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ON THE EIGENVALUES AND EIGENFUNCTIONS OF
AN INTERFACE STURM-LIOUVILLE SYSTEM

S. ABRAMOVICH

1. Interface Sturm-Liouville systems have been studied extensively
since 1960. See, for example, [3, 8, 11, 13 and 4, 5, 6, 7] on eigenvalue
and eigenfunction problems discussed in this paper.

In this paper we will deal with interface Sturm-Liouville systems
related to the vibrating string:

(1) Y'(z) + Ap(z)y(z) =0, -1<z<1

where p(z) > 0 is piecewise continuous over —1 < z < 1.

The boundary conditions we will consider in connection with (1) are

(2) y(=1) =y(1) =0

(3) sy'(0) = ¥, (0), s>0

together with
(4) ty—(0) =y4+(0), t>0.

A solution of an interface BVP is a function y(z) € C?on -1 <z < 0

and 0 < z <1, y(z) and y'(x) have one sided limits at z = 0, and y(z)
satisfies (1), (2), (3) and (4), [7].

The main object of the paper is to show some properties of the first
eigenfunction y(z) > 0, —1 < = < 1, to show monotonicity of the
frequencies of the string under symmetrization methods applied to
p(z), and to show monotonicity of the frequencies as related to the
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monotonicity of s/¢. The results can be extended to the interface BVP
(1) (5) (3) (4), where

(5) y'(-1) =y(1) = 0.

2. Representation of the interface BVP as an ordinary BVP.
Let y(z) be a solution of the interface BVP. Then the function Z(()
defined as

NPT E((9F -1<¢<0
) “0={ %k, 0<c<s
is a solution of the DE
(1) 2"(¢) + Aq(¢)z(¢) =0
with

~ p(C)a -1< C <0
6* =9 ,2
) 1= ipier, oeces

where the boundary conditions in (2) are replaced by
(2" Z(—1) = 2(s/t) = 0.

As the system (1’) (2') is a self-adjoint problem, it has a first eigen-
value greater than zero and a first eigenfunction greater than zero on
(—1, s/t); therefore the same holds for the problem (1)—(4) with s > 0,
t >0, as (1)—(4) and (1’) (2') are related to each other by (6) and (6*),
and z is extended naturally to be continuously differentiable at ¢ = 0.

Let @(() be the first eigenfunction of this Sturm-Liouville system (1'),
(2"), and let A be the first eigenvalue. Then [9]

- N A S LS ML E(SLS
a2 de o aoa(Q) de

where the minimum is taken over the class of continuous functions (z)
with piecewise continuous derivative satisfying

a(—1) = a(s/t) = 0.
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Going back to the variable x defined by
(8) C:%x:kx, O<z<l,
and denoting by z(x) the first eigenfunction of the interface BVP

2+ XApz=0

(9) 2(-1) =2(1) =
k2 (0) = ;(0) k>0

z > 0 is continuous on —1 < x < 1, and we get
I LY dx + (1/st) fl 2 dx
J°, p(@)y?(z) de + (1/st) [y p(a)y?(z) do
I (2% dx + (t/s) fl 2" dz
,p(2)22(2) dz + (t/5) [y p()2*(2) da
_ fl u?dx + (t/s) fl u'? dx
= min —; .
u fflp(x)u (z)dz + (t/s) fo p(z)u?(z) dz

(10) -

/2

The minimum in (10) is taken over all continuous functions u(x) with
piecewise continuous derivative satisfying the boundary condition

2) u(~1) = u(1) = 0.

We can summarize in the following lemma.

Lemma 1. Let p(xz) > 0 be piecewise continuous in —1 < z < 1,
and let the interface BVP (1) (2) (3) (4) be given. Then the first
eigenfunction y(z) > 0 satisfies (10) where y(z) = z(z), -1 < x < 0,
y(z) = tz(z), 0 < x < 1, and u(x) denotes any continuous function
with a piecewise derivative that satisfies (2"). X is the first eigenvalue

of (1) (2) (3) (4) and of (9) for k = s/t, and also of (1'), (2').

3. Properties of the first eigenfunction of the interface BVP.
We will discuss some properties of

oz) = {z(x)/t, 0<z<1

(z), -1<z<0.
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Here y(x) is a solution of the interface BVP (1) (2) (3) (4). In other
words, we discuss the first interface BVP solution satisfying (9) for
k = s/t, where z(z) is continuous on —1 < z < 1, and z(z) > 0,
-l<z <1

In Section 4 we discuss monotonicity properties of eigenvalues of
interface BVP as a result of symmetrization methods applied to p(z).
The symmetrization method is called continuous symmetrization [12,
p.- 200]. The results hold under some restrictions applied to p(z), one
of them as defined here.

