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THE RIEMANN-HILBERT PROBLEM
FOR SINGULAR POSITIVE LOOPS

EDWIN J. BEGGS

0. Introduction. Let g : S1 → Mm(C) be a matrix valued function
on the unit circle in C. The Riemann-Hilbert problem is concerned with
factorizing g into the product of two matrix valued loops, one analytic
inside the circle, and the other analytic outside. This problem arises
naturally in the inverse scattering procedure for solving some nonlinear
partial differential equations. In this method the Cauchy data for the
system is converted into the scattering matrix S(λ), a matrix valued
function of a parameter λ taking values in R∞ ∼= S1. From this we
can calculate the reflection g(λ, x, t), which is a loop valued function on
space-time, and the corresponding analytic factors are solutions of the
linear system of an integrable classical field equation [5, 6]. However,
in the case of the chiral equation there is a complication; the loop g
may not exist for all scattering data. To be more specific, the inverse
scattering procedure supplies a formula for the reflection at x = t = 0
of the form g = qp−1, where q and p are loops calculated by upper
and lower triangular factorization of the scattering. But there is no
reason why p should be invertible on the circle. This problem has an
interesting physical interpretation; these singular reflection loops arise
in the transitional cases between solutions with different numbers of
solutions. To find such a state all we have to do is to continuously
deform the initial data for a solution with one number of solutions to
initial data for another number of solutions. To examine the topol-
ogy of the space of solutions to the chiral equation we should therefore
pay some attention to these degenerate cases. In the chiral equation
the situation can be partly remedied by defining a positive modified
reflection g̃ = qq̄, but this may still fail to be invertible on the circle.
This will be explained further in a future paper [3]. This brings us to
the subject of the present paper, which is to solve the Riemann-Hilbert
problem for positive loops which may fail to be invertible. The answer
we shall obtain is that a continuous positive loop can be factored if its
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log (in the sense of the calculus of normal operators) is integrable on
the circle.

In the references [7] and [11] the problem is approached from the
point of view of stochastic processes. In [1] the problem of L∞

continuity of the factorization is considered in the nonsingular case
by putting L2 bounds on the derivatives of the positive loops being
factorized.

The emphasis of the present paper is on an elementary method of
solving the nonsingular case, in which the continuity and smoothness
of the factorization are obvious. In addition, the inverse scattering
method requires the factors to be evaluated at particular points on
the circle. Some care is required in this, as there are continuous loops
which factor into discontinuous ones [8]. The problem of loops which
can be evaluated at points is also treated by elementary functional
analysis. The somewhat strange class of loops which can be evaluated
at a point used in the paper is justified on two grounds. Firstly, it
is the natural class for the functional analytic proof. Secondly, the
fact that it is more general than the usual condition of differentiability
at a point considerably eases the analytical difficulties in the inverse
scattering procedure. The points where the evaluation must take place
are precisely the points where the scattering is most likely to be badly
behaved. Again there is a simple corollary that the factorization process
is smooth.

The singular case is treated as a limit of the nonsingular case. In this
case, the space of loops is not a smooth manifold, but the continuity
result still holds if the correct topology is used.

1. Definitions of various operators on L2(S1, Mm(C)). We take
the space L2 to consist of the Lebesgue square integrable functions from
the circle to the m×m complex matrices, with the usual inner product

(1.1) 〈f, k〉 =
∮

S1
Trace (f(z)k(z)∗).

(Conventionally, we take the integral with respect to angular measure
on the circle giving it length 2π.) The norm || · ||2 on L2 is the usual
L2 norm of the pointwise matrix operator norm on the circle. This is
equivalent to the norm derived from the inner product. Similarly L1 is
defined using the L1 norm of the matrix operator norm.
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The space L∞(S1, Mm(C)) is defined to be the space of essentially
bounded measurable matrix valued functions, with norm || · ||∞ the
essential supremum of the matrix operator norm.

Then L+ can be defined to be the closed subspace of L2 consisting
of those functions which have only got positive powers of z (including
z0) in their Laurent series, and L− as the functions with only negative
powers (including z0).

Definition 1.2. Define the following maps to the set of holomorphic
functions on the unit disk ∆+ = {z ∈ C : |z| < 1} and ∆− = C∞−∆+.
(Here C∞ is the Riemann sphere.)

π+ : L1(S1, Mm) → Hol (∆+, Mm)

and

π− : L1(S1, Mm) → Hol (∆+, Mm).

π+(f)(z) =
1
2π

∮
ζ

ζ − z
f(ζ) � dµζ z ∈ ∆+(1.2a)

π−(f)(z) =
−1
2π

∮
z

ζ − z
f(ζ) � dµζ z ∈ ∆−(1.2b)

using angular measure µ to integrate over ζ ∈ S1. These functions have
a particularly simple form when expressed in terms of the Laurent series
(1.2c)

f(z) =
∑
n∈Z

fnzn, π+f(z) =
∑
n≥0

fnzn, π−f(z) =
∑
n≤0

fnzn.

From these expressions it is automatic that π+ : L2 → L+ and
π− : L2 → L− are continuous.

