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SOME GLOBAL QUALITATIVE ANALYSES
OF A SINGLE SPECIES NEUTRAL DELAY
DIFFERENTIAL POPULATION MODEL

H.I. FREEDMAN AND YANG KUANG

ABSTRACT. In this paper a class of nonlinear nonau-
tonomous single species neutral delay differential population
models are introduced and analyzed. Sufficient conditions for
positivity and boundedness of solutions, local and global sta-
bility of positive steady state, are established.

1. Introduction. The most frequently adopted single species
population model takes the form

(1.1) #(t) = re(t)[1 — z(t)/K],  2(0) >0,

where r is the so-called intrinsic growth rate of the species x, and
K is often referred to as the environment carrying capacity for =z.
r[1 — z(t)/ K] is called the per capita growth rate of = at time ¢, which
asserts that the growth rate is inhibited due to the self crowdedness
effect.

If we take into account the fact that species  may have a gestation
period of length 7, then a more suitable expression of the per capita
growth rate should be

(1.2) r[l —ax(t) + bx(t — 7)]

with @ — b = 1/K. The term rbz(t — 7) reflects the birth rate due to
the part of the population of age 7. Equation (1.1) thus becomes

(1.3) 2(t) = re(t)[1 — az(t) + bz(t — 7)].

Received by the editors on June 20, 1992, and in revised form on December 29,
1992.

AMS (MOS) 1991 Mathematics Subject Classification. 34K15, 34K20, 92A15.

Key words and phrases. Neutral delay differential equation, single species
population model, global stability.

Research of the first author partially supported by the Natural Sciences and
Engineerin% Research Council of Canada, No. NSERC A 4823.

Research of the second author partially supported by NSF Grant DMS-9102549.

Copyright ©1995 Rocky Mountain Mathematics Consortium

201



202 H.I. FREEDMAN AND Y. KUANG

Assume that species z gives births seasonally, say twice in a time
period of 7, and the total growth rate in that period is governed by the
per capita growth rate (1.2). Assume further that the rate of newborns
surviving a time period of 7 is p(< 1), then a proper model for its
growth takes the form of

(1.4) z(t) + p&(t — 1) = rz(t)[1 — az(t) + bx(t — 7)].

In this paper we consider the following more general neutral delay
model

(1.5) z(t) + pz(t — 1) = 2(t)G(z(t), z(t — 7)),
where G is decreasing with respect to z(t) and nondecreasing with
respect to z(t — 7). The main advantage of (1.5) is that we allow G(-,-)

to be nonlinear. Of course, an even more realistic model may take the
form

.
(16) @) +p [ alt)duls) = a(OG (L ol - 7). 20)
7
where 7, < 7, f__;l ldu(s)| = 1, z(0) = z(t +6), 8 € [-7,0],
T > max{re,73}; G is decreasing with respect to z(t — 73), and
increasing with respect to x;. Indeed, most of our results in this paper
can be extended to model (1.6) with proper modifications. For more
details on this, see Kuang [16]. We chose model (1.5) simply to avoid
the technical complexity.

Other kinds of neutral delay population models are studied in Gopal-
samy and Zhang [8], Gopalsamy, et al. [7], Kuang [13—16], Kuang and
Feldstein [17], Giyori and Wu [9], Wu and Freedman [21].

In the following section we present some local stability results. Hopf
bifurcation results for equation (1.5) can be obtained by applying the
Hopf bifurcation theorem for neutral delay equations established in
de Oliveira [2]. In Section 3 we obtain conditions for solutions of (1.5)
to be positive and bounded. In Section 4 we establish nonlocal (which
we call global) stability results for positive steady states in a properly
defined region.

2. Preliminaries. We consider the following nonlinear neutral delay
differential equation as a single species growth model

(2.1) %(w(t) +p(t — 7)) = 2(t)G(z(t), z(t — 7)),
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where 7 > 0, 0 < p < 1, G(z,y) is continuously differentiable and
satisfies

(H1) (9/0x)G(z,y) <0, (0/0y)G(x,y) 2 0 for z >0, y > 0.
(H2) There is a nondecreasing function g(y) such that G(g(y),y) =0,
g(0) > 0. Moreover, there is a K > 0 such that G(K,K) = 0.

