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To the memory of Geoffrey J. Butler

and to the dedication of his colleagues in Edmonton

1. Introduction. On September 3, 1979, returning from a meeting
in Szeged, Geoffrey J. Butler visited Louvain-la-Neuve and delivered
a lecture on The Poincaré-Birkhoff theorem and periodic solutions
of second order nonlinear differential equations. In his talk, Butler
described some of his recent work on the use of the Poincaré-Birkhoff
fixed point theorem for the obtention of nontrivial T-periodic solutions
of ‘unforced’ second order differential equations of the form

" +f(t’x) =0,

when f(¢,0) =0 for all ¢ and f is superlinear with respect to z, i.e.,

@—)—i—oo as |z| — oc.

He conjectured in his lecture that this approach could be modified to
be applicable to the ‘forced’ case, i.e., when f(¢,0) £ 0, but never
published any further paper about this conjecture (which is explicitly
mentioned in [6]). His results on the unforced case [4, 5] make
an extensive use of the oscillatory properties of the solutions of the
differential equation, a topic to which Butler has masterly contributed
in several directions (see, e.g., the analysis in [13]).

It may therefore be appropriate to show in these Butler lectures how
the use of oscillatory properties of the solutions of ordinary differential
equations may help in proving the existence of periodic solutions for
ordinary differential equations. The recent results described here will,
hopefully, convince the reader how fruitful and vivid are the ideas that
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Butler already used in the seventies, especially when combined with
some recent techniques and some seminal ideas of Opial and Fucik, two
other mathematicians whose untimely death is still in our memories.

The direct study of the oscillatory properties of ordinary differential
equations appears at the very beginning of the qualitative approach to
differential equations. Indeed, when the mathematicians realized that
the explicit solution of ordinary differential equations was either im-
possible or would lead to the creation and study of new classes of tran-
scendental functions, they turned their efforts to another way, which
consisted in getting qualitative properties of the solutions from the
differential equation itself, without any explicit knowledge of the solu-
tions. Sturm in 1836 was the first to use this methodology for second
order linear differential equations, and he obtained information about
the oscillatory properties of the nontrivial solutions of those equations
(e.g., the number and position of their zeros, the maxima and the min-
ima, etc.) by the sole consideration of the differential equation itself,
without needing to integrate it. After the pioneering work of Dirichlet
in 1846 on the stability of motion, Poincaré extended systematically
this approach around 1880 to nonlinear differential equations and the
qualitative method has since been of fundamental importance in the
theory of ordinary differential equations.

In what follows, we shall show how the combination of the use
of oscillatory properties of solutions with topological, symplectic and
vartational techniques provides sharp results about the existence and
the number of periodic solutions of some forced second order ordinary
differential equations.

2. The Leray-Schauder continuation theorem revisited. Let
X and Z be real vector normed spaces, L : D(L) C X — Z a linear
Fredholm mapping of index zero and N : X X [0,1] — Z a mapping
which is L-completely continuous (see [24] or [25] for the corresponding
definitions). A version of the Leray-Schauder continuation theorem
states that if there exists a bounded open set 2 C X such that the
following conditions hold:

Lu # N(u,)) for each (u, ) € 09 x [0,1],
DL(L o N('a 0)79) # Oa
where D (L — N(.,0),Q) denotes the coincidence degree of L — N(.,0)
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with respect to 2 (see [24] or [25] for the corresponding definition in
terms of the Leray-Schauder topological degree), then the equation

Lu = N(u,\)

has at least one solution in Q for each A € [0,1].

The difficulty in applying such a theorem lies, of course, in finding
an open bounded set 2 satisfying the two conditions above, and
any alternative formulation of those conditions may be of interest in
applications. To this effect, let us define the function ¢ : X x[0,1] = R
by

o(u, \) = —dist (u, 0) if u € Q,
o(u, A) = dist (u,0Q) ifu ¢ Q,

so that p(u,\) = 0 if and only if u € 0Q. If we set
¥ ={(u,\) € D(L) x [0,1] : Lu = N(u,\)},
and, for each A € [0,1],
Yx={ue D) : (u, ) € X},

then ¢ is continuous on X X [0, 1], proper on ¥ and bounded below by
—diam Q2. If we assume that Xy C (2, it is easy to check that, under
the assumptions of the Leray-Schauder continuation theorem above, we
have
—diam Q2 < p_ :=infp < gy :=supp <0,
) o

and hence, by taking ¢ < —diam(2 and c¢; = 0, we see that, when
Yo C €, the assumptions of the Leray-Schauder theorem imply the
existence of a continuous mapping ¢ : X x [0,1] — R proper on ¥ and
of numbers

