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THE STRUCTURE AND EVOLUTION OF
COMPETITION-ORGANIZED
ECOLOGICAL COMMUNITIES

ROBERT MCKELVEY AND JOSEPH APALOO

1. Introduction. It frequently is asserted that conservation biol-
ogy can advance only by transcending the current species-by-species
approach and refocusing on whole-ecosystem preservation [13]. But a
strong scientific basis does not presently exist for carrying out ecosys-
tem viability analyses, and in particular the theory of community
ecology seems to be in disarray [3]. Even classical equilibrium co-
evolutionary theory [8] which remains the basis for much subsequent
work, seems to have dissolved into controversy, with disputes over what
had seemed previously to have been settled principles [2, 9].

It is our view that much of this confusion and controversy has
resulted from an excessive level of abstraction in the models employed,
making it difficult to distinguish between individual and group control
mechanisms, and confounding behavioral and evolutionary processes of
adaptation.

Our response is to present a more mechanistic, less phenomenological
class of models, in which these separate controls and processes are
explicitly distinguished. To our knowledge, ours is the first attempt to
systematically incorporate both behavioral optimization and strategic
evolutionary processes into a single model.

This article is the first of several that we intend to devote to this
subject. Here we describe the model precisely and undertake its
theoretical analysis.

In a second article we shall apply the analytical results to specific
situations, and thereby reexamine classical questions such as compet-
itive exclusion and niche displacement. This enables us to investigate
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such issues in conservation biology as inherent ecological valuation of
species.

In a third article, we shall extend the analysis to age-structured
populations, thus making contact with the extensive literature on
optimal life histories and opening a new avenue between that subject
and co-evolutionary theory.

2. A general strategic model of co-evolution. We begin, in
the classical way, [5], with a set of differential or difference equations,
describing the dynamics of population densities y,,, m = 1,2,... , M,
for a community of ecologically-interacting species, with evolutionary
phenotypic change being characterized through “strategic” reasoning
[10]. More specifically, we build on the insights of [2, 4, 7]. We develop
and extend these concepts in the present section. Explicit behavioral
optimization is postponed to Section 3.

The following notation will be adhered to: an underscored bolded
symbol will denote a vector with vector components, a bolded sym-
bol will represent a vector with scalar components and unbolded sym-
bols will be scalars. For simplicity, assume that each species is rep-
resented by only a single (vector) phenotype, characterized by a type
vector &, = [5,(,%), 1(73), .. ,fr(,?)] chosen from Z,,, a finite-dimensional
phenotype-space. In the case of continuous time, the dynamic equa-
tions take the form

1 dym
(2.1) v dt Yml€; Y

with v, [§ , Y] being the per capita growth rate for species m. It depends
on the M-dimensional vector y of species densities and also on the M-
dimensional vector £ of species phenotypes.

At a dynamic equilibrium, the growth rate of each species present is
reduced to zero:

Tml€,yl =0, m=12,...,M

Thereby the equilibrium population densities are determined implicitly
as functions of € : y,, = Y5, (€). In order for the dynamic equilibrium to

be locally stable, it is sufficient that the community matrix (Jacobian)

OV, v2, -+ Y]

2.2
( ) 8[y17y27"'7yM]
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evaluated at equilibrium, has its eigenvalues confined to the left half-
plane.

We now imagine this stable incumbent community to be invaded by
small populations of clonally-reproducing mutant phenotypes of the
same set of species. We follow the invasion process only through the
initial phase, during which the invaders’ population densities are too
small to significantly impact the per capita growth rates either of
incumbents or of other invaders. Thus, invaders’ populations grow
initially according to dynamic equations of the form

1 dz,

i.e., dependent on the mutant’s species m and phenotype (,,, but
also on its biological environment (§,y), induced by the incumbent
community.

