g−1dg is a well defined 1-form on M with values in the Lie
algebra of Möb3. In order to present this 1-form we need a description
of the group Möb3 of Möbius transformations of E3. We saw in Section
3 how Möb3 may be regarded as the group of positive orthogonal trans-
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formations of Minkowski space L. The relationship with E3 is obtained
by identifying E3 ∪ {∞} with the set PL+ of lines in the positive light
cone L+ of L. To do this we choose the map

E
3 ∪ {∞} −→ PL+

(x, y, z) �−→ span of (1, x, y, z,−1
2
(x2 + y2 + z2))

∞ �−→ span of (0, 0, 0, 0, 1).

This being understood, one has the following results.

Theorem 5.1. Let γ be an oriented connected vertex-free curve in
E3. Then the canonical map g : γ → Möb3 satisfies

g−1dg =

⎛
⎜⎜⎜⎝

0 Q 1 0 0
1 0 0 0 −Q
0 0 0 −T −1
0 0 T 0 0
0 −1 0 0 0

⎞
⎟⎟⎟⎠ ω

where Q, T and ω are as in Section 4.

Corollary 5.2 (cf. [15, Theorem 7.2]). An oriented connected,
vertex-free curve γ is determined up to conformal motion by its in-
variants Q, T and ω; that is, if γ1, γ2 : (α, β) → E3 are two oriented
vertex-free curves with the same invariants Q, T and ω, then there ex-
ists a conformal transformation φ of E3 ∪ {∞} such that γ1 = φ ◦ γ2.
Conversely, given any pair of smooth functions Q, T : (α, β) → R and
given any nowhere zero 1-form ω on (α, β), they are the conformal
curvature, conformal torsion and infinitesimal conformal arclength of
a curve γ : (α, β) → E3.

Theorem 5.3. Let M be a doubly oriented umbilic-free surface in
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E3. Then the canonical map g : M → Möb3 satisfies

g−1dg =

⎛
⎜⎜⎜⎝

1
2θ1 −1

2 (1 + Ψ) 1
2b 1

2θ1 0
1 0 0 −1 1

2 (Ψ + 1)
0 0 0 0 −1

2b
0 1 0 0 −1

2θ1

0 −1 0 0 −1
2θ1

⎞
⎟⎟⎟⎠ ω1

+

⎛
⎜⎜⎜⎝

−1
2θ2 −1

2c −1
2 (1 − Ψ) 1

2θ2 0
0 0 0 0 1

2c
1 0 0 1 1

2 (1 − Ψ)
0 0 −1 0 −1

2θ2

0 0 −1 0 1
2θ2

⎞
⎟⎟⎟⎠ ω2

where θ1, θ2, Ψ, b and c are as in Section 4 and ω1 and ω2 are the
invariant 1-forms dual to ξ1 and ξ2 respectively.

It is not difficult to verify that the 1-form ω = g−1dg, given by
Theorem 5.3, satisfies the equation dω + 1/2[ω, ω] = 0. This may be
regarded as the conformal Gauss-Codazzi equations for the surface M .
(The same is true for the analogous form ω̄ on the double orientation
cover. Moreover ω̄ satisfies the identity σ∗ω̄ = ad(τ−1)ω̄, and thus
induces a 1-form ω on M with values in the flat bundle L ⊗ o(4, 1)+

over M (with group ±1) whose fiber is the Lie algebra o(4, 1)+. This
version of ω is the global incarnation of the previous ω in the sense that
they will agree on any connected open set where the local version is
defined, provided they agree at one point. It is clear that if we integrate
ω̄ along a loop based at the origin which goes once around an umbilic
then we must obtain τ or the identity).

Corollary 5.4 (cf. [16, Theorem 31.1]). A doubly oriented, con-
nected, umbilic-free surface M is determined up to conformal motion by
its invariants ω1, ω2, θ1, θ2, Ψ; that is, if M1 and M2 are submanifolds of
E3 and f : M1 → M2 is a diffeomorphism identifying the corresponding
invariants, then f is the restriction of a conformal transformation of
E3 ∪ {∞}. Conversely, if one is given a 1-connected domain U ⊂ R2,
two independent 1-forms ω1 and ω2 on U and any triple of smooth
functions

θ1, θ2, Ψ: U → R,
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such that the corresponding form ω given by the formula in Theorem
5.3 satisfies the structural equation dω + (1/2)[ω, ω] = 0, then there is
an immersed surface in E3 realizing these invariants. (More generally,
let M be an oriented surface and let L be a real line bundle over M
with group ±1. Suppose that Ψ is a smooth function on M , θ1, θ2

are smooth sections of L, and ω1, ω2 are smooth 1-forms on M with
values in L, such that the corresponding form ω on M with values in
L ⊗ o(4, 1)+ satisfies the structural equation dω + (1/2)[ω, ω] = 0 and
the integral around any loop on M (see below) lies in {1, τ}, then there
is an immersed surface in E3 realizing these invariants).