c- <p- < pq <cy,

such that p(u,A) ¢ {c_,cs} for (u,A) € . It has been shown in [7]
that, in some sense, the converse is also true, in that the existence
of such a functional ¢ and of numbers c_, c; verifying the above
conditions implies the solvability of the equation when the nonzero
degree condition holds.
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Lemma 1. Assume that Xy is bounded, that Dr,(L— N(.,0),Q) #0
for some open bounded set Qy O X¢ and that there exist a continuous
functional ¢ : X x [0,1] — R which is proper on ¥ and real numbers

c. <p- < pq <cy,
such that o(u,X) ¢ {c_,cy} for all (u,\) € . Then the equation
Lu = N(u,\)
has at least one solution for each X € [0, 1].
Proof. If
A=p oo, eq) X <,

and
= e e DNE =9 (e e ) NE,

then X* is compact, A is open and %* C A. Consequently, there exists
an open bounded set B such that

Y*CBCBCA,
which easily implies that, for every A € [0,1], Lu # N(u, A) for each
u€ (0B)y={ue X:(u,A) € 0B}
Therefore, for each A € [0,1], one has

Dr(L—N(.,\),Bx) =Dr(L—N(,]\),Bo)
= DL(L - N(,O)vﬁo) # 07

where By = {u € X : (u,A\) € B}, and the result follows from the
existence property of the degree. ]

A special case of this result which is well suited to deal with appli-
cations to differential equations whose solutions have some oscillatory
properties is the following one, whose proof is given in [7].

Corollary 1. Assume that ¥ is bounded, that Dr,(L—N(.,0),Q0) #
0 for some open bounded set 2y D Xg and that there exist a continuous
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functional ¢ : X x [0,1] — R and a number R > 0 such that
o(E\(B(R) x [0,1])) C N and such that ¢ 1(n) N T is bounded for
each n € N. Then the equation

Lu = N(u, \)
has at least one solution for each A € [0,1].
3. A functional for planar systems. In this section we shall

introduce a functional ¢ which is particularly appropriate for the study
of periodic solutions of planar systems of the form

(1) u'(t) = f(tu(t), N),

where

f:RxR2x[0,1] = R2, (t,u,\) — f(t,u,\)

is T-periodic with respect to ¢ and continuous. We set

(symplectic matrix),
Cr = {u: R — R?: u is continuous and T-periodic},

with the uniform norm ||u|| = max;cr |u(t)|, where |v| denotes the
Euclidean norm of v € R? and (v|w) the corresponding inner product.
We define ¢ : Cr x [0,1] = R by

1

T
L / (£t ult), M| Tu(£))8 (u(t)) di.

It is easy to show that ¢ is continuous and, if
Y ={(u,\) € Cr x [0,1] : u is a T-periodic solution of (1)},

then, for each T-periodic solution u of (1) such that min;eg |u(t)| > 1,
©(u, ) denotes the absolute value of the winding number of the closed
curve

(u(t), (), (T €[0,T))
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around the origin and is therefore a nonnegative integer.

The following estimates about the oscillatory character of the periodic
solutions of (1) are proved in [7].

Lemma 2. If there exists v > 0 and a positive definite and positive
homogeneous mapping of degree two S : R? — R. such that either

(2) (F(t,u, ) | Ju) = S(u) = 7]ul,
(3) (f(t,u, A) | Ju) < =S(w) +7]ul,

for all w € R? and X € [0,1], then there exists Ry > 1 such that, for
each (u,\) € ¥ with ming |u(t)| > Ry, one has

1
p(u,A) > o(1/5)’

D1 w
S/ 2n ), S(cosf,sinf)’

Lemma 3. If there exists v > 0 and a positive definite and positively
homogeneous mapping of degree two S : R? — R such that either

where

(4) —lul < (f(tu,A) | Ju) < S(u) +7lul,
(5) YMNul = (£t u,A) | Ju) = =S(w) = ylul,

for all w € R? and X € [0,1], then there exists Ry > 1 such that for
each (u, \) € ¥ with ming |u(t)| > Ry, one has

1
p(u,A) < w(1/S)"
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The following variant of Lemma 3 is useful in problems with jumping
nonlinearities and one-sided growth restrictions.