We shall call g,,[Cim; €, y] the individual fitness of an invader of type
Cm, in the environment (£,y). (It is essentially the same as Vincent
and Brown’s [2] fitness-generating function.) Note that if an incumbent
community is invaded by a phenotype (,, = &,, already present in the
community, then

(2.4) ImlCms & Yl = Yml€, Y-

If the incumbent population is at ecological equilibrium, then the
individual fitness of an invader becomes a function of phenotypes alone:

(2.5) Gon[Cos €] = GunlCons €, Y (E)]-

G, depends on the incumbents’ phenotypes in two distinct ways:
directly through the explicit dependence of g, upon £, and indirectly
through y = Y (€). We shall refer to these effects, respectively, as direct

phenotypic dependence and (indirect) density dependence.

Evidently a mutant population of phenotype (., attempting to
invade a dynamically stable incumbent community will immediately
be repelled by the community if G,,[(m,&] < 0; alternatively, its

population will grow initially if Gy, [¢m, &] > 0. (A formal verification,

examining the exact dynamics of the augmented community, was given
by A. Hastings [4] and more explicitly by Reed and Stenseth [7]).
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In particular, an invader {,, = &, of an incumbent type has
Gml€m,€&] = 0, hence is a marginal invader. Differentiating this ex-

pression yields, for ¢ = £ identically, that (when m # n, m # k)

0G,, = O0Gn, oG

(2 oc) " oel " 0ed
and
G,
oy oe)

It is to be understood that not all phenotypes {,, € =, are evolution-
arily possible for species m; in general, physico-chemical and biological
constraints operate to force trade-offs among the components of {,,.
We shall assume that feasible phenotypes are confined to an evolution-
ary possibility set I, C E,,,, where I';,, generally has smaller dimension
than E,, and is confined to a local neighborhood of &,,.

We also assume that any feasible community ¢, with ¢, € I', for
m = 1,2,...,M, and ¢ sufficiently close to £, can coexist in a stable
equilibrium configuration Y (¢) near to Y (&).

We shall be examining two dual kinds of evolutionary stability:

ES I. An incumbent ecological community € € T' will be said to
possess a type I (local) evolutionary stability when all evolutionarily
possible sets of mutants of its members in a suitably small neighborhood
will be unable to initially invade: G.[¢m,&] < 0 for ¢ € 'y and
sufficiently close to &,, m=1,2,... ,M.

ES II. A stable ecological community € € T will be said to possess a
type II (local) evolutionary stability when each of its members &,, can
successfully achieve initial invasion of all nearby evolutionarily possible
equilibrium communities: G, [€m; €] > 0 for all ¢ € T and in sufficiently
small neighborhood of §. B -

We now specialize to the case where, for each species m, the pheno-
typic space Z,, is two-dimensional, and evolutionary possibilities are
confined to a one-dimensional curve segment Iy, : &, = &n(sm) in
Em. We shall focus on a specific phenotype community £*, with each
&, €Ty, to be examined for evolutionary stability. B
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It will be convenient to choose the curve parameter s,, to be arc
length along I';,, from the reference point &% ; thus &, = £,,(0). Using
the vector “dot-product” notation,

(2.7) ds?, = d€,, o d€n,.

Hence, u,, = {d¢,,/ds;, at s,, = 0} is a unit vector, tangent to I';, at
sm = 0, and pointing in the direction of increasing s,.

A second unit vector v, is defined to be perpendicular to w,, and
such that [w,,, v,,] is a right-handed coordinate system in Z,,. As usual
[11], the curvature of I',,,, is defined as

O,

I{/Tn - b
dsm,

where the angle-of-turn 6,,, along the curve is measured with respect
to this right-handed system. Since

d*&n  dém
o Wm _

2. =
(28) ds2, ~ dsp, ’

therefore d2¢,,/ds2, is parallel to v,,, and indeed [11]

d?€,
ds2

m

(2.9) = KmUm.
With these, we may reformulate the conditions for the phenotypic
community &1,&2,...,&n to be evolutionarily stable. For notational
clarity, let us use &, = &,,($m) to denote incumbent variation along I',,
and ¢, = & (0m) to denote invader variation along this same curve.
We may then define