Definition. A function p(z) in [~1,1] is called left-balanced (1b)
if for every z € [0,1], p(—z) > p(z) [1]. If p(—z) < p(z) for every
z € [0,1] the function is called right balanced (rb).

Examples. Every decreasing function is (Ib) and every increasing
function is (rb).

Lemma 2. Let z(z) > 0, —1 < z < 1, be a continuous solution of
the interface BVP

2" 4+ Ap(z)z(z) =0

(9) (1) =2(1) = 0
k2. (0) = 2, (0), k>0

and let p(x) > 0 be piecewise continuous in —1 < x < 1. If p(x) is (Ib)
that means if
p(z) > p(—z), —-1<z<0,

then z(z) is (Ib), too. In other words,

z(z) > z(—z), -1<z<0.

Proof of Lemma 2. Define
w(z) =z2(-z), -1l<z<0.

Then, for —1 < z <0,
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Hence,
(11) w'(z)z(z) — ' (z)w(z) >0, —-1<z<0

and
2w/z) >0, —-1<z<0.

As w(0)/z(0) =1 we get
w/z<l, -1<z<0

which means that z(z) is (Ib). O

4. Symmetrization methods and monotonicity of eigenval-
ues. The object of this section is to show the monotonicity of A, the
first eigenvalue of an interface BVP (1) (2) (3) (4) related to a posi-
tive eigenfunction over —1 < = < 1, under a symmetrization method
applied to p(z).

A positive function p(z) is said to be of class A in [-1,1] if p(z) € C,
nonincreasing in [—1, ] and nondecreasing in [, 1] for some [—1 < [ < 1.
For a function p(z) belonging to class A, we denote the inverse function
of p(z) by z1(y) for z € [-1,1) and by z3(y) for z € [[,1].

We define a class of functions p(z,a), 0 <a <1, -1 <z <1, bya
method called continuous symmetrization [12, p. 200; 1, p. 350; and
2].

For z € [-1,I(1 — a)] we denote the inverse function of p(z,a) by
z1(y,a) and for € [I(1 — a),1] we denote the inverse function by
2 (ya a):

(12) 21(y,a) = (1 = a/2)x1(y) — (a/2)22(y)
z2(y,a) = (1 - a/2)z2(y) — (a/2)z1(y).

If p(—1) > p(1) we add to z2(y) an interval of definition p(1) < y <
p(—1) for which z2(y) = 1.

To complete the definition of p(z, a), we agree that if p(x) attains the
same constant value k in two intervals [b,c] and [d, f], b < c<d < f,
then if

z1(k)=(1—=m)b+me, 0<m<1,
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then for a symmetrization procedure defined by (12) we choose
zo(k) =md+ (1 —m)f.
We extend the symmetrization procedure to parameters a € [—1,0] by

r1(y,a) = z1(y) — a(l — z2(y))

(13) 22(y, @) = z2(y) — a(l — z2(y))
or by
(14) 21(y,0) = 21(y) +a(1 +71(y))

r3(y,a) = 2(y) + a(l + z1(y)).

If p(—1) > p(1) we extend the interval of definition of z5(y) by adding
the interval p(1) <y < p(—1) on which we define z2(y) = 1.

The functions p(z, a) are equimeasurable; i.e., for each y,
m(ac,p(m,a) Z Y, -1 S x S 1) = m(w,p(m) Z Y, -1 S T S 1)

See [10, Chapter X] and [12, Chapter VII].

Obviously, p(z,0) = p(x), p(z,1) is the symmetrically increasing
rearrangement p* (z) of p(z) [5, 6, 10].

In [1] the following was proven as parts of Theorems 1 and 2.

Theorem A. Let p(z) > 0 be (Ib) and of class A, and let p(z,a) be
the rearrangement of p(x) as defined in (12) and (13). Then p(z,a) is
(Ib) and of class A and

(15) p(z,a) <p(z,b), 1>a>b>-1, -1<z<0

and for every continuous (Ib) function 0 < z(z), —1 < < 1 with one
mazimum

1 1
(16) / p(z,a)2% dx < / p(z,b)2z%dz, 0<a<b<l.

—1 —1



INTERFACE STURM-LIOUVILLE SYSTEM 45

The analogous results hold for (rb) p(z): let p(z) > 0, (rb), and of
class A, and let p(z, a) be the rearrangement of p(z) as defined in (12)
and (14). Then p(z,a) is (rb) and of class A and

(15") p(z,a) <p(z,b), 1>a>b>-1,0<z<1

and for every continuous (rb) function z(z) with one maximum, (16)

holds.