We always assume that the initial condition for (2.1) satisfies
(2.2) z(0) = ¢(6) > 0, 0 € [-T,0],

¢(0) is continuously differentiable on [—7,0], and ¢(0) > 0. The
existence and uniqueness of solution of (2.1) and (2.2) (denoted as
z(t) = =z(t,¢)) are thus assured [11]. However, without further
assumptions on (2.1) and (2.2), solutions may not stay positive and/or
bounded. For example, when ¢(0) is very small and p is a positive
constant and ¢(—7) > 0 is large enough, we see that & ~ —pg(—7) < 0.
Therefore, for small ¢, z(¢t) may become negative. Even when p(t) = 0,
solutions of (2.1) and (2.2) may not be bounded. For example, assume
that G(z(t),z(t—7)) = 1 — (e+1)z(t) +e**~7), then we can show that
the solution of

(2.3) z(t) = z(t)G(z(t), z(t — 1)),
(2.4) z(0) = 2, 6 € [-T,0]

tends to +00 as t — +o00. Indeed, we can show that the solution of
(2.3) and (2.4) is strictly increasing for ¢ > 0. Note that (2.3) has two
positive steady states.

We consider first the local stability of steady state (t) = K. For this
purpose, we linearize it to obtain

(2.5) z(t) + p&(t — 1) + Bz(t) + yz(t — 1) =0,

where

2.6 B = KaGKK 0 *KaGKK 0
() __5(7)>7 7__a_y(,)<.

A direct application of Theorem 3.1 in Freedman and Kuang [5] yields

Theorem 2.1. For equation (2.5), the following statements are true



204 H.I. FREEDMAN AND Y. KUANG

(i) If (0/0y)G(K,K) < —(0/0z)G(K,K), then z(t) = K is locally
asymptotically stable.

(i) If (0/oy)G(K,K) > —(0/0z)G(K,K), then z(t) = K is
unstable.

Roughly, the above theorem asserts that, near the steady state
z(t) = K, if the nondelayed self-competition effect is stronger than
the growth effect due to the past population, then z(t) = K is locally
stable; otherwise, it is unstable. However, we note that the length of
delay is irrelevant.

If equation (2.1) has a unique positive steady state z(t) = K, then it
is necessary that (0/0y)G(K,K) < |(8/0z)G(K, K)|.

If p = 0, then by similar arguments as the proof of the main result in
Haddock and Kuang [10], we have

Theorem 2.2. In equation (2.1), assume p = 0 and (H1) and (H2)
and

(H3) max {%G(w,y) cx >0,y > 0}

0
<min{a—xG($,y) rx >0,y > 0}
are satisfied. Then it has a unique positive steady state z(t) = K,
and this steady state is globally asymptotically stable with respect to
nonnegative continuous initial function ¢(8) such that ¢(0) > 0.

The proof of the above theorem is a simple application of the well-
known Razumikhin-type theorems (e.g., see Hale [11]).

For continuous function ¢ on [—7,0], we define its norm as

(2.7) ¢l = max {[6(6)[}.

—7<H<0

3. Positivity and boundedness. Our objective in this section is
to derive sufficient conditions for the solutions of (2.1) and (2.2) to be
positive and bounded.
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Theorem 3.1. Consider equation (2.1) with initial function ¢
satisfying (2.2). Assume that (H1) and (H2) hold, and

(H3) there is a ¢ > ||¢|| such that

(3.1) $(0) + pp(—7) < g() + pd < &,
3.2 $(0) + po(—7) > (0) > pg.

Then the solution x(t) = x(t,$) satisfies 0 < g(0) — pd < z(t) < ¢,
t>0.

Remark 3.1. Clearly, ¢ depends on ||¢||. For too large or too small
initial function ¢ (in terms of ||¢||), (3.1) or (3.2) cannot be satisfied.
Also, in order to satisfy (3.1), we must have g(y) < (1 — p)y for large
value y, which restricts G(z, y). However, Theorem 3.1 does not depend
on the value 7.

Proof of Theorem, 3.1. Denote
2(t) = a(t) + pa(t — 7).