Definition 1.3. If f is a matrix valued function analytic on ∆+

(respectively, ∆−) define f̄ , a function analytic on ∆− (respectively,
∆+), by the formula f̄(z) = (f(1/z̄))∗. Note that this bar construction
gives an antilinear isomorphism between L+ and L−.
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Proposition 1.4. The operations of left and right multiplication
by L∞ loops on L2 are continuous, and the corresponding left (L) or
right (R) “multiply by” maps are isometries from L∞ to B(L2, L2), the
bounded operators on L2.

Proof. We consider only the left multiplication case. Suppose that
g ∈ L∞ and that x ∈ L2. Then in the L2 norm || · ||2

||Lgx||22 = ||gx||22 =
∮

|g(z)x(z)|2 ≤ ||g||2∞ � ||x||22.

Note that the operator norm of Lg is actually ||g||∞ since we could have
chosen x to be the characteristic function of a set of strictly positive
measure on which |g(z)| almost reaches its essential supremum.

Now it is not too difficult to see how to factor a large class of L∞

loops. If for g ∈ L∞, the map π+Lg : L+ → L+ is one-to-one and
onto, then define v to be (π+Lg)−1(1). Now gv is in L−, and its zeroth

Laurent coefficient is (gv)0 = 1. The loop g can now be expressed in
the form gv = w, where w ∈ L− and v ∈ L+, and v and w are uniquely
defined by the property that w0 = 1. The set of g for which this can be
done is open in L∞ and contains 1. Moreover, if we restrict attention
to this open set, then v and w are smooth functions of g, since inversion
of one-to-one and onto operators is smooth in a Hilbert space. We are
left with two problems: for which g is the map one-to-one and onto,
and when can we invert v to express g as a product of elements of L+

and L−?

2. How to factor positive invertible loops. Here we show that
if g ∈ L∞ is positive and invertible, g−1 ∈ L∞, then the map π+Lg is
one-to-one and onto, and that the corresponding v = (π+Lg)−1(1) is
invertible in L+.

Proposition 2.1. If g ∈ L∞(S1, Mm) takes strictly positive values
for almost all points in S1, then the map π+Lg : L+ → L+ is one-to-
one.

Proof. If not, there is a v ∈ L+ so that π+gv = 0. Thus, gv = w for
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some w ∈ L− with w0 = 0. Then the function

v̄gv = v̄w = w̄v

is in L1 and has all its nonconstant Laurent terms equal to zero since
it is both the product of two elements of L+ and of two elements of
L−. This means that the function is constant almost everywhere, and
that constant is v̄0w0, which is zero. Then since v̄gv is zero almost
everywhere on S1, we have

0 =
∮
〈v̄gv, 1〉 =

∮
〈gv, v〉.

Since g is strictly positive almost everywhere on S1, this means that
v = 0 almost everywhere.

Proposition 2.2. If g ∈ L∞(S1Mm) takes strictly positive values
for almost all points in S1, then the map π+Lg : L+ → L+ has dense
image.

Proof. If u ∈ L+ is perpendicular to the image of π+Lg, then for all
v ∈ L+,

〈π+gv, u〉 = 〈gv, u〉 = 〈v, gu〉 = 〈v, π+gu〉 = 0.

Thus π+gu is zero, and hence u is zero by the previous proposition.

Now we are left with the problem of showing that π+Lg has closed
image.

Proposition 2.3. There is a strictly positive constant C depending
only on m, so that for all positive L∞(S1, Mm(C)) loops g with L∞

pointwise inverse g−1, the operator norm of

(π+Lg)−1 : image π+Lg(L+) → L+

is less than or equal to ||g−1||∞/C.
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Proof. First suppose that a is a strictly positive matrix with eigen-
values λ1, . . . , λm. Then for x ∈ Mm we can change to an orthonormal
basis of eigenvectors of a by a unitary transformation, and in this basis

〈ax, x〉 =
∑
i,j

λixij x̄ij ≥ min{λi} � 〈x, x〉.

Since min{λi} = (max{λ−1
i })−1, and since the operator norm of a

positive matrix is its maximum eigenvalue,

〈ax, x〉 ≥ 1
|a−1|op � 〈x, x〉.

Applying this inequality pointwise to the loop g and v ∈ L+,

〈gv(z), v(z)〉 ≥ 1
|g−1(z)|op � 〈v(z), v(z)〉 ≥ 1

||g−1||∞ � 〈v(z), v(z)〉,

and integrating round S1,
∮

S1
〈gv, v〉 =

∮
S1
〈π+gv, v〉 ≥ 1

||g−1||∞ �
∮

S1
〈v, v〉.

Using the equivalence of the operator and inner product norms on m×m
matrices, there is a constant C = C(m) > 0 so that

||π+gv||2||v||2 ≥ C

||g−1||∞ � ||v||22,

and dividing by ||v||2 gives the required result.

Corollary 2.4. Under the conditions of Proposition 2.3, the image
of the map π+Lg : L+ → L+ is complete and therefore closed.

Proof. This is immediate from mapping back a Cauchy sequence in
the image to L+ by Proposition 2.3.

Now we know enough to obtain the formula gv = w according to the
last paragraph of Section 1, but we still have to find if v and w are
invertible:
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Proposition 2.5. If g is a positive L∞ loop which is invertible
almost everywhere on S1, and if gv = w for some v ∈ L+ and w ∈ L−

with w0 = 1, then v−1 ∈ L+ and w−1 ∈ L−.