Theorems 5.1 and 5.3 are just calculations. Corollaries 5.2 and 5.4 are
consequences of the following result of Lie’s: if G is a Lie group with Lie
algebra g and if ω is a g-valued 1-form on some 1-connected manifold
U such that dω + (1/2)[ω, ω] = 0, then there exists a map φ : U → G,
unique up to left translation by an element of G, such that ω is the
pull-back by φ of the Maurer-Cartan form on G (see [24]). This also
explains the meaning of “integration of an L ⊗ o(4, 1)+ valued 1-form
along a path in M .”

Having seen that the invariants of Section 4 determine the curves
and surfaces, we now turn to the existence of other invariants. Much of
the following discussion is valid in arbitrary dimension and so for the
moment we let N be an n-dimensional Riemannian manifold of constant
sectional curvature and we let M be an m-dimensional embedded
submanifold of N . As described in the introduction, a conformally
invariant form on M is a differential form on M (determined by the
embedding M ↪→ N and the Riemannian geometry of N) that is left
unaltered by conformal change of metric on N to any other metric of
constant curvature. In the remaining part of this section we require
the following definition.

Definition. A conformal geometric p-form (or geometric form, for
short) of dimension m (0 ≤ p ≤ m) is an assignment ω which associates
to each pair (N, M), where M is an m-dimensional submanifold of N ,
a p-form ω(N, M), defined at “generic” points of M , which is smooth,
invariant and local in the sense that it satisfies the following three
properties:
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(i) ω(N, M) varies smoothly under smooth variation of M ,

(ii) ω(N, M) is invariant under conformal change of the metric on
N as described above,

(iii) The value of ω(N, M) at x ∈ M depends only on the r-jet of M
in N at x for some r < ∞.

We may similarly define conformal geometric p-vector fields or, more
generally, geometric tensors of mixed type. The meaning of “generic”
in the above definition depends on the case at hand; for curves it means
vertex-free, while for surfaces it means umbilic-free.

Now we discuss the notion of a generating set of conformal geometric
forms of dimension m. Suppose we have a collection of geometric
1-forms ω1, ω2, . . . , ωm such that for each pair (N, M) the 1-forms
ωk(N, M), where 1 ≤ k ≤ m, form a basis for the space of 1-forms at
generic points of M . We call such a collection a basis of geometric 1-
forms. By multiplication these forms yield geometric p-forms at generic
points of M , in terms of which an arbitrary geometric p-form can be
expressed as a linear combination with coefficients which are geometric
functions. Thus if we are given a basis of geometric 1-forms (or dually,
a basis of geometric vector fields) in order to describe all geometric
forms and fields it suffices to describe all geometric functions.

Let f be a geometric function. Then df is a geometric 1-form and
can be expressed as

df =
m∑

j=1

fjωj

where the fj ’s are also geometric functions, the partial derivatives
of f . Now let S be any collection of geometric functions. The
collection consisting of S and all the successive derivatives of elements
of S generate an algebra A ⊃ S. Finally we enlarge A to obtain
the algebra 〈S〉 ⊃ A ⊃ S consisting of all the composites of the
form F (a1, a2, . . . , ar) where F : Rr → R is a smooth function and
a1, a2, . . . , ar ∈ A. We call 〈S〉 the algebra of geometric functions
generated by S. It is clear that 〈S〉 is independent of the particular basis
of geometric 1-forms used to define the derivatives (always providing
that such a basis exists).
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Definition. A generating set for the geometric forms and fields
consists of

(i) A basis ωk, 1 ≤ k ≤ M of geometric 1-forms or vector fields,

and

(ii) A set S of geometric functions such that 〈S〉 consists of all
geometric functions.

Now we are in a position to state the following results.

Theorem 5.5 (cf. [15, Theorem 9.1]). The geometric invariants
ω, Q and T constitute a generating set for the geometric forms and
fields for oriented vertex-free curves in 3-dimensional space forms.

Theorem 5.6 (cf. [16, Theorem 32.1]). The geometric invariants
ξ1, ξ2, θ1, θ2, Ψ constitute a generating set for the geometric forms and
fields for doubly oriented umbilic-free surfaces in 3-dimensional space
forms.

We omit the proofs of these theorems. They are easily established by
induction, using the results of Section 4 (cf. [6]).