Grlom, s] = Gl€m(om); €1(s1),E2(82), - -+ ,€m(501)]-

Note that, since G, [0/, 8] =0 when o = s (for k # m, k # n)

oG oG
2.1 m_ _m
(2.10) 00 m OSm
and
(2.11) oGy, 0°Gr,

0s,,  0sp0s, -
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*ES I. Necessary conditions for the incumbent community §* to be
stable against local invasion are:

oG*, oG,
2.12 = uld);
(2.12) 0= 55" Z PR
82G* -
(5) 4y ()
um
2.13 + Km i),
(219 ;W

*ES II. Necessary conditions for the invadability by members of £" of
nearby incumbent communities are

oG, oG ;
= m = —m (l)
(2.14) 0 D5, E 8§(i) u,’;
aém)t?&
oG ;
m (1)
(2.15) + Em E 20 vy,

These conditions have a direct geometrical interpretation. Note that
the first-order conditions have the same content for both ES I and II:
Both require I';,, to be orthogonal to the gradient VG, of G,, with
respect to &,,. (However, the second order conditions in general will
not be equivalent.) In view of this fact, it is appropriate, in examining
both dual stability concepts, to choose v, to be in the direction of
VG, and then to complete [u;,,vn,] to be a right-handed coordinate
system.

3. The ecological competition model: Behavioral adapta-
tion. We now explore the ecological-evolutionary community model
more thoroughly, illustrating general principles with a specific model
of competition. Like a few earlier models (e.g., Lawlor and Smith [5],
Taper and Case [12], and Abrams [1]), we explicitly model the popu-
lation dynamics of prey species, interacting with each other and with
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their predators. However, unlike the earlier models, we specify optimal
behavioral responses, by individual predators to their current ecologi-
cal environment, as well as allowing for strategic phenotypic changes
over evolutionary time. Taken together, these features allow a some-
what more mechanistic, less phenomenological, description, and permit
a closer examination of the interplay between ecological and evolution-
ary processes.

Consider, then, a community of M prey species Ry, Rs,..., Ry,
with respective population densities @ = [z, 2, ... ,z3]. These grow
demographically, possibly interacting with one another, and are being
harvested by predators. Their population dynamics are given by

(3.1) d;.—tm:Fm(a:)—Hm form=1,2,... M

with F),, the growth/interaction term and H,, the harvest.

The total harvest H,, of prey species R, is the sum of the separate
harvests by individuals, belonging to a variety of predator species F¢,
with ( = «,(3,.... Each individual predator is assumed to be able
to target a specific prey species R,, at will, with harvest return to
individual effort e¢,, given by

(3.2) he,. = Qcm(Tm)Sem(ecm)-

Here @ and S are monotone increasing functions with nonincreasing
returns to scale. In the simplest case, h¢m = @em-Tm.€¢m, With the
constant g¢,, called the catchability. Thus total harvest is

(3.3) Hy = hemNe
¢

where N is the population density of predator species F.

The individual predator has the ability to choose total effort and
effort distribution e; = [e¢1,e¢2,... ,ecm| across the prey species:

(3.4) ec=¢€c1teat--+ecum-

This he will do so as to maximize his net energy return function
m¢(ec, ), given his current biotic environment x. For the time being,
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we shall assume that 7¢ is the same function for all individuals of the
same species P¢, and is of the form

M
(3.5) clec, @] =Y pemhem[Tm, ecm] — Cclec]

m=1

where p¢r, is the unit energy value of harvest and C¢ is its total energy
cost.

A necessary condition for a maximum of 7, is given by the marginal
rule

Célec]

(3.6) PemQcm(Tm) = 52 form=1,2,... , M.

ml€¢m]’

Here, prime denotes differentiation.

Under a wide range of conditions (including those described below)
the marginal rule, for given x, will determine a unique optimal effort
vector E¢(x), which maximizes m¢, and the relation between « and E;
will be one-to-one. Thus, solving (3.6) for E, allows expressing optimal
m¢ as a function of = alone:

() = (B (), al.