Proof. As in Proposition 2.1 the expression v̄gv = w̄v = v̄w is a
constant, v̄0. Now if v̄0 were not invertible, there would be a nonzero
vector a ∈ Cm so that v̄0a = 0. Then

0 =
∮
〈v̄gva, a〉 =

∮
〈gva, va〉,

and since g is strictly positive almost everywhere, this means that
va = 0 almost everywhere. Thus, gva = wa = 0 almost everywhere
on S1, so wa is zero on ∆−. But then w(z = ∞)a = w0a = a = 0, a
contradiction. We deduce that v̄0 is invertible, and then

(v̄−1
0 v̄)w = 1 and (v̄−1

0 w̄)v = 1.

Now the results can be combined in the following theorem:

Theorem 2.6. If g is a positive L∞ loop so that g−1 is also in
L∞(S1, Mm), then there are functions v ∈ L+ and w ∈ L− with w0 = 1
so that gv = w. Further, v−1 ∈ L+ and w−1 ∈ L−, and v and w are
smooth functions from the set of loops g with these properties (given the
L∞ norm) to L2. Alternatively, we can write g = yȳ, where y ∈ L−

also depends smoothly on g.

Proof. The existence and smoothness of v and w so that gv =
w is shown in Propositions 2.1 to 2.5 and the discussion following
Proposition 1.4. Now from the proof of Proposition 2.5, we find
w̄v = v̄0, an invertible positive matrix, thus

g = wv−1 = wv̄−1
0 w̄ = (wv̄

−1/2
0 )(wv̄

−1/2
0 ),

so define y = wv̄
−1/2
0 . Taking the square root is a smooth operation by

8.3.
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3. The problem with noninvertible loops. In the previous
section we assumed that the loop that we wanted to factor had an L∞

inverse. It might be hoped that the same procedure could work for
more general loops, but we shall now show that the map π+Lg cannot
be onto even under relatively mild noninvertibility conditions. This
result is adapted from a proof by Carathéodory [4]. First we prove a
lemma:

Lemma 3.1. If g ∈ L∞(S1, Mm) is invertible almost everywhere, but
g−1 /∈ L∞, then given any ε > 0, there is a unit vector a ∈ Cm, and a
set N of strictly positive measure on the circle, so that |g(z)a| < ε for
all z ∈ N .

Proof. If not, then for all unit vectors a,

µ{z : |g(z)a| < ε} = 0,

where µ is angular measure on the circle. Since there is a countable
dense subset of the set of unit vectors, this proves that

µ{z : |g(z)a| ≥ ε|a| ∀ a ∈ Cm} = 2π.

Thus |g−1(z)|op| ≤ 1/ε almost everywhere, a contradiction.

Proposition 3.2. Suppose that g is an L∞ loop which is strictly
positive almost everywhere, but that g−1 /∈ L∞. Then the map π+Lg :
L+ → L+ is not onto.

Proof. If it were onto, then the open mapping theorem would imply
that it was an isomorphism, since we already know that it is one-to-
one by Proposition 2.1. But, given any ε > 0, we will find an x ∈ L+

so that ||π+gx||2 ≤ ε||x||2, and so show that the map cannot be an
isomorphism.

First we use the result of the last lemma to show that there is a
matrix a of unit norm and a subset N of S1 of strictly positive measure
so that

|g(z)a| < ε/2 ∀ z ∈ N.
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Then we define a step function u : S1 → R by

u(z) =
{

C/µ(N) z ∈ N

−C/(2π − µ(N)) z ∈ S1 − N ,

where µ is the usual measure giving the circle length 2π, and C is a
constant which we shall determine later. Now extend u to a harmonic
function on ∆+ by using the Poisson kernel, and let y be a harmonic
conjugate to u on ∆+ normalized so that y(0) = 0. Then the function
f = eu+iy is analytic on ∆+, and since |f | = eu, it follows that f is in
L+. The L2 norm of f is

||f ||22 = µ(N) � e2C/µ(N) + (2π − µ(N)) � e−2C/(2π−µ(N)).

If we define x = af , then ||x||2 = ||f ||2 and

||gx||22 ≤
(

ε

2

)2

µ(N) � e2C/µ(N)+ ||g||2∞(2π − µ(N)) � e−2C/(2π−µ(N)).

Thus we can choose C sufficiently large so that ||gx||2 < ε||x||2.

This result is rather worrying; however, the fact that we can factor
some noninvertible loops is easily seen in the commutative case (m =
1). Before continuing it will be convenient to define new projection
operators

◦
π+

( ∑
n∈Z

anzn

)
=

a0

2
+

∑
n>0

anzn

and

◦
π−

( ∑
n∈Z

anzn

)
=

a0

2
+

∑
n<0

anzn.(3.3)

This definition of the projections has the advantage that the following
statements hold:

(3.4) g =
◦
π+g +

◦
π−g and

◦
π+g =

◦
π−ḡ.
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Now look at the case where g is a one-dimensional positive loop, i.e.,
g : S1 → R+. If we assume that log(g) is in L2, then we can write

log(g) =
◦
π+ log(g) +

◦
π− log(g),

so g can be factorized as

g = ww̄ with w = exp(
◦
π− log(g)).