Lemma 4. If there exists R > 0, v > 0 and a positive definite and
positively homogeneous mapping of degree two S : R?> — R such that
either

(6) 0 < (f(t,u,A) | Ju) < S(u) +7lul,
(7) 0> (f(t,u,A) | Ju) > =5 (u) —lul,

for all w € R? with |u| > R and u; > 0 and all A € [0,1], then there
exists R1 > 1 such that, for each (u, \) € ¥ with ming |u(t)| > R1, one
has

2
p(u,A) < o{1/S}

1_1 /”/2 df
SJ) 7w J_r2 S(cosb,sind)’
Proof. If we write u; = pcosf, uz = psin@, and if |u(t)| > max(A4, R)

with A > 1, then

P20 () = (f(t,u(t),N) | Ju(t) = (f(t,u(t),N) | Ju(t)d(u(t)),

and hence, on {t € [0,T] : u1(t) > 0}, one has if we assume, say, that
(6) holds,

where

0 < 0'(t) < S(cosf(t),sinb(t)) +~/A,

and hence

0'(t) ( Y >
0< / _ dt < (1+ L1,
{t€[0,T]rus (1) >0y S(cosO(t),sinb(t)) oA

where o = ming: S. Now, if

k
{te[0,T]:wm(t) >0} = U[Tj,tj],
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we have necessarily k£ = ¢(u, \) and

/ta' 9'(t) B /”/2 do B
 S(cosf(t),sinb(t)) B —n/2 S(cosB,sind) -
for each 1 < j < k. Consequently, one has
p(u,A) t; /
i 0'(t) 1 v
dt = A — < |(1+— T
0< ; /,j S(cos (D), sma() & = Fw )”{s} = < * JA>

This implies immediately that

0 < p(u,\) < ﬁ(ljﬂ%)’

and hence, if we take A = R; so large that

1
S I

2 ¥ < 1
w{l/S}\cA 2’
and use the fact that p(u, ) is an integer, we obtain the result. o

The continuation theorem of the previous section can be applied to
the study of T-periodic solutions of the planar system (1). Setting

X =27 =Cr ={u:R — R?:uis continuous and T-periodic},

D(L) = CrNCY(R,R?), Lu = v/, N(u,\) = f(.,u(.), \), it is standard
to check that L is Fredholm of index zero and N is L-completely
continuous. We therefore obtain the following continuation theorem
whose proof can be found in [7], where ¢ is the functional defined
above.

Lemma 5. Assume that the following conditions are satisfied.

(H1) f(t,u,0) = fo(u) and there exists an r9 > 0 such that every
possible T'-periodic solution of

(8) u'(t) = fo(u(t))
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satisfies the inequality ||u|| < ro.
(H2) The Brouwer degree dg(fo, B(r0),0) is different from zero.

(H3) For each ry > 0 there exists ro > r1 such that for each possible
T-periodic solution u of (1) with minger |u(t)| < r1, one has ||ul] < ro.

(H4) For each n € N, there exists K, > 0 such that for each possible
T-periodic solution u of (1) with (u,\) = n, one has minger |u(t)| <
K,.

Then (1) has at least one solution for each A € [0, 1].

We shall study the T-periodic solutions of second order differential
equations of the form

(9) 2(t) + g(a(t)) = e(t)

where ¢ : R — R is continuous and e : R — R is continuous and
T-periodic. We shall apply Lemma 5 to the equivalent planar system

(10) ull = u2, ul2 = 79(’“‘1) + e(t)a

so that
f(tv U, )‘) = (u27 _g(ul) + )\6(75)),

and fo(u) = f(t,u,0) = (u2, —g(u1)). We also have
(f(t,u,A) | Ju) = —[g(ur)ur + u3] + Ne(t)us.

We set G(u) = [, g(s) ds.

Lemma 6. Assume that G(xz) — +o00 as |z| — co. Then condition
(H3) of Lemma 5 holds.

Proof. Let Gy = mingz G and define V : R? — R by V(u) =
G(u1) — Go + (u3 + 1)/2, so that, by assumption, V(u) — +oo as
|u| — oo and

(V'(w) | f(8,u,2)) = Ae(t)us < max|e(t)|V (u)].
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Hence property (H3) follows from a classical differential inequality
argument (see, e.g., [24, Proof of Theorem VI.2]). O

4. Second order equations with jumping nonlinearities. We
shall first consider the case where g has at most a linear growth and
may have a different asymptotic behavior at +o0o and —co (jumping or
asymmetric nonlinearities).

Theorem 1. Assume that there exist K > 0 and positive constants
Ay < By and A_ < B_ such that

(11) Ayz? — Klz| < zg(z) < Bya? + Klz|  for z >0,
and
(12) A_z* — K|z| < zg(z) < B_a* + K|z| forz <0,

forall z € R. If

(13) NwN =,

2 2
1/\/Ar +1/\/A-" 1/\/By +1/\/B-

then equation (9) has at least one T-periodic solution.