Alternatively, eliminating z yields the individual predator’s optimal
energy production function:

M C’le
Melec) = ) 5@@@]% — Cclec]
(3.7) m=1 o o
= ecC¢(e¢) [ > ocm(ecm)bem — relec) |-

m=1

Here 0¢,, = ecm/ec so that Y Ocr, = 1 and o¢p and k¢ are effort
elasticities for, respectively, specific yield S¢r, (ecm) and cost C¢(ec);

_ deem/eem - dec/ec
dScm/Sem’ T dC/Cc

(3.8) O¢m

See [6].
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In a convenient special case, o¢n, is taken to be a constant, larger
than 1, so that both marginal yield S(,, and average yield S¢y/ecm
are monotone increasing with diminishing returns. Also x¢ is taken to
be linear and decreasing with e¢:

ke(ee) = méo) — mgl)eg; with Iigo) > 1, Iigl) > 0 being constants.
From this, the marginal cost Cé and average cost C¢/e; curves are
u-shaped, and intersect where average cost is a minimum.

It follows that any biotic environment @ elicits a unique optimal effort
response e; = E¢(x) and corresponding energy production at a point
on the optimal energy yield curve

(3.9) ¢ = H¢[E(z)] = Mez].

Predator populations are assumed to grow at the per capita rate II¢,
with population dynamics assuming the form

1 dN;

3.10
(8.10) N; dt

= I [E¢ ()]

Thus, over time, the predator populations adjust until, at dynamic
equilibrium II; = 0. At the same time, the prey species populations
are affected by the changing harvest intensity, so that at dynamic
equilibrium

(3.11) Fin(®) = Hp(xm,N) =Y hem[Be(2)INe,  (=a,B,....
¢

Coexistence of predator species in ecological equilibrium requires find-
ing a prey population vector @ such that II;[E.(2)] = 0 for each preda-
tor species (. In general, no more than M such hypersurfaces can inter-
sect simultaneously in -space. Thus, no more than M predator species
can coexist on M prey species. The possibilities are further limited by
the requirement that (3.11) must be solvable for positive values of all
Ne¢.

4. The co-evolutionary competition system. We now examine
the competition model of Section 3 to determine its possible evolution
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in the context of the general co-evolutionary principles of Section 2.
We derive the detailed formulas for coexistence and co-evolutionary
stability (ES I and ES IT) against mutant strains of all species, as a basis
for subsequently inferring qualitative biological principles concerning
evolutionary processes.

4a. Single incumbent-single local invader. We assume that both
incumbent and invader are of the same species, say ( = «, and
accordingly shall omit the species subscript in all formulas below. The
incumbent’s phenotype is a vector in Z-space; we denote it by v. We
assume that both total cost C' and specific yield §,, are explicitly
functions of phenotype v, as well as of effort:

C =C(E,v); Sm(EBm,v),m=1,2,... M.
We shall also specialize to the case where
Fitness for the incumbent is then

0= pm-tGm-Tm-Sm(Em,v) — C(E,v) =0,

with E determined by the marginal rules
(4.1) Pm-Gm TSy (B, v) = C'(E,v), m=1,2,..., M.

Here the prime continues to denote differentiation by effort. Eliminat-
ing  from II with the aid of these equations yields

(4.2) Il=E.C'(E, 'v).{ > ol — n} =0.

Ecological equilibrium for each prey species yields
(4.3) N.¢m.Sm(Em,v) = fm(x).
Combining with (4.1) and eliminating N yields

pmmmfm (‘.’l:)
Orm-Om

(4.4) = constant = NEC'(E,v)
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independent of m, m =1,2,..., M.
Equations (4.1)—(4.4) determine the incumbent system: x, N and E.

We denote the invader’s phenotype by v#, its equilibrium effort vec-
tor by E#, and its individual fitness by II#. We assume that an in-
vader’s fitness is explicitly influenced by the vector & of incumbent prey
populations, but not explicitly by the incumbent predator’s population
or phenotype. Thus, we are assuming exploitation competition but not
direct interference competition. (However, see below.)

