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EXTREMAL DISKS AND COMPOSITION OPERATORS
ON CONVEX DOMAINS IN C"

PETER R. MERCER

ABSTRACT. We obtain results about function spaces on
strongly convex domains which are associated with the images
of Kobayashi extremal disks. As an application we study
composition operators on the Hardy function spaces of such
domains.

0. Introduction. Let 2 be a smoothly bounded domain in C™, and
let M C Q be a complex submanifold which intersects OS2 transversally.
It is natural to study function spaces on M in conjunction with function
spaces on 2. If Q = B, the unit ball, and M is a linear subspace, then a
theorem of W. Rudin (Theorem 1.2 below) shows that the Hardy spaces
HP(B) enjoy a simple relationship with the weighted Bergman spaces
on M. A. Cumenge studied this situation in much greater generality
in [7].

We focus on the situation where M is the image of a Kobayashi
extremal disk. We generalize Rudin’s result and make precise some of

Cumenge’s results for this special case. This work appears in Section
2 of this paper.

In Section 3 we apply these ideas, along with some work of M. Abate,
to initiate the study of composition operators associated with 2: Let
P : Q — Q be holomorphic. The composition operator Tg induced by
® is defined by T3 (f) = f o ® (f is a holomorphic function on ). For
Q = B and n > 2, Ty is not in general a bounded operator on H?(B)
[5, 6]. For Q strongly convex we obtain necessary conditions on & for
Ts to be a compact operator on HP (), thus generalizing some results
of B. MacCluer for which 2 = B [14].

In Section 1 we fix some notation and isolate some results (mainly
due to L. Lempert) which will be of subsequent use.
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1. Preliminaries. Let 2 be a bounded domain in C™. In everything
that follows, Q has a smooth (i.e., C*°) boundary 02 and is strongly
convex. We denote by B the unit ball in C™ centered at the origin and,
when n = 1, we write B = A, the unit disk. For Q; ¢ C", Q; c C™,
we denote by H (£, 2) the collection of holomorphic maps from €
to Qz.

We denote by kg the Kobayashi distance on Q [8, 9]. Since Q is
convex, it is given by

ko(z,w) =inf[ka(0,)) : 3f € H(A, Q) with f(0) =z, f(\) =w],

where ka is the hyperbolic distance on A [10]. kg is nonincreasing
under holomorphic maps. Denote by ¢ € H(A,Q) an associated
extremal disk [10, 19]:

ka(p(N), o(n) = ka(Ap) VA p€A.

Each extremal disk ¢ € H(A,) extends continuously to A and has
an associated retraction p = p, € H(£,2) such that p(Q2) = ¢(A) and
pop(A) = ¢(A) for all A € A [10, 11]. One can say much more:

Theorem 1.1. There is a domain Q' CC C™ and a biholomorphism
U e H(Q,Q') such that:

(a) Top(N)=(A0,...,0) for all X € A.

(b) For £ € OA we have (&,0,...,0) € 0, and the unit outward
normal there is precisely (€,0,...,0).

(c¢) @ is strongly convex near {(£,0,...,0) € C": || =1} C 0QY.

(d) Ifm e H(C™, C"™) is given by w(z1,... ,2n) = (21,0,...,0), then
Yop=moV.

(e) VU extends to a smooth map on Q and has nonvanishing Jacobian
determinant there.

Proof. Parts (a)—(d) are due to Lempert [10, 11]. For part (e),
Lempert [12] observes that ¥ extends smoothly to €, but does not
explicitly state that the Jacobian determinant J¥ is nonvanishing on
Q. It follows from (c) and [15, Lemma 1.3] that J¥ # 0 at points on
0 near {(&,0,...,0) € C" : £ € 9A}, and I. Graham has observed
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(unpublished) that ¥ has a biholomorphic extension to a neighborhood
of Q\p(OA). These observations ensure that J¢ # 0 on Q. o

For p € [1,00) we denote by HP(Q2) the pth Hardy space of holomor-
phic functions on 2, with norm given by

1/p
11l = |11l ze(ey = (sup /. If(Z)”dos(Z)> ,

e>0

where o, is Lebesgue surface measure on 2. = {z € C" : p(z)+¢ = 0}
and p is a C*° defining function for Q, i.e., @ = {z € C" : p(z) < 0}.
Whether ||f]||, is finite is independent of the choice of p [18]. There
should be no chance of confusion between the number p and the
retraction p appearing above.