Proof. We apply Lemma 5 to the equivalent planar system (10).
By our assumptions (11) or (12) we have easily that G(u) — 400 as
|u| — oo and hence condition (H3) of Lemma 5 follows from Lemma 6.
If we define the positive definite and positively homogeneous of degree
two mappings S7 and Sy by

S1(u) = Ay (uf)* + A_(uy)? + 3,
S2(u) = By (uf)* + B (uy)* + u3,
we easily check that
(14)  =82(u) = Mu| < (f(t,u,A) | Ju) < =S1(u) + Mlul,

for M = L + maxier |e(t)|, and hence Lemmas 2 and 3 imply the
existence of Ry > 0 such that for each possible T-periodic solution of
(10) such that minscr |u(t)| > Ry, one has
1 < 1
w(t/S) =7
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Now,

(44 )
5) = 2\ya Ty
(4)- 1A+ i)
S 2\ /B, B_)’
and, from assumption (13), we see that, for each n € N and each
possible T-periodic solution u of (1) such that ¢(u,\) = n, one has
minger |u(t)] < Ri, which shows that condition (H4) of Lemma 5
holds with K, independent of n. As a consequence, all possible T-
periodic solutions of (10) are a priori bounded independently of A and

assumption (H1) of Lemma 5 is also satisfied. Now the inequality (11)
implies that, for sufficiently large values of |u|, one has

(f(t,w,0) | =Ju) = (fo(u) | =Ju) >0,

and hence dp(fo, B(r),0) = dp(—J, B(r),0) = 1, showing that assump-
tion (H1) of Lemma 5 holds. O

Remark. Theorem 1 is a result on periodic solutions of differential
equations with jumping or asymmetric nonlinearities which can be
traced to [8] and [19] (see [18] and [7] for more references). The set F
of curves in the positive quadrant of the (m, m_) plane made by the
positive axes and the curves

2
1/ s + 1y

for the positive integers n was first introduced independently for pe-
riodic problems in [8] and [19] and called the Fuéik spectrum, as it
generalizes the usual spectrum from linear to piecewise linear situa-
tions. The set F is characterized by the fact that the problem

wn,

" +myxt

—m_z~ =0,

has a nontrivial T-periodic solution if and only if (m_,my) € F. The
approach used here is a slight variant of that in [7] where more general
planar systems are considered.
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5. Second order equations with one-sided growth restric-
tions. We shall show in this section that the same approach can be
applied to situations where the linear growth restriction only holds in
one direction. We again consider the second order equation (9).

Theorem 2. Assume that there exist R > 0, K > 0 and positive
constants Ay < By and A_ < B_ such that

(15) Ayz? — Klz| < zg(x) < Bya® + Klz| forz >0,
and
(16) A_z® — Klz| < zg(z) forz <0,

for allz e R. If
2 2

VA + 1A 1B

then equation (9) has at least one T-periodic solution.

(17) NwN =@,

Proof. The proof follows the same line as that of Theorem 1 except
that this time we define Sy by

S2(u) = By (uf)* + u3,
which implies that
(f(tu,A) [ Ju) < =81 (u) + Llul
for all v € R? and some L > 0 and
(ft,u, ) | Ju) > —Sa(u) — Lju| > 0,

for all u € R? such that u; > 0, |[u| > R; and some R; sufficiently
large. Lemmas 2 and 4 then imply that

2 1
Wt/ As + 1/\/AD)  w(1/Sy)
> /B

So/Sy T W

< ‘P(uv )‘)
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for all possible T-periodic solutions u of (1) such that min;cg |u(t)]
is sufficiently large. The remainder of the proof is similar to that of
Theorem 1. O

Remark. This result is related to the earlier papers [26, 9] and [14]
but the approach is different.

6. Second order superlinear equations. Lemma 5 can also
be applied to periodic solutions of second order equations which are
superlinear at +o0o and —oo, i.e., when the function g satisfies the
superlinearity condition

(18) g(x)/x — +o00 as |z] = oo.
Under such an assumption, the equation
z" +g(x) =0,
or the equivalent planar system
up =up,  uy = —g(u),
has infinitely many T-periodic solutions with arbitrary large norms,
and hence the assumption (H1) of Lemma 5 will never be satisfied. A

way to overcome this difficulty is to define f(¢,u,\) by

u2

ftu,X) = (u2,—(1 - ,\)m _

g(ur) + Ae(t)).

In this case, the system for A = 0 is equivalent to the equation
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so that z(t) = ¢, c¢ constant, and g(c) = 0. As g(z)z > 0 for
|z| large, it immediately follows that there exists » > 0 such that
[|(z,2")]| = |c|] < r for any possible T-periodic solution and that
dp(fo,B(r),0) # 0. Thus, assumptions (H1) and (H2) of Lemma
5 hold. Assumption (H3) is checked as in the previous cases. The
new term —(1 — A)ua/(1 + |ug|) in the second component of f(t,u,\)
does not essentially affect (f(t,u,A) | Ju) as it is bounded, and the
superlinear property of g indeed implies that assumptions of the type
of Lemma 2 hold for a sequence of quadratic forms S,, of the type
S, (u) = 2n?u? + u/2. This allows us to show that assumption (H4)
also holds. We therefore have the following existence result, contained
in [7], where the details of the proof and the corresponding bibliography
can be found.