Then (2.1) is equivalent to

(3.3) 4(t) = 2(t)G(2(t) — pa(t — ), z(t — 7).

From (3.1) and (3.2), we see that

(3.4) 9(0) < 2(0) = ¢(0) + pg(—7) < 9(9) + po.

We claim that, for ¢ > 0,

(3.5) 9(0) < z(t) < g(¢) + p¢-

Otherwise, there are two possibilities:

(i) thereis a t; > 0, such that

z(t1)

(3.6) 9(®) +pd, (1) >0,
| )

9(0) < 2(t) < g(9) + po
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for t € [U,tl).
(ii) There exist t2 > t; > 0, € > 0, such that
€< g(O) o p&a Z(tl) = g(O), Z(tl) < 07
z(t2) = g(0) — &, 2(t2) <0,

and g(0) — e < 2(t) < g(¢) + po for t € [0,t2).
We divide the rest of the proof into two parts.

(3.7)

Part A. We show first that as long as g(0) — ¢ < 2(t) < g(¢) + po,
for ¢ € [0,¢1], where g(0) > € 4+ p¢. Then

(3.8) 0 < g(0) —e—pd < z(t) < &, t €10,t1].

Otherwise, there are two possibilities:

(a) thereisaty € (0,t1] such that z(tg) = @, g(0) —e—pd < z(t) < ¢
for ¢ € (0, to).

(b) There is a to € (0,t1] such that z(t)) = g(0) — ¢ — pg,
g(0) — & — pp < x(t) < ¢ for ¢ € (0,tp).
Assume first that case (a) is true. Then, by (3.1),
z(to) = z(to) — p(to — 7) < 2(to) < 9(¢) + pd < 4,

a contradiction. In case that (b) is true, then

x(to) = 2(to) — pa(te — ) > g(0) — € — po,

also a contradiction.

Part B. We now prove that (3.5) is true for all ¢ > 0.
Assume first that case (i) is true. By Part A, we know that for
t €[0,t1], B B
0<9(0) = pé < 2(t) < .

Hence, by (H1) and the fact that z(t — 7) < @, we have

)
£(t1) = 2(L)Ge(tr) — polts =), 2(ts = 7)) B
< (t1)G(z(t1) — P¢a (t1 — 7)) < z(t1)G(2(t1) — po, d)
= x(t1)G(9(4), ¢) =
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a contradiction.

Assume now that (ii) is true. Then, by Part A, we know that for
te [0, tg],

0<g(0) —e—pp < z(t) < .

Therefore,

Z(t2) = z(t2)G(2(t2) — p(te — 7),2(t2 — 7))
> x(t2)G(2(t2),0)

(t2)G(9(0) —¢,0) >0,

also a contradiction. This proves the claim of (3.5).

Now it is clear from Part A that g(0) — pé < z(t) < @, proving the
theorem. o

Next we apply Theorem 3.1 to the following equation
(3.9) z(t) + pz(t — 1) = ra(t)[1 — az(t) + bx(t — 7)],
where r, a and b are positive constants. For this equation, we have
G(z(t),z(t — 7)) = r[1 — az(t) + bz(t — 7)].

Without loss of generality, we assume a — b = 1. Then G(1,1) = 0
G(g(y),y) = 0 with g(y) = a (1 + by) strictly increasing. Clearly,
(H1) and (H2) are satisfied. By Theorem 3.1, we thus have

Corollary 3.1. Consider equation (3.9) with initial function ¢
satisfying (2.2). Assume that a — b = 1, and there exists ¢ > 0 such
that ||6]] < , and

(A) 6(0)+po(—7) <a '(L+09) +pd < &,
(B) 6(0) + pp(—7) > a™" > pg.
Then the solution z(t) = z(t, $) satisfies

0<at—pp<x(t) <o, t>0.

For example, if we apply Corollary 3.1 to the following equation,
(3.10) E(t) +0.28(t — 1) = 2[1 — 22(t) + 2(t — 1)]
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we have p = 02, 7 =1, r =2, a = 2 and b = 1. We can choose

¢ = 2.49. We conclude that if ¢ satisfies (2.2) and
(3.11) (0.498 <)0.5 < $(0) + 0.2(~1) < 2.243(< 2.49),
then z(t) = x(t, ¢) satisfies 0.002 < z(t) < 2.49, ¢ > 0. It is easy to see

that condition (3.11) is not very restrictive in view of the fact that the
positive steady state is 1.