Let dq(z) denote the (Euclidean) distance from z € Q to 09Q.
Theorem 1.1(e) ensures that ' is strongly pseudoconvex and that
do(¥(2)) ~ da(z). (The symbol ~ means that the ratio of the two
quantities is bounded above and away from zero independently of the
argument.) Thus an argument similar to that of [18, Section 3, Chapter
1] shows that

(1) fllaro) ~ [[f o ¥ ury ¥V f€HP(Q).

For n > 2 we denote by HY_,(A) the weighted Bergman space of
holomorphic functions on A, with norm given by

2r pl ' 1/p
s = (/ / F(re)P(1 — r2)" 21 dr d0> .
0 0

The following appears in [16, Section 1.4.4].

17

Theorem 1.2. Let © denote the orthogonal projection of C™ onto
the first coordinate. There is a constant ¢ = ¢(n) such that

[femllurs) = cllfllpn—=2  f€H, 5(A)
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2. Restrictions and extensions. In B, slices through the origin
are images of extremal disks, and orthogonal projections onto these
slices are their associated retractions. Thus, the following proposition
generalizes Theorem 1.2.

Proposition 2.1. We have ||f o o' o pllugra) ~ ||fllpn—z for all
f € Hy ,(A).

We remark that [7, Theorem 0.1] can be used to show that an
extension from a function g, where g o ¢ € H? ,(A), to a function
G € HP(Q) exists; our result gives such an extension explicitly.

We prove this result by a sequence of lemmas. First, we assume
that © has the special form that Q' enjoys in Theorem 1.1 (a)—(d).
We assume further that €2 is strongly convex, so that 2 is given by a
smooth strongly convex defining function p.

It is convenient to use real cylindrical coordinates on RN ~ C™, so

that the point (re?,z3,... ,zy) € RY is the point (zy,...,2,) € C",
where z; = re®® and N = 2n. For r and @ fixed we identify the point
z = (re? x3,...,zx) with the point # = (z3,...,2x) € RV72, and

we define the function p on RYN=2 by j(z) = p(re®, ).

The domain Q.9 = {2 € RY~? : p(2) < 0} is smoothly bounded
and strongly convex. It therefore has a positive definite (symmetric)
(N —2) x (N — 2) Hessian matrix H (&) = [jr(&)], where subscripts
denote partial derivatives. H (Z) is obtained by deleting the first two
rows and columns of the positive definite (symmetric) N x N matrix

H(z) = [pji(2)]-
Let Ao(z), \°(z) > 0 be the smallest and largest eigenvalues of H(z).
We have then for each unit vector v € RV 2%
Xo(z) <vTH(@)v < M\(z)  Vaz e oQ.
Now the eigenvalues of H(z) are a continuous function of z, so by

compactness we may assume that Ao and A\° are independent of z.

The normal radius of curvature r,(2) at & € 9.9 in the direction of
the unit vector v € T;(9€Q,9) is given by
_ IVa@)|]

ro(#) = vaI(i)v '
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Thus, we have the following:
Lemma A. We have r,(2) ~ ||Vp(2)]| for all (re?, ) € 9.

Lemma B. Once magnified by a factor of (1 — v2)~Y2 in each
variable, then as r — 1, 0Q¢ tends to a nondegenerate ellipsoid in
RN=2 (which depends on 6).

Proof. Let 0 = (0,...,0) € RY~2 and expand p about (€', 0, ... ,0):

~ ~ ]_ A~ A
p(rezgax& ,LL'N) :ﬁ(O) +& Vﬁ(O) 5 H(O)QAT
+0(|2]*) as |2 = 0.
Set t = (1 —r2)'/2, zj =tuj, 3<j<N,and &= (us,...,un):

p(re? tus, ... tuy) = p(0) + ti - Vp(0)
1
+ 2t2 aTH0)a+ O(t*) ast— 0.

