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A COUNTER-EXAMPLE IN THE THEORY
OF ALMOST PERIODIC DIFFERENTIAL EQUATIONS

A.B. MINGARELLI, F.Q. PU AND L. ZHENG

ABSTRACT. We show by means of an explicit example that
a bounded solution of the real two-term differential equation
of the second order, z'’ +a(t)z = 0, t € R, where a(t) is Bohr
almost periodic, is not almost periodic. This disproves various
claims which have appeared in the literature. We also provide
such an example for the general linear equation of order k,
k > 2, with almost periodic coefficients.

1. Introduction. It is known that if a(t) is a piecewise continuous
periodic function on R, any bounded solution of the equation

(1.1) " +a(t)z =0, teR,

is (Bohr) almost periodic [2, 5, p. 101] on account of Floquet theory.
It is natural to expect such a result to hold in the event that a(t) is
merely almost-periodic and, indeed, some authors (e.g., [1]) have used
this claim in proofs.

However, it is shown in [4, p. 333] (cf., also [5, p. 97]) that this weaker
result is false at least in the case of first-order linear equations but their
construction does not seem to adapt itself so easily to the second order
case or higher order cases. In this note we present a counterexample to
the statement that boundedness by itself implies almost periodicity in
the second order case and subsequently for the general case of a linear
equation of order k with almost periodic coefficients, £ > 2. We note,
in passing, that in the constant coeflicient case, the equation

(1.2) 2™ fay ()Y 4. f )z =0, teR,

has a bounded solution if and only if it is almost-periodic [6] and in
this case all higher order derivatives up to order k are almost-periodic
as well [3, p. 48].
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2. Construction of the counterexample. We begin with a
lemma which displays the character of almost periodic (a.p. for brevity)
solutions of a linear a.p. system.

Lemma 2.1. Let A(t) be an a.p. matriz (i.e., every entry is a.p.),
and let X (t) be an a.p. solution of the vector system X'(t) = A(t) X (¢).
Then either inficr |X (¢)| > 0 or else X (t) is the trivial solution.

Proof. See [5, p. 85]. o

Theorem 2.2. There is a solution of an a.p. equation (1.1) which
is bounded but not almost periodic.

Proof. We define a sequence {fy,(¢)} of functions by
fu(t) = —(1/n2)sin(t/n?), teR.

Then f, is odd, periodic of period 27n> and
t
(2.1) / fu(s)ds <0, allteR.
0

In addition,

n=

oo 2
DD NPl <00
1p=0

where f,(lp ) is the p-th derivative of f, as usual. Thus, each one of
the functions g(t),...,g"(t) defined by successively differentiating the
series

(2.2) 9(t) =D falt)

is almost periodic, as each such function is the uniform limit on R of a
sequence of a.p. functions, and so is itself a.p., [2]. Furthermore,

(2.3) /tg(s) ds <0, tcR.
0
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So the function z(t) defined by

(24) o) = e { [ o(5)as}

is a nontrivial bounded solution of the differential equation
(2.5) " — (g*(t) + ¢'(t)z = 0,
with an a.p. coefficient and with the additional property that

inf

R P 2R =0

Now, X (t) = col (z(t), z'(t)) solves X'(t) = A(t)X (t) for an appropriate
a.p. matrix A(t).

Thus inf;cr|X (t)] = 0, and so by Lemma 2.1, X (¢) cannot be a.p.,
i.e., neither one of z(t),z'(t) can be a.p. O

The other linearly independent solution of (2.5) must be unbounded
by a result in [7, p. 104]. This now leads to the open question: Let
a(t) be a.p. on R. If every solution of (1.1) is bounded on R, are all
solutions necessarily a.p.?

In this generality, the answer to this question is not known to us.

3. A counter-example for the general linear equation of
degree k. We sketch the idea. Fix an integer k£ > 2. Define a sequence
fn by

fu(t) = —(1/n")sin(t/n**1), teR.

Then, as before, f, is odd, periodic of period 27nf*! and (2.1) holds.

Furthermore,
o k
> D lFP o < oo
=1p=0

n=1p=
Next the functions g(t), ¢'(t),g"(t),...,g*)(t) defined by successively
differentiating the series g(t) in (2.2) are a.p. as each g\¥) is the uniform
limit of a sequence of a.p. functions as before. Once again (2.3) holds
while the function z(t) defined by (2.4) is a bounded solution of (2.5).



440 A.B. MINGARELLI, F.Q. PU AND L. ZHENG

Since g € C*(R), our solution z(t) is C*T1(R). We can differentiate
(2.5) another (k — 2) times and find a general expression of the form
(1.2) with a.p. coefficients, having our solution z(t) which is a priori
bounded but cannot be a.p. because

t
liminf/ 9(s)ds = —o0,
0

t—o0

as can be seen by choosing the subsequence ¢, = 7nF+!. An application
of Lemma 2.1 once again gives the required conclusion.
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