The invader accepts & as given and undertakes to optimize his effort
accordingly. His marginal rule

PG TS, (E#, v7) = C'(E#,v™), m=12..., M
determines E¥ [x,v*]. His resulting fitness is:

n# = me'qm'xm‘sm(Er#mv#) - C(E#av#)a

(4.5)
prow et | ot o)

which, through E# [z, v¥], is a function of = as well as v*.

Thus II# is density dependent but is not directly dependent on the
incumbent’s phenotype. (Note, however, that such direct interference
competition could be modeled easily, most simply by making catchabil-
ity ¢m dependent upon incumbent predators’ density and phenotype.)

4b. In order to apply the stability criteria of Section 2, we must
calculate first and second variations in II# with respect to phenotype
changes for both incumbent and invader. Notationally, we shall denote
the partial derivative with respect to the ith component of v by
0/0v; or, more simply, by 0;. Similarly, partials with respect to the
ith component of v# will be denoted 8/8'0;# or, more simply, by
81# . Note that these partials are needed, and will be recorded, only
for the particular circumstance that v# = wv. The calculations are
straightforward but will be omitted and the proofs will be provided by
the authors upon request.
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First variation.

—9,1#* = oF i+

4.6 , 0m-0m.0;Sm(.,v) £k.0;C(.,v
" = B0 (B0)| o

and

_ ol — EC’ OmomOizm | _ o 11
(4.7) o_aZH_EC(E,v)[Z . = —o,I1%.

m
m

Here 9;C(.,v) denotes partial differentiation by the ith component of
the explicitly shown v, with the first argument of C, namely E, being
represented by a dot to indicate that it is being held constant.

Put E;, = E,, — Eﬁ and E* = E — E#. Then
(4.8) OFEY = 97 E!, = 0,E,

and the marginal rules yield, for m =1,2,... , M,

, L a __omOm

(4.9) {S (Emv'v)'alEm+8’Sm("v)}5m(Em,v)
_ " . * N4 r
= {C" (B, 0) " +0:C" (o)} s

and

. o m\Lm, V)0 Ly, iOm\., U Sm(Emv’U)

R ' . _k
— {C (E,v).61E+ 0;C ("v)}C(E,’U)'

Finally, the prey equilibrium equations yield, for m =1,2,... ,M,

]

[

n

OiN S! (Em,v)
+

(4.11) N —Sm(Em,v)
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Second variation.

P V) ot
07 07 II* = EC'( Ev{Zamm Em,v)a E#
00 (L) o s
KiC(E 2) o'E
(4.12) 0:0;60m(.1v)
/ 1UjPom U
+ EC'(E, v){ ; TmOm S B0
. 81(930(,’0)
C(E,v)
and
s — BC (9;8m /Tm) (St (Emy®)
0,0,11% = EC (E,v);omﬂm{ S (B ) O, E,
_’_&mm 0;57,(.,v) +(8jmm/mm)(8i5m(.,v)
T | Sm(Em,v) S (Em,v)

Jo=n

+EC’EU{ZO’mm|:%
R keold
+EC'EU{ZUm maa(S( ))]

Rkl

4c. Multiple incumbents-multiple invaders. As pointed out in Section

2, one needs to calculate variations of H?& only with respect to 0;; and
9%, not with respect to Oyj or 82?; for ¢ # n. However, a linkage among

¢’
prey species exists through the prey equilibrium equations:

(4.13) > acmScm(Ecm, ve)Ne = fm(®).
R
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Differentiating this yields

> qem{Stm(Bems v)(0aiBem)-Ne + Sem(Eem, v¢) (0aiNe) }
¢

O fm

— Oz,

+QO¢m6aiSam(-ava)Na 6aixn-

5. Summary and conclusions. The equations derived in Sec-
tions 3 and 4 are logically complete and form a close, solvable system.
However, beyond generalities, drawing biological implications will re-
quire making specific biological assumptions, notably about effort costs
and yields and about biologically plausible evolutionary constraints and
trade-offs. These matters will be taken up in detail in the second article
of this series.