Expand 5(0) = p(re®,0,...,0) about r = 1:

Expand @ - Vj(0) = (0,0, 4) - Vp(re ...,0) about r = 1:

i- Vp(0) = (0,0,4) - Vp(e”,0,... ,0)
9 )
+(r— l)a [(0,0,4) - Vp(re®,0,...,0)]|,—1

+0((r—1)?% asr—1
=0+0O(r—1) asr—1 (by Theorem 1.1(b))
=0(*) ast—0.
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On the surface p(re®, tus, ... ,tuy) = 0 then, (2) reads
1 ~ A
—O(t?) = tO(t*) + §z%TH(o)a +O(t*) ast— 0.

Divide by t? and let ¢ — 0 to obtain

~

1
iﬂTH(l'o)ﬁ = Kg,

where =g = (¢%%,0,...,0) and Ky = —lim,_,; p(re®®,0,...,0)/(1 —
r2) > 0. As H is (symmetric) positive definite, the proof is complete.
O

Since Vp # 0 on 99,9, we may assume that py = py # 0 locally
on 0€¢. Thus (Lebesgue) surface measure on 9Q and 99, are given
respectively by

dazwdwl/\---/\dm\zl,

pn(z

and —_
s~ V@I,

= z3 A Adey_ 1.

pn(Z)

Substituting the latter expression into the former and observing Theo-
rem 1.1 (a), (d), we obtain the following:

Lemma C. We have

do — |Vp(re, zs,... ,zn)|
Hvﬁ(mi’n 7$N)||

dogrdrdf.

Proof of Proposition 2.1. By (1) we may assume that  has the special
form that Q' enjoys in Theorem 1.1, so it suffices to show that

1Elp ~ Ifllpn—2 V€ HL 5(A),

where F' € H(Q) is given by F(zy,...,2,) = f(21)-
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To this end, we begin by showing that

Vol 2\n—2
(3) / —dopg ~ (L—1r°)" for r near 1.
00,0 |1Vl

By Theorem 1.1 (c) there is a § > 0 such that
{(#1y-++,2n) €C" i |z >1 -6} NQ
is strongly convex near 0f). Thus, Lemma A-C are applicable in

establishing (3).

Since Vp # 0 on the compact set 02 and p is smooth, by Lemma A
we have

Vol L

- VY (re', ) € 6Q.
IVa@) ~ ro(@)
In the integral
dog(&
[ 5 70(2)
00,6 |1Vl prei® 30 Tv(E)
we make the change of variables z; = tu;, 3 < 7 < N, where

t = (1 —1r2)'/2 to obtain

/ tN SdO'TQ( ) tN74/' do‘rg(’fl,)
p(rei? ta)=0 t’l‘v( ) p(reif ta)=0 TU( )

Now for r near 1 (i.e., t near 0), Lemma B shows that this last integral

is bounded above and away from zero independently of #. Finally,
tN=% = (1 — r%)"~2 and we have established (3).

If f € H? ,(A) is continuous on A, then F' is continuous on , and
by Lemma C we have

27
foerao= [ f,r
o0 Qg

2

" ; IIV I

= f(re?? / doer dr df.
/ /0'( W Jo., 1941

So in this case the result follows from (3). For a general f € HY ,(A)
the result follows from a limiting argument arising from the definition
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of || - ||p; for € > 0 small enough, the level sets p + ¢ = 0 retain all the
relevant properties of p = 0. ]

The next proposition can be proved directly with the help of Theorem
1.1 or by applying [7, Theorem 0.1]. We omit the proof. The
subsequent corollary is immediate.

Proposition 2.2. We have ||f o ¢||p,n—2 < ||fllp for all f € HP(Q).
Corollary 2.3. We have ||f op|l, S |Ifllp for all f € HP(Q).

(A(z) < B(x) means that the quotient of A by B is bounded above
by a constant independent of z.)

By [14, Lemma 1.5] we have that

1 r
| [ ieera-rrtad sirod, . Vi@,

Changing the order of integration we obtain

(4)

1
(n1)! / AFoRlOP ("t S ol s VS € Q)

which will be of subsequent use.

Q) and define the composition

3. An application. Let ® € H(Q,
) = f o ®. Corollary 2.3 says that

operator T'=Tg on H(Q2,C) by T'(f
T, is a bounded operator on HP((2).

Example 3.1. The composition operator 1" = T}, is not compact on
H?P(Q).