Theorem 3. Assume that g satisfies the superlinearity condition
(18). Then equation (9) has at least one T-periodic solution.

Remark. Theorem 3 indeed holds for the more general equation
2"+ g(z) = p(t, z,2')

when p has at most linear growth with respect to z and z’. In this
setting, the result is the best possible because, for example, the special
case

2+’ 423 =0

has only the trivial T-periodic solution. On the other hand, for the
autonomous equation
" +g(x) =0

with g superlinear, the energy integral easily shows that all the solutions
&(.,¢) with initial conditions z(0) = ¢ > 0, z'(0) = 0 have orbits I'(c)
in the phase plane which are simple closed curves encircling the origin
when c is sufficiently large. If (—I(c), 0) denotes the intersection of I'(c)
with the negative z-axis, then the period of the corresponding periodic
solution is given by

¢ ds
o) = /l@ G0 -C@)
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depends continuously upon ¢ and is such that 7(¢) — 0 as ¢ — +oo.
Consequently, for all the integers k such that T'/k belongs to the range
of T, if we take ¢ such that 7(cx) = T'/k, the corresponding solution
&(;cx) is (T'/k)-periodic and hence T-periodic. Thus, the autonomous
equation has infinitely many T-periodic solutions with arbitrary large
norms, and one can ask if the same result can be extended to equation
(9). Topological methods seem unable to reach this result, but we shall
see in the next section that the symplectic structure of (9) can be used
together with a fixed point theorem of symplectic nature to prove the
existence of infinitely many T-periodic solutions for (9). Notice that
if we take integers ¢ > m > 1 such that mT/( belongs to the range
of 7, and a corresponding c¢,m such that 7(c¢ ) = mT/{, then the
corresponding solution will be mT-periodic (makes ¢ revolutions), and,
as checked later in more generality, will not be kT-periodic for any
1 <k <m—1 when ( is prime. One can therefore also raise the
question of the existence of such mT-periodic solutions for (9), and the
same approach will provide a positive question.

Recall that z is called a harmonic solution of (9) if x is T-periodic
and is called a subharmonic solution of order m > 2 if x is mT -periodic
and is not kT -periodic for any integer 1 < k < m — 1.

7. The Poincaré-Birkhoff theorem and some extensions.
In the year 1880, Poincaré observed that when the Cauchy problem
for equation (9) is uniquely solvable over an interval [0, 7], the initial
conditions a € R? leading to T-periodic solutions are the solutions of
the equations

ai :f(Ta alaa’2)7 az :gl(T;alaaz)a
where &(¢; a1, az) denotes the solution of the Cauchy problem
" + g(x) = e(t), z(0) = a1, z'(0) = as.

In other words, they are the fixed points of the Poincaré operator P
defined in R? by

P(a) = (&(T; al,az),fl(T; ai,az)).

Recall that P is a homeomorphism and that, because of the Hamilto-
nian character of equation (9), P is area preserving. In 1912, Poincaré
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[30] published the following fixed point conjecture, with some partial
indications of the proof, which was given in 1913 by G.D. Birkhoff [2],
one year after Poincaré’s untimely death.

Lemma 7. Let A = B[R]\B(r) C R? (with 0 < r < R) be a
closed annulus and H : A — A an area-preserving homeomorphism
which rotates the two boundary components of A in opposite angular
directions. Then H has at least two fixed points.

As already observed by Poincaré, the statement about the rotations
of the boundary components, usually called the twist condition, is
ambiguous in that an anticlockwise rotation by 6 is the same as a
clockwise rotation by 27 — 6. This ambiguity can be resolved by going
to the universal cover of A associated to polar coordinates and assuming
that H can be lifted to a homeomorphism H : A — A of the form

H(9,p) = (6+9(6,p), k(6 p)),
where g and h are 2r-periodic in # and continuous, A = R x [r, R] and
9(97 T) g(@,R) <0

for all # € R. The proof of the Poincaré-Birkhoff theorem is still
delicate and we shall refer to [3] for a modern treatment of Birkhoff
arguments. The result can be proved easily if we assume that, for each
0 € R, g(b,.) is strictly monotone. Indeed, if it is the case, it follows
from the twist condition that, for each § € R, there exists a unique
p(6) € |r, R[ such that g(8, p(6)) = 0. Consequently, the closed simple
curve C of equation p = p(f) in A is such that each of its points is moved
radially under the action of H. Its image H(C') is a simple closed curve
in A of equation p = p*(6). By the area preserving property of H, we

have
2m pp(0) 2m pp*(0)
/ / pdpd@z/ / pdpdd,
0 T 0 T

/0 "[07(6) - p(6))d6 = 0.