APPENDIX

Single incumbent /single invader. For the incumbent, individual
fitness is

(A1) II= me.qm.xm.Sm(Em,v) —C(E,v) =0,

with effort determined by the marginal rules
(A2) P -Gm-Tm Sy (Em,v) = C'(E,v), m=1,2,..., M.

Eliminating  as in Section 4,
(A3) H—E.C'(E,v).{ZUme —/-e} =0,

where o,,, 0,, and k are as defined in Section 3.

From Section 4, predator population size is given by

(A4) N-‘]m-SM(Emv ’U) = fm(w)
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and eliminating N yields

(A5) PmZmfm(@) _ constant = NEC'(E, v).

O, .Om

For the solitary invader, x is accepted from the incumbent population
and fitness is

(A6) 0% = pon G -Tm S (B, %) — C(E#,0#),

(A7) :E#.C'(E#,v#).{zaﬁeﬁn#},

as similarly obtained above with effort determined by the marginal
rules

(A8)  pim-Gm.-Tm. S (EX o) = C'(E*,v#), m=1,2,...,M.

FEvolution: First variation.
1) Varying the invader’s phenotype.
OFI* = prmaml S, (B, v#)0F Ef + 07 S (., v#)]

m

— [C(E#, 007 E* + 07 C(.,v™)]

(A9)
= Pnm@m0] S (., v#) — 0F C(.,v#)
07 S (., v#)  dFC(.,v*)
— ! # # 3 m\*» _ 3 9
C'(E7,v )[;S%(Eﬁ,v#) C’(E#,v#)]
(A10)

# # # #
_ # v # # O'memaz Sm(., v ) K/az C(., v )

m

and from the marginal rule (A8)

(A11) memxm[ng(Eﬁvv#)az#Eﬁ + az#’s’;n("v#)]
= [C"(E#,v#)0F E* + 0¥ C'(.,v*)]



432 R. MCKELVEY AND J. APALOO

or
" # . H # o1 #
(Al2) [Sm(Em,’U ):|8Z#E#L+az Sm('vv )
S'(Ef,, v#) S'(E#,, v#)
_ [CNEF )] g O C(07)
C'(E#,v#) | C'(E#,v#)

when v# = v these become

g = o[- Balor) 000

— 81 (Em,v) C'(E,v)

B , OmOm-0iSm (., v)  k.0C;(.,v)
‘EC(E’”)[; e~ o)

(A13)

and from (A12)

i) [ loret+ e
[C"(E,v) 8,0'(.,v)
- [cmm]aﬁh C'(Bv)°

Note that 07 (E,, — E¥) = —97 E¥ since 97 E,,, = 0.

2) Varying the incumbent phenotype.
(A15)

oIl = meqm [0:%m S (B, ©)+ T Sty By )03 By + 21,03 S (., v)]
—[C"(E,v)d;E + 0;,C(.,v)]
- meqm[azxmsm(Emav) + mmaism(-alv)] - 810(7'U)

_ EC'[;am.am.[a;im " gﬂi%il?)} B ﬁg(f/];(v;:)}
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o;,II# = meqm [6‘ixm5m(Ei,v#) + 2, S (E* ,v")0; EF:

— C'(E* v*)0F E#
(A16)
= meQmaimmSm (Eﬁa ’U#)

(A17)
O;x

= E*C'(B* v#)) oot =
C(E™,v )m Tmm-—

m
Invader’s and incumbent’s marginal rule then give

(A18) P |0izm S, (Em,v) + xSt (B, v)0: By
+ 2 0S5, (., v)] = [C"(E,v)0;FE + 8;C' (., v)]

(Alg) Pmdm [azme:n (Eﬁfa ’U#) + mmeL (E#7 U#)(?,E#L]

= C"(E,v)d" E*
or
0t S (Bmsv) ] 5 ;5! (.,v)
(A20) == [S;n(Em,v)]a’E” S (Emyv)
C"(B,v)]. . [8:C(,v)
- [cmm]‘”* [O%E,v)
O | [SU(EE )], ., [C(EF0H)].
(A21) T, [S;H(Er#n,v)] m [C’(E#,v#)]aiE '