Note that |w| =
√

g, so the corresponding v = exp(−◦
π+ log(g)) may

not be in L2.

4. A retraction from continuous positive loops to strictly
positive loops. The strategy to factorize noninvertible loops is the
following: if g is a positive Hermitian loop with some singular values,
we try to factorize g by deforming it into an invertible loop, then factor
the resulting invertible loop and take the limit as we tend to the original
noninvertible loop. To construct the retraction that we require for this
procedure, we use the spectral theory of normal operators [9].

Let b : R → R be a smooth positive decreasing function such that
b(x) = 1 for all x ≤ 1 and b(x) = 0 for all x ≥ 3/2. Then define a
continuous function f : [0, 1] × (0,∞) → (0,∞) by

(4.1) f(t, r) = 1 − b

((
r +

1
r

)
(1 − t)

)
+ r � b

((
r +

1
r

)
(1 − t)

)
.

Conventionally we add f(t, 0) = 1 for all t. Also note that f(t, r) = 1
for all t < 1/4 and f(1, r) = r for all r > 0. Now the induced function
f : [0, 1) → C0(R+,R+) is continuous and smooth on (0, 1), where
the uniform norm is used for the space of continuous functions. The
differential

(4.2) ft(t, r) = (1 − r)
(

r +
1
r

)
� b′

((
r +

1
r

)
(1 − t)

)

is negative for r ≤ 1 and positive for r ≥ 1. Further, on any compact
subset of R∗+, f(t, r) is eventually constant, i.e., there is a T < 1 so
that f(t, r) = r if t ≥ T and r is in the compact set.
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FIGURE 1.

Now use the spectral theory of normal operators to define

(4.3) g(t) = f(t, g) t ∈ [0, 1]

for g a continuous positive loop. Then g(0) = 1, g(1) = g where g is
invertible on S1, and the function

g : [0, 1) → C0(S1, Mm)

is continuous and smooth on (0, 1). Note that g(t) → g uniformly
as t → 1 in any compact subset K of the region in S1 where g is
invertible. In fact, g(t) is eventually constant on such K. In addition
g(t) is positive and invertible everywhere on S1 for t < 1.

5. Factoring positive continuous noninvertible loops. Com-
bining the retraction of Section 4 with Proposition 2.6, we have demon-
strated the existence of a continuous function

(5.1) y : C0(S1, Mpos
m ) × [0, 1) → L−



1242 E.J. BEGGS

which is smooth with respect to the interval valued parameter on
C0(S1, GLpos

m ) × (0, 1) constant for t ∈ [0, 1/4) and has the property
that

(5.2) g(t) = y(g, t)y(g, t) ∀ (g, t) ∈ C0(S1, Mpos
m ) × [0, 1).

(Here Mpos
m denotes the positive matrices). Now it might be thought

that all we have to do is to take the limit of y as t → 1; however, we
shall have to modify y and impose extra conditions on g before this
is possible. Start by differentiating the equation (5.2): (we use ġ for
dg/dt, etc.)

(5.3) ġ(t) = ẏȳ + y¯̇y, t ∈ (0, 1).

This implies that

(5.4) y−1ẏ =
◦
π−(y−1ġȳ−1) + a(g, t),

where a(g, t) is a constant anti-Hermitian loop depending continuously
on g, t ∈ C0(S1, Mpos

m ) × [0, 1). To simplify the situation enough to
take the limit as t → 1, we need to remove a(g, t) and estimate the
size of the remainder. To get rid of a(g, t), take a unitary matrix value
function u(g, t) and observe that

(5.5) (yu)−1 d

dt
(yu) = u−1 ◦

π−(y−1ġȳ−1)u + u−1au + u−1u̇.

Let u(g, t) satisfy the condition u̇u−1 = −a, (which can be solved by
right invariant integration from the starting point u(g, 0) = 1), and
observe that u is a continuous function

u : C0(S1, Mpos
m ) × [0, 1) → Um(C)

which is smooth with respect to the interval valued parameter on
C0(S1, GLpos

m ) × (0, 1) and constant for t < 1/4. Now define a new
loop x = yu, and then (5.5) becomes

(5.6) x−1ẋ =
◦
π−(x−1ġx̄−1) t ∈ (0, 1).

Again x(g, t) is continuous on C0(S1, Mpos
m ) × [0, 1), smooth with

respect to the interval valued parameter on C0(S1, GLpos
m )× (0, 1), and

constant (equal to 1) for t < 1/4.
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Now we can see what happens if we try to take the limit of x(g, t) as
t → 1. The simplest way to look at this problem is to substitute

(5.7) x(g, t) =
√

g(t) � c(g, t)

where c is a unitary loop. Putting this expression into (5.6) gives a
differential equation for c:

(5.8) c−1ċ + c−1
√

g−1

(
d

dt

√
g

)
c =

◦
π−(c−1

√
g−1ġ

√
g−1c).

By definition of the retraction,
√

g commutes with ġ (since
√

g(t) =√
f(t, g) and ġ = ft(t, g)), and (d/dt)

√
g = (1/2)g/

√
g, so (5.8) can be

rewritten as

(5.9) c−1ċ +
1
2
c−1

(
d

dt
log(g)

)
c =

◦
π−

(
c−1

(
d

dt
log(g)

)
c

)
.