4. Global stability. Given a set @ of initial functions satisfying
(2.2) and containing steady state z(t) = K of equation (2.1), we say
z(t) = K is globally asymptotically stable with respect to @ for equation
(2.1) if

(4.1) tllglo z(t,¢) = K, forall ¢ € Q.

We denote for v € (0, K),

g1 = g1(v)

(4.2) —min{‘g—i(m,y):m—K|§v,y—K|§v}
92292(11)

(13) =max{\%<x,y> o - K| Svly— K| <v)

(44) Qv) = {45 : ¢ satisfies (2.2), ||¢ — K|| < v,

; g1+g
611 < B2 0+ 0o},

The following theorem is the main result of this section.

Theorem 4.1. If there exists a v € (0, K) such that

p K+w
4.5 — —_
(4.5) g1 92>1_pK_v(91+92),
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then the steady state x(t) = K of equation (2.1) is globally asymptoti-
cally stable with respect to Q(v).

Note that Q(v) places conditions on the derivatives of its members,
and condition (4.5) implies that p < 1/2, a requirement that also
appeared in Kuang [16] for a different class of neutral delay population
models.

We prove first the following useful lemma, which amounts to saying
that Q(v) is positive invariant with respect to equation (2.1).

Lemma 4.1. If all conditions of Theorem 4.1 are satisfied and
¢ € Q(v), then for allt >0, |z(t,¢) — K| < v, |2(t)] < [(91 + g2)/(1 —
PI(K +v)v.

Proof. If the above lemma is not true, then there are two cases to
consider:

(i) thereis atg >0, |z(ty) — K| = v, |z(t) — K| < v for t < ty and
2(t)] < ((91 + g2)/(1 = p)) (K + v)v for t < t;

(ii) there is a tg > 0, |&(to)| = ((g1 + g2)/(1 — p))(K + v)v,
|fm(t) — K| <wvfort <t and |2(t)] < ((91 + 92)/(1 — p))(K + v)v
or t < top.-

Consider first case (i). If z(tg) = K + v, then &(to) > 0, while if
z(tg) = K — v, then we must have #(¢yp) < 0. We consider first the case
z(tg) = K + v, the case of z(ty) = K — v will be dealt with similarly.

Note that, for z(tg) = K + v, we have
G(z(to), z(to — 7)) = G(z(to), z(to — 7)) — G(K, K).

Using the above equation and the fact that 2p < 1 from condition (4.5),
we obtain

l‘(to) = l‘(to)G(m(to),m(to - T)) - pl‘(to - 7')

g1+ g2
< (K — — (K
(4.6) < (K +v)(—g1v + g2v) +p 1_p( +v)v
T (0 92) = (91 = 92) | (K +0)u <0,
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a contradiction.

If 2(ty) = K — v, then we have
G(x(to), x(to — 7)) > g1v — g2v = (g1 — g2)v-

Hence, by (ii), we have

. +
#(to) > (K = v)(g1 = g2)v = pPp 22 (K + o)
p K+w
= (K — gy —
(K —v) |91 — g2 1_pK_U(91+92)U>0,

also a contradiction. This disproves case (i).
Consider now case (ii). We have
|&(to)| < pla(to — 7)| + (K +v)(g1 + g2)v
< 75 (o ) (K + oo + (K +0) (01 + g2)v

(4.7) “1-p
<SR + o,
which shows that case (ii) is impossible, proving the lemma. o

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. From Lemma 4.1, we see that there exists a
constant v*, 0 < v* < v, such that

(4.8) limsup |z(t) — K| = v*

t—o0

where z(t) = z(¢, $) for some ¢ € Q(v). We need to show v* = 0.

If v* > 0, then (4.5) implies that there exists a small € € (0,v*) such
that v* +¢ < K and
vt —¢ p K4+v'+e

- >
v* +¢€ 92 1-pK —v*—¢

(4.9) 9 (91 + g2) + pe.
The definition of v* implies that there exists a ¢; > 7 such that, for
t 211,

lz(t) — K| < v" +e.
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Let N be a positive integer such that

(4.10) pN%(K o < e(K — oF —e)(v* +e)
and denote
(4.11) a=(K+v"+¢e)(g1+92)(v" +¢).