Theorem 1. Let p(xz) > 0 be of class A and (Ib). Then A(k,a) the

first eigenvalue of the system

y" + Ma)p(z,a)y(z) =0, y(£1)=0
(17) sy_(0) =4 (0),  ty—(0) = y+(0)
s/t=k>1

is decreasing with a, 0 < a < 1, when p(z,a) is derived from p(z) by
the continuous symmetrization method, y(z) > 0, —1 < z < 1, the
first eigenfunction of (17) is continuous in —1 <z < 0,0 < z < 1,
y(z) € C? and y(z) and y'(z) have finite one sided limits at x = 0.

Remark. Theorem 1 can be extended to right balanced p(z) as follows:
Let p(z) > 0 be of class A and (rb). Then A(k,a) is the first eigenvalue
of the system

a)y(z) =0, y(£l)=0

(z,
y1(0),  ty—(0) = y+(0)
s/t=k<1

+A(a)p
(17) sy_(0) =

is decreasing with a, —1 < a < 1, when p(z, a) is derived from p(z) by
the continuous symmetrization method, y(z) > 0, =1 < x < 1 is the
first eigenfunction of (17’), y(z) € C? and y(z) and y'(z) have finite
one sided limits at x = 0.

Proof of Theorem 1. The proof relies on (15), (16), which is not true
for non (Ib) p(x). A(k,a), the first eigenvalue of (17), is also the first

eigenvalue of

(18) 2" + Ap(z,a)z =0, z(—1)=2(1) =0, k= (0) = 2/ (0)
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and it satisfies:

fil Z2dx + (k—1) f?l 2% dx
fjlp(x,a)zZ dz + (k—1) fflp(x, a)z?dx

Ak, a) =

where z(z) > 0 is the continuous solution of the interface BVP (17).
Then for a given fixed k > 1,

f_ll 2%dx + (k—1) f_ol 2% dx

fil p(x,a)z?dz + (k—1) f?lp(w, a)z?dz

y Jr 2 de 4 (k1) [0 22 de

- f_ll p(x,b)22dz + (k — 1) fi)lp(x, b)z2dz

> wmin f_ll u’2dw+(k—1)f£)1 u'? dx
Tou filp(av,b)u2 dr + (k—1) fi)lp(x, b)u? dz
= A(b).

Ak, a) =

Indeed, the first inequality follows from (15) and (16) and the second
inequality follows from the characterization of the first eigenvalue of
the interface BVP (10). This completes the proof of Theorem 1. O

5. Monotonicities of frequencies of the system (9) as related
to the monotonicity of k.

Theorem 2. Let p(x) > 0 be piecewise continuous on —1 < z < 1.
Let y(x) be the first eigenfunction of (1) (2). If y'(0) # 0, then for
every 0 < k < oo, there is an eigenvalue \(k) and an eigenfunction
z(z) >0, =1 < x < 1 that satisfies the interface BVP (9). Moreover,
for y'(0) <0,

(19) )\(kl) < )\(kg), 0< by <k
and for y'(0) >0

(20) )\(kl) < )\(kz), 0 < ki < ks.
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Proof of Theorem 2. Let X be the first eigenvalue and ¢(z) the first
eigenfunction of (9) for k£ = 1. We will prove (19) for 1 < kg < k1. The
other parts of (19) and (20) are obtained similarly. Comparing

7' +Apy=0, y(-1)=0, -1<z<0
with
v" 4+ (A —¢€)pv =0, v(-1)=0, >0, -1<z<0,
we get that
7 (z)v(z) —v'(z)y(z) <0, —-1<z<0.

As g(z) >0, —1 < z < 0 also v(z) > 0. Therefore, at © = 0 choosing
7(0) = v(0) > 0, we get

y(0)[7'(0) — v'(0)] < 0.

Hence,
7'(0) <v'(0).

Let us now compare
7'+ g=0, y(1)=0, 0<z<l
with
u”" + (X —¢)pu =0, u(l)=0, €>0,0<z<1.
The same procedure leads to
w/'(0) < 7'(0)

and hence
u'(0) < ¥'(0) < v'(0).

We assume that §'(0) < 0, then as long as v'(0) < 0 we get that

A = X — ¢ is the first eigenvalue and

Ju(z), 0<z<1,
(@) {v(m), -1<z<0,
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is the first eigenfunction of (9) with

k> Y

This simple procedure shows us that while & > 1 increases, A = X\ — ¢
decreases. Immediate use of Lemma 2 brings us to the following corol-
lary: Let p(z) > 0 be piecewise continuous, (lb), and not symmetric on
(—1,1). Then the results of Theorem 2 hold. That follows from p(z)
being (Ib), also z(z) is (Ib) and 2’(0) < 0. o
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