Now use the formula for
◦
π−,

(5.10)
◦
π−(k)(z) = − 1

2π
�
∮

z

ζ − z
� k(ζ) − 1

2
� k0.

In our case k = c−1((d/dt) log(g))c is Hermitian, and we only want the
anti-Hermitian pat of

◦
π−(k) since c is unitary, so

(5.11) c−1ċ(z) = − 1
2π

∮
imag

(
z

ζ − z

)(
c−1

(
d

dt
log(g)

)
c

)
(ζ),

where the integration is over ζ ∈ S1 with respect to angular measure.

We should now look at c−1ċ to see if c tends to a limit as t → 1. At
first sight there are two problems, firstly (5.11) is only valid for |z| < 1,
and secondly even if we put |z| = 1, the integrand in (5.11) has a
singularity. But the choice of retraction was made to make this process
simpler. If z0 ∈ S1 is in the interior of the complement of the singular
points of g, then there is also a radius 4δ open disk about z0 in the
interior. Then ġ(t) vanishes in the radius 2δ disk for all t greater than
some T (δ, z0) < 1. Now the integral (5.11) is continuous as a function
of z in the radius 2δ disk for t > T , so we can consider z to lie on the
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circle in this disk. Further, if z is in the radius δ disk about z0, then
|z/(ζ − z)| ≤ 1/δ for any ζ for which c−1((d/dt) log(g))c is nonzero if
t > T (δ, z0). Then if 1 > t > T (δ, z0) and |z − z0| < δ, the following
inequality holds in operator norm

(5.12) |c−1ċ(t, z)| ≤ 1
2πδ

�
∮ ∣∣∣∣ d

dt
log(g(t, ζ))

∣∣∣∣.
We would like to use this equation to show that c(t) converges uniformly
in the radius δ disk Bδ(z0) as t → 1. Fortunately, this can be done by
observing that since g is bounded, (d/dt) log(g) is negative definite for
large enough t, say for 1 > t > T ′(δ, z0) > T (δ, z0). Now the following
result can be used to make sense of the integral:

Proposition 5.13. There is a linear function α : Mm(C) → C
which is real on the Hermitian matrices, and which has the property
that

|F |op ≤ α(f) for F a positive linear operator, and
|F |op ≤ −α(f) for F a negative linear operator.

Proof. Given an orthogonal basis {ei} for Cm, define

α(F ) = 6m2

( ∑
k

〈Fek, ek〉 +
∑
k,j

〈F (ek + ej), ek + ej〉

+
∑
k,j

〈F (ek + iej), ek + iej〉
)

.

Continuing from (5.12), if T ′′ > T ′ and z ∈ Bδ(z0), then

(5.14)

|c(T ′′, z) − c(T ′, z)| =
∣∣∣∣
∫ T ′′

T ′
ċ(t) � dt

∣∣∣∣
≤

∫ T ′′

T ′
|c−1ċ(t)| � dt

≤ 1
2πδ

�
∫ T ′′

T ′

∮ ∣∣∣∣ d

dt
log(g(t))

∣∣∣∣ � dφ � dt
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(φ is the angular variable on S1). Since the integrand is positive we
can reverse the order:

(5.15) |c(T ′′, z) − c(T ′, z)| ≤ 1
2πδ

�
∮ ∫ T ′′

T ′

∣∣∣∣ d

dt
log(g(t))

∣∣∣∣ � dt � dφ

As (d/dt) log(g(t)) is negative definite, the inequality can be rewritten
using α,

(5.16) |c(T ′′, z) − c(T ′, z)| ≤ − 1
2πδ

�
∮ ∫ T ′′

T ′
α

(
d

dt
log(g(t))

)
� dt � dφ,

and on taking α outside the integral,
(5.17)

|c(T ′′, z)−c(T ′, z)| ≤ − 1
2πδ

�
∮

α

( ∫ T ′′

T ′

d

dt
log(g(t)) � dt

)
� dφ

≤ − 1
2πδ

�
∮

α(log(g(T ′′)) − log(g(T ′))) � dφ

≤ |α|
2πδ

�
∮

| log(g(T ′′)) − log(g(T ′))| � dφ.

For t < 1, | log(g(t))| ≤ | log(g(1))|. If we suppose that log(g(1)) is in
L1, the dominated convergence theorem says that log(g(t)) → log(g(1))
in L1 as t → 1. The inequality (5.17) then shows that c(t) is uniformly
Cauchy on Bδ(z0)∩S1 as t → 1, and this implies that x(t) is uniformly
Cauchy on Bδ(z0)∩S1 as t → 1. The results so far can be summarized
in

Lemma 5.18. If g(1) is a continuous positive loop such that
log(g(1)) is in L1, then for sufficiently large t, c(t), and hence x(t),
converges uniformly on compact subsets of the complement of the sin-
gular points of g(1) in S1. Since x(t) is also bounded, this implies that
x(t) converges to a limit x(1) in L2(S1). This in turn implies that
g(1) = x(1)x(1).

It should be noted that, with rather more care, the limits could also
be taken for unbounded g, provided its log was still in L1.