Then, for t > ¢t; + N7, we have
|2(t)] < (K + 0" +¢)(g1 + 92)(v" +¢) + pla(t — 7)]
=a+plE(t— 1)l
Similarly, we have

&(t —i7)| < a4 pla(t = (i+1)7)],
i=1,2,...,N 1.
From Lemma 4.1, we know that |@(t—N7)| < (1—p) "1 (g1+g2) (K +v)v
for t > t; + N7. Hence, for t > t; + N7,
()] < a(l+p+--+p" ) + pNi(t — N7)|
N1 +92(
1-p
(K+v"+¢e)(v" +¢)

a
< +p K +v)v
I—p

g1+ g2
IL—p
+e(K —v* —¢e)(v* +¢).

<

The definition of v* and the assumption that v* > 0 implies that at
least one of the following three cases is true.

Case 1. There is a ta > t1 + (N + 1)7 such that x(t2) > K +v* —¢
and &(t2) > 0.

Case 2. There is a ty > t1 + (N + 1)7 such that z(t2) < K —v* + ¢
and &(t2) <O0.

Case 3. There is a ty > t1 + (N + 1)1 such that x(t) is monotone
fort > ty.
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If case 1 is true, then (4.9) implies that

z(te) = z(t2)G(z(t2), x(ta—7)) — pi(ta—7)
S (K—v'=¢e)[—g1- (v =€) + g2 - (v"+¢)]

+ 1k e) (K0 o) (0" +2)
o€ (K—v'—2)(v" +e)

v*¥—¢

v*+e
p K+v*+e

£ - 0
+1_pK_U*_E(91+92)+08 <0,

< (K-v =)' +e) |~ s + 9o

a contradiction. If case 2 is true, then

(t2) 2 (K —v" —¢)lgr- (v —¢) —ga- (v" +¢)]
- ﬁ(g1 + g2) (K +v* +2) (0" +¢)
—p€e(K—v"—¢e)(v*+¢) >0,
also a contraction.

Finally, if only case 3 is true, then we have either z(t) is monotonely
decreasing such that

(4.12) lim z(t) = K + v*

t—ro0
or z(t) is monotonely increasing such that
(4.13) tliglo z(t) = K —v".
In case of (4.12), there is a § > 0 and t3 > to + 7 such that, for ¢ > t3,
z(t)G(z(t), z(t — 7)) < —0.
Therefore, for t > t3,
z(t) + px(t — 7) — x(ts) — px(ts — 7)

_ / 2(5)G((s), 2(s — 7)) ds < —(t — t)

ts
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which tends to —oco as ¢ — +o00, contradicting the fact that z(t) is
bounded. The case of (4.13) can be dealt with similarly. This proves
the theorem. O

Applying Theorem 4.1 to equation (3.9), we obtain

Corollary 4.1. Assume that a—b =1 in (3.9); then the steady state
z(t) = 1 is globally asymptotically stable with respect to Q(v) provided
that

1—p—pla+b)

4.14 O<v< ——m+.
(4.14) v 1-p+pla+b)

Proof. Observe that g; = ra, go = rb, K = 1 and (4.5) reduces to

1
1>_F 1tV
1—pl—vw

(a+0b),
which is equivalent to (4.14). O

For example, for equation (3.10), we have p = 0.2, a =2, b= 1. Let

1—p—pla+d)

(4.15) A=A = ot

then A(0.2) = 1/7, that is, z(¢) = 1 is globally asymptotically stable
with respect to Q(v) provided that v € (0,1/7). If we set p = 0.1 in
(4.15), then A(0.1) = 0.5. It is easy to see that A(p) is decreasing for
p<(l+a+b)! and A(0)=1=K.

The above discussion suggests that the smaller the neutral coefficient
p, the larger the allowable value for v in order to have Q(v) as a part
of the region of attraction of steady state z(t) = K. Again, Theorem
4.1 does not depend on the delay length 7.
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