Finally, we differentiate (A4) to get
(A22) O0;NgmSm(Em,v) + Nam[(S,,(Em,v)0; Ep + 0;Sm (., v)]

=3[ (%) o

which together with (A4) give
(A23)
. ! .
O;N Sl (Em,v) 0., + 0;Sm (., v) } _ Z [(6fm/8xn)]aix

N 5 (Fm,0) S By 0) n
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When v# = v
—9,TIT* = 9;(I1 — %)

— EC’(E,’U) |:Z amﬂm.(‘)iSm(.,v) Ii.@iC(.,’U)

(A24) S (B, 0) C(E, v)
=97
which is equation (4.6). Also,
(A25)  Prsm@ (Sl By 0)0,(E — EF) + 0,5, (., v)]
= [C"(E,v)9;(E — E*) 4 0,C'(.,v)]
and comparing with marginal rule for direct ES
0i(Ey — E?) = —0"E#* or 0 E,, — E¥) = —0%(E,, — E¥).

FEwvolution: Second variation.

1. Varying the invaders phenotype.
(A26)

of of # = meqmmm[afs,'n(fz#,v#)afEﬁw?afsm(.,v#)]

# # # ot
— [oF C'(E*,v*)0F E* + 0F 0F C(.,v")]
oS! (E#, v#)
e
( v )Z S'(E#L,’U#

m

0f 07 S (., v)

oF B#
St (B, v#)

K2 m

# ot
. off oF C(.,v#)
’ C'(E#, v#)
# #
OF S (B*,0#) 1y
Sm(Ef v#) * "

[

= E#C'(E#,v#)[;amem{

0 0F Sm(., ) OFC(EF 0*) ., 0F0FC(,07)
Sm(Eﬁy'U#) } C(E#,’U#) ' C(E#,’U#) :|
where v# = v this becomes

(A27)

9;S!. (Epm,v) 0;0;Sm (-, v)

# AFTTH m ’ # ’
or 9T = C’(E,v)z [71%(]5%”) OF EF + 7&;@%”)
_ 6jC/(E,’U) 816]0(,’0)]

#
CEv) T @, v)
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varying the incumbent’s phenotype

0= 6i6jH
- ZPQO [azajwmsm(Ema 'U) + ajme;n(Ema v)aiEm
(A28) 4 0,20 S (B ©) + B0 S (B )
+ mmajS;n(., v)BiEm + wmé)ié)jSm(., ’U)
— [6jCl(E, v)@iE + 81'8]'0(., ’U)]]
(A29)

&-@H# = meqm [&@xmsm(E,#n,v#) + @me;n(E,#n,v#)@E,#n]

Now let v# = v

—0;0;T1% = 9,0;(I1 — T1%)
= Dm0 Tm Sy (B, v)0;(Em — Ef)

+ [Z PmmZm®; S, (., 0)0; By — 0;C"(E, v)az-E}

+ [mememaiajSm('vv) - 9:9;C(, v)]

+> " Pmm0iTm0 Sm (Em, v)

B 0jm [ S (Em,v) | 5 s

= EC (E,v);amﬂm{ o |5 (Bar) O, E,
Oitm [ 080, (,0) ] 0jzm [0iSm(Em,v)
T | Sm(Em,v) T | Sm(Em,v)

, 0,8 (,v) o 9C'(,v)
+ EC (E,v){;amﬁm—sm(Em’v)&Em "B o) OE

’ Sm(..,'v) 01630(,1;)
e (E’”){;“memaiajsmwm,v) e
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which is equation (4.13). Note that 9;(E,, — E#) can be recovered from

SI' (Em,v) - ajS,'n(.,v) _C’"(E,'v) — 6jC"(.,v)
S/ By 0) 7 2 S (Bw) ~ OB0) 0 OB, )

but that 0; F,,, must be obtained simultaneously with 0;x,, using both
(A18), (A19) and (A20), (A21).
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