Here we aim to complete the proof of the following result:
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Theorem 6.1. If g is a positive continuous loop such that log(g) ∈
L1, then there is an x(g, 1) ∈ L− so that g = xx̄. Further, if
{g1, g2, . . . } is a sequence of positive continuous loops so that gn → g
in L∞ and log(gn) → log(g) in L1, then x(gn, 1) → x(g, 1) in L2.
(We shall call the metric topology resulting from this the L∞ ∩L1(log)
topology).

Proof. Note that it is enough to show L2 convergence on compact
subsets of the complement of the singular set of g in S1. Let U(δ) be
the points of S1 less than δ away from the singular points of g, and
look at the compact set D = S1 − U(δ0) for some fixed δ0 > 0. To
simplify various statements we will write xn for x(gn), x for x(g), and
also set g∞ = g and x∞ = x. Since the sequence {gn} is bounded in
L∞, there is a T ′ < 1 such that (d/dt) log(gn(t)) is negative definite
for t ≥ T ′ and ∞ ≥ n ≥ 1. Now consider the following results, whose
proofs are elementary:

Lemma 6.2. Given δ > 0 there is an N(δ) ≥ 1 and a T (δ) with
T ′ < T (δ) < 1 so that

gn(t, z) = gn(1, z)

and

g(t, z) = g(1, z) ∀ z ∈ S1 − U(δ) ∀ t ∈ [T (δ), 1] ∀n ≥ N(δ).

Lemma 6.3. If fn → f in L1, then in the L1 norm over U(δ),

||fn||U(δ) → 0 and ||f ||U(δ) → 0

uniformly over n as δ → 0.

Proof of Theorem 6.1 (continued). Choose ε > 0. For all t ∈ [0, 1)
and z ∈ S1, there is a constant G depending on the sequence {gn} so
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that
(6.4)
|xn(1, z) − x(1, z)| ≤ |xn(1, z) − xn(t, z)| + |xn(t, z) − x(t, z)|

+ |x(t, z) − x(1, z)|
≤ G � (|cn(1, z) − cn(t, z)| + |c(t, z) − c(1, z)|)

+ |xn(t, z) − x(t, z)|
+ |

√
gn(1, z)−

√
gn(t, z)|+|

√
g(1, z)−

√
g(t, z)|.

Now if t ≥ T (δ0), n ≥ N(δ0), and z ∈ D, this equation can be simplified
to
(6.5)

|xn(1, z) − x(1, z)| ≤ G � (|cn(1, z) − cn(t, z)| + |c(t, z) − c(1, z)|)
+ |xn(z, t) − x(z, t)|.

Choose a strictly positive δ1 < δ0, and observe that if ∞ ≥ n ≥ N(δ1)
and t ≥ T (δ1) then (d/dt) log(gn(t)) = 0 in S1−U(δ1). By (5.11) there
is a constant M > 0 depending on δ0 and δ1 so that
(6.6)

|ċn(z, t)| ≤ M �
∮ ∣∣∣∣ d

dt
log(gn(t))

∣∣∣∣ ∀ z ∈ D, t≥T (δ1), ∞≥n≥N(δ1).

Then a calculation in the same manner as (5.17) shows that

(6.7)

∫ 1

t

|ċn(z, t)| dt ≤ M |α|
∮

| log(gn(ζ, 1)) − log(gn(ζ, t))|
∀ z ∈ D, t ≥ T (δ1), ∞ ≥ n ≥ N(δ1).

Since the operator norm of an Hermitian matrix is the maximum
absolute value of its eigenvalues, | log(gn(ζ, t))| ≤ | log(gn(ζ, 1))|, so
for a strictly positive δ < δ1,

(6.8)

∫ 1

t

|ċn(z, t)| ≤ 2M |α| �
∫

U(δ)

| log(gn(ζ, 1))|

∀ z ∈ D, t ≥ T (δ), ∞ ≥ n ≥ N(δ).

This can be substituted into (6.5) to give
(6.9)

|xn(1, z) − x(1, z)| ≤ 2MG|α| �
∫

U(δ)

(| log(gn(ζ, 1))| + | log(g(ζ, 1))|)

+ |xn(z, t) − x(z, t)|
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for all z ∈ D, t ≥ T (δ), ∞ > n ≥ N(δ). By Lemma 6.3 we can choose
δ so that 0 < δ < δ1 and

(6.10) 2MG|α| �
∫

U(δ)

| log(gn(ζ, 1))| <
ε

4
√

2π

uniformly in all n including ∞. This is now substituted into (6.9), and
L2 norms are taken over D to give

(6.11)
||xn(1, z) − x(1, z)||D ≤ ε

2
+ ||xn(t, z) − x(t, z)||D

≤ ε

2
+ ||xn(t, z) − x(t, z)||S1

for t = max{T ′, T (δ)} and all n ≥ max{N(δ1), N(δ)}. But now we
have fixed t < 1, g(t) is invertible and gn(t) → g(t) uniformly on S1.
By the continuity results for invertible loops, ||xn(t, z)−x(t, z)||S1 → 0,
so there is an N ′ > 0 so that ||xn(1, z) − x(1, z)||D < ε for all n ≥ N ′.
This completes the proof of Theorem (6.1).