Proof. There is a sequence {f;} C HY_,(A) with || fj||p,n—2 = 1 such
that ||f; — fxllpjn—2 > 0 for all j # k. Set F; = f; oo~ ! op, then by
Proposition 2.1, {F;} C H?(Q) is a bounded set, and T is the identity
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there. Again, by Proposition 2.1, we have
0 <|Ifj = fillpm—2 SIITF; =TFyll,  Vi#k

and the proof is complete. ]

Assume now (with no loss of generality) that 0 € Q. Let ® € H(Q2,Q)
be without fixed points. Let r; € (0,1) with r; 1 1 and set ®; = r;®.
Then ®;(Q2) € Q and so there is a w; € Q such that ®;(w;) = w;.
Up to a subsequence we may assume that w; — = € 0€2. The point =
(which is unique) is called the Denjoy-Wolff point for ®; it is the point
to which the iterates of ® converge [2]. Obtaining it in this fashion is
by now standard [13, 2].

Boundary estimates for kg ([1, Propositions 1.2, 1.3]) provide con-
stants C7, Cy and C5 > 0 such that

ko (0, w;) — ka(0, ®(w;)) = ka(0,w;) — ka(0,w;/r;)

1 1
<Cp— > log do(wj) + Cs + 510g da(w;/rj)

1. da(w;/ry) .
< Cs+ = log —222 < C v 3.
>~ U3 + 2 0og dQ (’LU]) >~ L3 J
On the other hand, the quantity kq (0, w) — kq(0, ®(w)) is bounded be-
low independently of w by the triangle inequality and the nonincreasing
property of kq. Thus there is an A > 0 such that

1
(5) limlnf[kQ(O,w) — ka(0,®(w))] = 3 log A.
We fix some more notation. For £ € 02, denote by s € H(A,Q) the
unique continuously extended extremal disk such that ¢¢(0) = 0 and
pe(1) = £ [3, Proposition 1.7]. Denote by pe¢ the associated retraction
onto g¢(A) C Q.

Lemma 3.2. [4, Corollary 3.3]. Let Q € C" be smoothly bounded
and strongly convez, and let ® € H(,) be such that (5) holds for
some x € 0. There is a y € 052 such that

. 1=, op,0®op,(t)
lim

exists.
t—1 1—-t¢
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We come to the main result of this section, the proof of which is
modeled after the analogous result for B = Q appearing in [14]. We
omit some of the details.

Proposition 3.3. Let Q@ € C", n > 2, be smoothly bounded and
strongly convez, and let ® € H(Q,Q). If T = Ts is a compact operator
on HP(Q), then ® has a unique fized point in .

Proof. Assume that ® has no fixed points; let z,y € 9Q be given by
Lemma 3.2. The functions

(0]

fd»-(ajjﬁj>w’o<a<1

are a bounded family in H? ,(A) and so by Proposition 2.1, { fa 050;1 o
Py} is a bounded family in H?(2). It is clear that F, = fao%;lopy =0
uniformly on compact subsets of 2 as a — 0. If T is compact, it must
be the case that T'(F,) = F,o® — 0 in HP(Q) as o — 0. (This
(elementary) compactness criterion is provided by [17, Theorem 2.5],
which is easily seen to hold in our more general situation.)

By Proposition 2.2, (4) and Lemma 3.2, we have, however,

[Fa 0 @[} 2 [|Fa 0 @0 goll

p,n—2

1
szn”/ [Fo0 @0 o, (8)P(L— [t)" " dt
—1

1 n—1
> (n— 1)_1/ a(l—t)"1dt
~ 0 11—¢ytopy0®op,(t)n

1
> (n — 1)*1/ a(l —t)* tdt >0,
0

which is the desired contradiction.

If ® has two fixed points z,w € (2, then there is an extremal disk
v € H(A,Q) such that [20, Theorem 4.1]

{z,w} Cp(A) c{£e: () = ¢}
If p is the associated retraction onto ¢(A) we have for each f € HP(Q)
T,Ts(f) = Fo®op=Fop=Ty(f).
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Now T}, is bounded by Corollary 2.3, so if Ty is compact, then 1,75 =
T, must be compact. This contradicts Example 3.1, and we are done.
O

We point out that the angular derivative of a map ® € H(Q2,) at a
point x € 0N is defined to be the limit appearing in Lemma 3.2, when
it exists (see [4]). Thus the above proof contains the following:

Corollary 3.4. If Te is a compact operator on HP(Q), then the
angular derivative of ® exists at no point of 0S).
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