As the integrand is 27-periodic, this implies the existence of at least
two values of 6 € [0,2n[ for which p(8) = p*(0), i.e., the existence of

and hence
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at least two fixed points for H. Notice that this elementary version of
the Poincaré-Birkhoff theorem was already used by Morris [28] in 1965
to prove the existence of infinitely many 2m-periodic solutions of the
equation

x4+ 22° = e(t),

when e is continuous, 27-periodic and has mean value zero.

The conditions of the Poincaré-Birkhoff theorem are rather difficult to
check in applications, and mathematicians have looked for more easily
applicable extensions. One of them, due to Jacobowitz [21], develops a
remark already made by Poincaré [30] and has been used by Jacobowitz
[21], Butler [6, 4] and Hartman [20] to study the T-periodic solutions
of ‘unforced’ superlinear second order equations. We state it in terms
of the lifted map H.

Lemma 8. Assume that

H:S=Rx]0,R[ — H(S),
(0,p) — (0 + g(8,p), (8, p))

1s the lift of an area preserving homeomorphism such that
1}7§(1)I—~1-f g(6,p) =0, wuniformly in 6,
g(0,R) <0, feR,

and
plg& h(0,p) =0, wuniformly in 6.

Then H has at least two fized points.

This Jacobowitz theorem was then used by W. Ding [12] to obtain
a version of the Poincaré-Birkhoff theorem which is well-suited for the
application to the periodic solutions of forced superlinear equations,
and may be close to the one that Butler was thinking about when
considering the extension of its results to the forced case (see [6]).

Lemma 9. Let H : B[R] C R?> — H(BI[R]) be an area-preserving
homeomorphism such that H(A) C R*\{0} where A = B[R]\B(r).



18 J. MAWHIN

Assume that 0 € T(B(r)) and that a lifting H of H satisfies the twist
condition
9(6,7).9(0,R) <0,

for all & € R. Then H has at least two fized points in A which corre-
spond to two fized points (0;,p;), i = 1,2, of H such that g(6;,p;) =0,
i=1,2.

8. Hamiltonian second order superlinear equations: har-
monic solutions. In this section we shall describe some results of
T. Ding and Zanolin [10] about the use of the W. Ding version of the
Poincaré-Birkhoff theorem given above to the existence of infinitely
harmonic and subharmonic solutions of equation (9). For simplicity,
we shall assume that g is locally Lipschitzian, so that the local unique-
ness of the Cauchy problem holds. This condition can be dropped at
the expense of an approximation procedure (see [10]).

Let us first consider the existence of harmonic solutions. The proof is
based upon the following lemmas, whose proof is quite similar to that
of the corresponding results of the approach using degree theory given
above. They only require the following assumption upon g:

(19) lim g(z)signz = +oo.

|z| =00

Lemma 10. If condition (19) holds, then all solutions of the Cauchy
problem for (9) exist over R.

Lemma 11. Let Ty > R be fized. If condition (19) holds, then for
each Ry > 0 there exists Ry > Ry such that for each solution u of

(20) ull = U2, ul2 = _g(ul) + e(t)v

such that |u(0)| < Ry (respectively, [u(0)| > Ry) one has max;cjo 1 |u(t)]
< Ry (respectively, mingepo, 1) [u(t)| > Ra).

One can therefore use polar coordinates (p(t;v), O(¢;v)) for the so-
lution u(t) of (20) with «(0) = v whenever |v| > rg and ro > 0 large
enough so that |u(t)| > 0 for all ¢ € [0, Tp].
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Lemma 12. There exists d > 1o such that, for every solution
u of (20) with |u(0)] = d, one has (d/dt)O(t;u(0)) < 0 for all
t € [0,Tp]. Moreover, there exists a nondecreasing and continuous
function B : [d, +oo] — |0, 4+00[ such that for any solution of (20) with
|u(0)| =7, one has (d/dt)O(t; w(0)) > —5(r), whenever t € [0, Tp].

If » > 0is large enough, one can therefore define the following integers

0(T;u(0)) — ©(0;u(0))| }

n,(r) —max{neN:n§ inf

|u(0)|=r 2m
w)=min{neNinz ap OE0) OOUONL
|u(0)|=r 27

Thus, each solution of (20) with initial values on 8B(r) makes at least
n,(r) and at most n*(r) clockwise rotations around the origin during
a period of time T'.

One then has the following existence theorem.