7. The problem of evaluating a loop at a point. So far we have
only been dealing with L2 factorizations of loops, and evaluation at a
point does not make much sense for an L2 function. But in applications
of the Riemann Hilbert problem it is frequently important to be able
to take a value at a single point. To be able to do this, we slightly
modify the preceding procedure.

Definition 7.1. For some ω ∈ S1, define the vector spaces E(ω) and
E∞(ω) to be

E(ω) =
{

(f, b) ∈ L2(S1, Mm) × Mm | the map z �→ f(z) − b

z − ω

is in L2(S1, Mm)
}

,

E∞(ω) =
{

(f, b) ∈ L∞(S1, Mm) × Mm | the map z �→ f(z) − b

z − ω

is in L2(S1, Mm)
}

.
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E(ω) and E∞(ω) have norms given by ||f ||L2+||(f−b)/(z−ω)||L2+|b|op
and ||f ||L∞ + ||(f − b)/(z − ω)||L2 + |b|op, respectively.

It is easy to see that b is uniquely defined by (f, b) ∈ E(ω), and for
convenience we will say that f ∈ E(ω) and refer to b as f(ω). In effect,
E(ω) is a modification of L2 in which evaluation at ω makes sense and
is continuous.

Also define E+(ω) to be E(ω) ∩ L+, and E−(ω) to be E(ω) ∩ L−.

The following result is an exercise in Cauchy sequences:

Proposition 7.2. E(ω) is complete.

Proposition 7.3. The operation of left multiplication by E∞(ω)
loops on E(ω) defined by L(g,c)(f, b) = (gf, cb) is continuous. Also the
corresponding left “multiply by” map (L) is continuous from E∞(ω) to
B(E(ω), E(ω)), the bounded operators on E(ω).

Proof. Suppose that (g, c) ∈ E∞(ω) and that (f, b) ∈ E(ω). Then in
the pointwise operator norm,∣∣∣∣gf − cb

z − ω

∣∣∣∣ ≤
∣∣∣∣gf − gb

z − ω

∣∣∣∣ +
∣∣∣∣gb − cb

z − ω

∣∣∣∣
≤ ||g||∞

∣∣∣∣ f − b

z − ω

∣∣∣∣ + |b|
∣∣∣∣ g − c

z − ω

∣∣∣∣
and on applying the L2 norm,∥∥∥∥gf − cb

z − ω

∥∥∥∥
2

≤ ||g||∞
∥∥∥∥ f − b

z − ω

∥∥∥∥
2

+ |b|
∥∥∥∥ g − c

z − ω

∥∥∥∥
2

.

Proposition 7.4. The projections π+ : E(ω) → E+(ω) and
π− : E(ω) → E−(ω) defined by

π+(f, x) =
(

π+(f), x +
1
2π

∮
ζ

ζ − ω
(f(ζ) − x)

)
,

π−(f, x) =
(

π−(f), x − 1
2π

∮
ω

ζ − ω
(f(ζ) − x)

)
,
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are continuous.

Proof. We consider only π+. By Definition 1.2, for z ∈ ∆+,

π+f(z) − π+f(ω)
z − ω

=
1
2π

∮
ζ

ζ − z

f(ζ) − x

ζ − ω
= π+

(
f(ζ) − x

ζ − ω

)
(z).

The result follows by noting that (f(z)− x)/(z −ω) is in L2 and using
the previously defined properties of π+.

We can now develop a method for factorization with these new spaces.
All that has to be done is to follow the previous method: If g ∈ E∞(ω)
and π+Lg : E+(ω) → E+(ω) is one-to-one and onto, then there is a
v ∈ E+(ω) so that gv = ω ∈ E−(ω) with w0 = 1. Further, this v varies
smoothly with g in the open set of E∞(ω) in which π+Lg is one-to-one
and onto. But for which g is this condition satisfied? The one-to-one
result is easy:

Proposition 7.5. If g ∈ E∞(ω) is such that π+Lg : L+ → L+ is
one-to-one, then π+Lg : E+(ω) → E+(ω) is also one-to-one.

Proof. If π+gx = 0 for some x ∈ E+(ω), note that x ∈ L+ is also.

The onto result is rather more difficult and requires an extra condition
on g.

Proposition 7.6. If g ∈ E∞(ω) is such that π+Lg : L+ → L+ is
onto, g(ω) is invertible, and the map z �→ (g(z) − g(ω))/(z − ω) is in
L∞, then π+Lg : E+(ω) → E+(ω) is also onto.

Proof. Given y ∈ E+(ω), by the hypothesis there is an x ∈ L+ so
that π+gx = y. Then

π+((g − g(ω))x) + g(ω) � π+x = y.

Now observe that the map z �→ (g(z)− g(ω))/(z −ω) � x(z) is in L2, so
(g − g(ω))x is in E(ω), as is π+((g − g(ω))x). But then g(ω)π+x is in
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E+(ω), so π+x is also, and as x is in L+, we see that x = π+x ∈ E+(ω).

Theorem 7.7. Suppose that g is a positive Hermitian loop so that
both g and g−1 are in L∞. Additionally suppose that for some ω ∈ S1,
the map z �→ (g(z) − g(ω))/(z − ω) is in L∞. Then g can be uniquely
factored as gv = w, where v ∈ E+(ω), w ∈ E−(ω), and w0 = 1.
Further, v and w are continuous (in fact smooth) functions of g if {g}
is given the E∞(ω) topology. The matrices v(ω) and w(ω) are invertible
for such g.