6. Some remarks on the invariants for curves. Consider
a curve γ in some 3-space of constant curvature. It follows from the
definition in Section 4 of vertex that the vertices of γ are invariant
under conformal transformation. It is also obvious that if γ lies in
the Euclidean plane, then the definition of vertex coincides with the
classical one (that is, a stationary point of the curvature). Now by the
classical 4-vertex theorem, every simple closed planar curve has at least
four vertices (see [6] for a simple proof). It follows immediately from
the above remarks that every simple closed spherical curve γ in E3 has
at least four vertices; indeed, if γ lies in a sphere S, then by inversion
in a sphere centered at some point in S\γ, the curve γ becomes planar
and one can apply the classical theorem. More generally, if γ is a curve
in a 3-manifold N of constant curvature, then we will say that γ is
spherical if γ lies in a totally umbilic surface in N . By passage to the
universal covering space of N and from there to Euclidean space, we
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obtain the following result (cf. 6]).

Theorem 6.1. Let γ be a simple closed null-homotopic curve in a
3-manifold N of constant curvature. If γ is spherical, then γ has at
least 4 vertices.

Let us now turn to the conformal torsion,

T =
2κ′2τ + κ2τ3 + κκ′τ ′ − κκ′′τ

ν5/2
,

of a curve γ in E3. Let us suppose for the moment that γ has non-zero
curvature κ and non-zero torsion τ . Then one has

ν5/2

τ2κ3
T =

[
1
τ

(
1
κ

)′]′
+

τ

κ
.

This expression is no doubt more familiar to the reader; as is well-
known, it equals zero precisely when γ is spherical (see [49]). Con-
sequently T is zero if and only if γ is spherical. Furthermore, our
assumption that κ and τ are non-zero can be weakened. Indeed, as
long as γ is vertex-free, one may always move γ by a conformal trans-
formation so that the curvature and torsion of the image curve are both
locally non-zero. So one has the following result.

Theorem 6.2. Let γ be a vertex-free curve in a 3-manifold N of
constant curvature. Then γ is spherical if and only if its conformal
torsion T vanishes identically.

Now consider a closed curve γ in E3 and suppose that γ is regular;
that is, its curvature κ is nowhere zero (and hence its torsion τ is
defined at all points). Then, according to Scherrer’s Theorem (see
[49]),

∫
τds = 0 if γ is spherical. In fact, Banchoff and White [2]

have shown that the residue (1/2π)
∫

τds mod 1, the “total twist,” is
a conformal invariant of the curve γ (see also [9]). We will show that
for generic γ the total twist is actually the reduction mod 1 of the R
valued conformal invariant (1/2π)

∫
γ

Tω.
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Theorem 6.3. Let γ be a regular closed vertex-free curve in a 3-
manifold N of constant curvature. Then

1
2π

∫
γ

Tω ≡ 1
2π

∫
γ

τ ds (mod 1)

where ω (=
√

ν ds = 4
√

(κ′)2 + κ2τ2 ds) is the conformal arc-length.

Proof. First note that from the definition of T one has

Tω = τ ds +
κ′2τ + κκ′τ ′ − κκ′′τ

ν2
ds.

Now let n denote the unit normal vector field to γ, let b denote its
unit binormal vector field and let α denote the angle between n and
κ′n + κτb (this latter vector field is nowhere zero because γ is vertex-
free). Then a simple calculation shows that

T ω = τ ds + dα.

This gives the required result by integration around γ.

7. Some remarks on the invariants for surfaces. Consider
a doubly oriented umbilic-free surface M in a 3-space N of constant
curvature. As in the previous paragraphs, let κ1 and κ2 denote the
principal curvatures of M , with κ1 > κ2, let X1 and X2 be the
corresponding orthonormal principal vector fields, let µ = (κ1 − κ2)/2
and let ξ1 = X1/µ and ξ2 = X2/µ. In this section we make 5 remarks.

(1) Since the vector fields ξ1 and ξ2 are conformally invariant,
they may be regarded as orthonormal vector fields for a conformally
invariant Riemannian metric on M (which is conformally equivalent
to the original metric inherited from N). The Gaussian curvature of
M with respect to this conformally invariant metric is consequently
a natural conformal invariant of M ; we denote it Kc and call it the
conformal curvature of M . This invariant was first introduced in [12].
In view of the results of Section 5, we must be able to express Kc in
terms of the elementary invariants θ1, θ2, Ψ, ξ1 and ξ2. Indeed, it is a
simple exercise to show that

(7.1) 4Kc = 2ξ2(θ2) − 2ξ1(θ1) − θ2
1 − θ2

2.
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It can be re-expressed as