Theorem 4. Assume that condition (19) holds and that there exists
T # T2 > d such that

1’1*(7"2) — 1’1*(7"1) Z 2.
Then system (20) has at least one T-periodic solution u with

min{ry, 72} < |u(0)] < max{ry,r2}.

Proof. We counsider, say, the case where r; < 79. Using the
lemmas above, it is not difficult to see that the Poincaré operator
P : B[rg] — P(B]rs]) is an area preserving homeomorphism such that,
for A = B[r3]\B(r1), P(A) C R*\{0} and 0 € P(B(ry)). Also,

|0(T;v) — ©(0;v)| = O(0;v) — O(T;v).
From the hypothesis we can find an integer n such that

n,(r) <n < n*(r),
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and g € ]0,1/2] such that

|O(T;v) — ©(0;0)| < 2m(n —eo) for all [v] =ry,

|6(Z;v) = ©(0;0)| > 2m(n +ey)  for all [v] = rs.

Moreover, we can choose a lifting P of P such that if P(6, p) = P(v),
then
9(8,p) = O(T5v) — ©(0;v) + 27,

so that the ‘twist’ condition will hold, and the conclusion follows from
W. Ding’s version of the Poincaré-Birkhoff theorem. ]

An easy consequence of Theorem 4 is the following corollary.

Corollary 2. Assume that condition (19) holds and that

(21) lim n.(r) = +oo.

r—+00
Then system (20) has a sequence (u;) of T-periodic solutions such that

lim min |u;(t)| = +o0.
Jim min [u; (t)] = +o0

It remains, of course, to find conditions upon g which insure that (21)
holds. A delicate analysis given in [10] shows that it is the case under
a condition which is weaker than the superlinearity of g and stronger
than the superquadratic character of G. This condition makes use of
the time-map 7(c) (introduced above) associated to the solution &(.; c)
of the autonomous equation

2" +g(z)=0

such that (0) = ¢ > 0 and 2/(0) = 0. The use of the properties of
7(c) in the study of periodic solutions of forced second order differential
equations was introduced by Opial [29]. The condition to add to (19)
to be sure that (21) holds is that

(22) lim 7(c) =0,

c——+oo
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and it is checked in [10] that (19) and (22) imply that G(z)/z? — +o0
as |z| — oo, and that the superlinearity of g implies (22).

Thus, one has the following corollary.

Corollary 3. If
g(x)/z — +00 as |z| — oo,
then system (20) has a sequence (u;) of T-periodic solutions such that

Jim min |u; (£)] = +oo.

9. Hamiltonian second order superlinear equations: subhar-
monic solutions. As the forcing term e is also mT-periodic for any
integer m > 2, it is not difficult in general to mimic the reasonings
made to prove the existence of T-periodic solutions to obtain the ex-
istence of mT-periodic solutions. But those solutions could as well be
the previous T-periodic one repeated m times, and hence one must find
ways to exclude this situation. The following result, announced above,
is very useful in this respect.

Lemma 13. Let m > 2 be an integer and { > m a prime number.
Let u be an mT -periodic solution of (20) which turns ¢ times (in the
same sense) around the origin during the interval [0,mT]. Then u is a
subharmonic solution of order m of (20).

Proof. We have to show that, for each integer 1 < k < m—1, u is not
kT-periodic. If u is kT-periodic for some integer 1 < k < m — 1, then,
on the interval [0, k7], u turns in the same direction [ < ¢ times around
the origin. Now u is also kmT-periodic and, on the interval [0, kmT],
u will turn in the same direction k¢ = ml times around the origin.
Thus, ¢ divides ml and hence must divide m or [, which is impossible
as ( >mand ¢ > [. i

We can repeat all the reasoning of the previous section and obtain
the following results where, in the definition of n,(r), n*(r) and of the
Poincaré operator, one has replaced T by mT.
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Theorem 5. Assume that condition (19) holds and that there exists
r1 # re > d and a prime number { > m such that

n,(re) > ¢ > n"(ry).
Then system (20) has at least one mT -periodic solution u with
min{ry, 72} < |u(0)] < max{ry,r2},

which is not kT -periodic for any 1 <k < m — 1.

Corollary 4. Assume that condition (19) holds and that

lim n,(r) = +4oo.
r—+00

Then, for each integer m > 2, system (20) has a sequence (u;) of
subharmonic solutions of order m such that

lim min |u;(t)] = +oo.
Jim min Ju; (£)] = +o0

Corollary 5. If
g(x)/z — +00 as |z| — oo,

then, for each integer m > 2, system (20) has a sequence (u;) of
subharmonic solutions of order m such that

lim min |u;(t)] = +oo.
Jim min Ju; (£)] = +o0

A classical reasoning shows, moreover, that if e is not constant, then
each solution u; has mT as a minimal period.