Proof. All except the last statement follows directly from the preced-
ing discussion. For the last part, note that as in Proposition 2.5, the
function v̄gv = v̄w = w̄v is an invertible constant. But that constant
is also v̄(ω)w(ω).

It is now natural to ask if any sense can be made of evaluation at
a point in the singular case. If the invertible continuous loop g obeys
the conditions of Theorem 7.7, then we can carry out the retraction
as usual and find the function x(g, t). Since g(ω) is invertible, we note
that g(t) = g on a neighborhood of ω for t sufficiently large. Thus, for
t sufficiently large (including 1), x(g, t) is in E−(ω), so we can evaluate
x at ω. The problem arises when g is not invertible, but in this case if
g(ω) is invertible, we can still say that x(g, t) ∈ E−(ω) for sufficiently
large t < 1.

Proposition 7.8. Given an ω ∈ S1, suppose that g is a continuous
positive Hermitian loop so that g(ω) is invertible. Additionally suppose
that the map z �→ (g(z) − g(ω))/(z − ω) is in L∞, and that log(g)
is in L1. Then x(g, t) ∈ E−(ω) for sufficiently large t < 1, and
limt→1 x(g, t)(ω) exists and coincides with x(g, 1)(ω) in the case where
g is invertible.

Proof. This is mainly covered by the discussion above, with the
exception of the limit, which comes from (5.17) and the discussion
after it if we set z0 = ω.
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We shall call the limit x(g, 1)(ω), and it is to be understood that
this does not imply that x(g, 1) ∈ E(ω). There is now the matter of
whether the evaluation at ω is continuous in the noninvertible case.

Theorem 7.9. Fix an ω ∈ S1. Consider the set of all positive
continuous loops {g} with the properties that g(ω) is invertible, log(g) ∈
L1, and such that the map z �→ (g(z) − g(ω))/(z − ω) is in L∞. This
set is topologized by the E∞(ω) and L1(log) norms. Then the function
x(g, 1)(ω) (defined by the limit above) is a continuous matrix valued
function on the set of such g.

Proof. The proof follows the same lines as that of Theorem 6.1. Let
g and gn (n = 1, 2, . . . ) be in the set above, with gn being a sequence
with limit g in the topology above. Note that there is a neighborhood
U of ω in S1, an N ≥ 1 and a T < 1 so that gn(t) = gn on U for all
n ≥ N and t > T . Fix ε > 0, and refer to the proof of Theorem 6.1
with ω ∈ D. By use of Theorems 6.9 and 6.10, with z = ω,

|xn(1, ω) − x(1, ω)| ≤ ε

2
+ |xn(t, ω) − x(t, ω)|

for some fixed t < 1 and all n larger than some constant. But since
gn(t) → g(t) in E∞(ω), for sufficiently large n, |xn(t, ω)−x(t, ω)| < ε/2.

Appendix

The continuity of the operator calculus. In this section we prove some
relatively simple results on the continuity and differentiability of the
calculus of normal operators on Hilbert spaces which are assumed in
the paper. Denote the set of positive operators by P , and the normal
operators by N . The notation σ(A) will be used for the spectrum of
the operator A.

Proposition 8.1. For a fixed positive operator A, the map:
C0(R,R) → N defined by f �→ f(A) is continuous and linear. If A is
positive, then the map is continuous on C0(R+,R). Here the mapping
spaces are given the compact open topology.
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Proof. Linearity is obvious from the usual definition. Continuity
follows from the inequality

|f(A)| ≤ sup
σ(A)

||f ||.

Proposition 8.2. The map P ×C0(R,R) → N defined by (A, f) �→
f(A) is continuous.

Proof. Fix A ∈ P , f ∈ C0(R,R) and ε > 0. Choose a bounded
interval J on R whose interior contains σ(f). By the Stone-Weierstrass
theorem there is a polynomial q which is within ε/5 of f on the
interval J . Additionally we know that there is a neighborhood of A
in the operator norm such that every element of the neighborhood has
spectrum contained in J . Now, given B ∈ P with σ(B) ⊆ J and
g ∈ C0(R,R) we can write the inequality

|f(A) − g(B)| ≤ |f(A) − f(B)| + |f(B) − g(B)|
≤ |f(A) − q(A)| + |q(A) − q(B)|

+ |f(B) − q(B)| + sup
J

||f − g||

≤ 2ε

5
+ |q(A) − q(B)| + sup

J
||f − g||.

Now all we have to do is to note that supJ ||f − g|| is less than ε/5 for
g sufficiently close to f , and that q(B) tends to q(A) as B → A in the
operator norm, since each is just a polynomial.

Proposition 8.3. On a finite dimensional Hilbert space, the operator
of taking the positive square root of a strictly positive operator is smooth.

Proof. First note that the strictly positive operators form an open
set in the subspace of Hermitian operators. The map f on this open
set defined by A �→ A2 is known to be smooth and a homeomorphism.
The fact that its derivative f ′(A; B) = AB + BA is an isomorphism
can be most clearly seen if a basis is chosen so that A is diagonal. Then
the inverse function theorem completes the proof.
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