(7.2) Kc =
K − ∆ log(µ)

µ2

where K is the Gaussian curvature of M with respect to the metric
induced on M from N and ∆ is the Laplacian on M with respect
to the same metric. When N is the round sphere S3, one can also
express Kc in terms of the L-valued functions of Section 3. Indeed, one
calculates easily that

1
2
{〈ξ1(ξ1(β)), ξ1(ξ1(β))〉 + 〈ξ2(ξ2(β)), ξ2(ξ2(β))〉
−〈ξ1(ξ1(β)), ξ2(β)〉2 − 〈ξ2(ξ2(β)), ξ1(β)〉2}

= 2 − Kc,

which should be compared to Equation (3.3). One may equally verify
that

Kc = 〈ξ1(ξ1(β)), ξ2(ξ2(β))〉.

(2) Instead of using the Laplacian ∆ on M , one may equally well use
the Laplacian ∆c determined by the conformally invariant Riemannian
metric on M . For any function f on M one has ∆f = µ2∆cf . Thus
for instance, the Willmore surfaces, which are the surfaces for which
∆H + 2µ2H = 0, are equally characterized by the equation

∆cH = −2H.

It is also of interest to calculate the Laplacian of the conformal Gauss
map β of M (see Section 3). A straightforward calculation, using
Equations (3.2), shows that M is a Willmore surface if and only if
one has (cf. [29]):

∆cβ = −2β.

(3) Now consider the case where M is an umbilic-free embedded
torus in S3. The Willmore conjecture states that

∫
M

µ2d(area) ≥ 2π2.
The value of 2π2 is attained by the Clifford torus: this is the minimally
embedded torus in S3 obtained by taking the pre-image under the Hopf
map of the equator of S2. It is known that the infimum of the Willmore
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integral
∫

M
µ2d(area), over all embedded tori in S3, is attained by some

torus and that this torus is a Willmore surface [34]. A strong version of
the Willmore conjecture is therefore: Willmore surfaces with minimal
Willmore integral can be mapped, by conformal transformation of S3,
to the Clifford torus.

(4) It is well known that up to an isometric motion of S3, an
embedded torus in S3 is the Clifford torus if and only if its principal
curvatures κ1 and κ2 are ±1 respectively (see [10]). This is equivalent
to the condition µ ≡ 1. Indeed, one implication is trivial, whilst if
µ ≡ 1, then one has

∫
M

H2d(area) =
∫

M

(µ2 + κ1κ2)d(area)

=
∫

M

(µ2 + K − 1)d(area)

=
∫

M

Kd(area) = 0,

using the Gauss-Bonnet Theorem. Hence H ≡ 0 and thus κ1 = −κ2 =
1.

One would however like to have a condition for a surface to be the
Clifford torus, up to conformal transformation of S3. To this end,
consider a torus of revolution M in E3; that is, an anchor ring. Let the
two radii of M be denoted r and R. It was known by Vessiot ([44, see
also 36]) that up to a conformal transformation, the anchor rings are
precisely the tori for which the two fundamental invariants θ1 and θ2

are zero. Moreover, it is well known that the Clifford torus is the image
under the stereographic projection of the anchor ring with R =

√
2 and

r = 1 (see [46). On the other hand, a direct calculation shows that for
a general anchor ring,

∆H + 2µ2H

µ3
=

2 − (R/r)2

4
.

Combining these observations, one has the following result:

Proposition 7.1. Let M be an embedded umbilic-free torus in
S3. Then M is a Willmore torus if the invariant (∆H + 2µ2H)/µ3
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is zero and M can be mapped by a conformal transformation of S3

to the Clifford torus if and only if all three invariants θ1, θ2 and
(∆H + 2µ2H)/µ3 are zero.

In particular, the Clifford torus and its conformal images are the
simplest conformal surfaces after the round spheres (the latter are
regarded as completely degenerate in conformal geometry since every
point is umbilic).

(5) In order to establish the Willmore conjecture for umbilic-free
tori, it suffices, in view of the above Proposition, to show that an
embedded torus, with (∆H + 2µ2H)/µ3 = 0 and minimal Willmore
integral, necessarily has θ1 = θ2 = 0. Notice that in fact it is only
necessary to show that θ1 and θ2 are constant. Indeed, by equation
(7.1), if θ1 and θ2 are constant, then integrating over M and applying
the Gauss-Bonnet Theorem, one has

0 =
∫

M

(θ2
1 + θ2

2)

and so θ1 = θ2 = 0.
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42. E. Vessiot, Contribution à la géométrie conforme. Cercles et surfaces cerclées,
J. Math. Pures Appliquées 2 (1923), 99 165.
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