Using again W. Ding’s version of the Poincaré-Birkhoff theorem, T.
Ding and Zanolin [11] have also proved the existence of subharmonic
solutions for differential equations of the form (9) when the time-map
7(c) associated to the corresponding autonomous equation is such that

7(c) — 400 as ¢ — +o0.
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This happens in particular for sublinear nonlinearities, i.e., when
g(z)/x — 0 as |z| — oc.

Similar results can also be obtained in such situations using critical
point theory, and we shall describe some recent ones in the next
sections. The idea of using critical point theory to prove the existence
of subharmonic solutions to differential equations is due to Rabinowitz
[32].

10. Hamiltonian second order sublinear equations: har-
monic solutions. Lazer [22] proved in 1968, by a clever use of the
Schauder fixed point theorem, a result implying that if g is continuous
and satisfies the following conditions:

(B) g is bounded,

(LL) g~ := limsup, ,_, g(z) < € := (1/7) fOTe(t) dt < g4 =
liminf, 1 g(z),
then equation (9) has at least one T-periodic solution.

Condition (LL) is usually called a Landesman-Lazer condition, and
it implies each of the following three conditions:

(ALP) G(z) — éx — 400 as |z| — oo,
(S) There exists r > 0 such that (g(z) — &)z > 0 for |z| > 7,
(SQ) 2G(x)/z? — 0 as |z| — oo.

The (ALP) condition was first introduced in the setting of Dirichlet
boundary value problems by Ahmad, Lazer and Paul [1]. (S) is a sign
condition for g — € and (SQ) is a subquadratic growth condition for the
potential G.

In the autonomous case,
(23) z" + g(z) =€,

where the real number € is such that conditions (ALP) and (S) hold,
one can check that the orbits of solutions with initial conditions (¢, 0)
with ¢ > 0 large enough are closed simple curves, and the corresponding
time map 7(c) is such that

7(c) = 400  as ¢ — +oo.
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Hence, equation (23) will admit subharmonics of order m for all
sufficiently large m. On the other hand, condition (ALP) implies that
G(.)—é(.) has a critical point z, which is of course a T-periodic solution
of (23). We shall show, using critical point theory that those results
still hold if we add to the right-hand member of (23) any T-periodic
continuous function having mean value zero.

In the nonautonomous case, we first consider the existence of at least
one T-periodic solution of the equation (9) when e is T-periodic, written
as e(t) = & + &(t), with e = (1/T) [, e(t)dt and [, &(t)dt = 0. It is
standard (see, e.g., [27]) that the T-periodic solutions of (9) are the
critical points of the action functional ¢7 defined over

H; ={z:R — R : z is T-periodic,
absolutely continuous and =’ € L?(0,T)}

(with the usual Sobolev norm ||z||) by

T ! 2
z'(t
prie) = [ [# — Gla(t) + e(t)a(t)| dt.

0
This functional is of class C' and

T

pr(z)y = /0 [2"(£)y'(t) — g(=(£)y(t) + e(t)y(t)] dt,

for every z and y € H}. The geometry of this functional is described
by the following lemma. For each = € H}, we write z = Z + #, with

z = (1/T) [ x(t)dt, so that H: = H @ H.

Lemma 14. If conditions (B) and (ALP) hold, then (%) — —oo
as |z] = oo in H and

pr(@) 2 ||2|72/2 - Cll| e,

forall T € H and some C > 0, so that o7 (%) — 400 as ||Z'||p2 — oo.

Proof. We have



OSCILLATORY PROPERTIES 25

and the first conclusion follows from condition (ALP), and

T 7 2
er@ = [ [ G+ i) a

[~
> O] e,

using condition (B), and the last assertion follows from the Wirtinger
inequality (see, e.g., [27]). O

We are therefore in a situation where the following saddle point
theorem of Rabinowitz [31] could be applied.

Lemma 15. Let E =V @ W be a Banach space, with V nontrivial
and finite dimensional, and ¢ € C*(E,R) a functional satisfying the
Palais-Smale condition (i.e., every sequence (z,) in E with (¢(uy))
bounded and (¢'(uy,)) converging to zero has a convergent subsequence).
If there exists R > 0 such that

24 < inf ¢,
(24) pirax ¢ <infy

then ¢ has a critical point x € E with critical value

ple) =inf  max = @(1(),

where T' = {y € C(B[R]|NV, E) : v|sp(r)nv = identity}.

We have, therefore, the following extension of the Lazer existence
theorem (see, e.g., [27, Theorem 4.8]).

Theorem 6. Assume that conditions (B) and (ALP) hold. Then
equation (9) has at least one T -periodic solution xr such that

er(zr) =inf  max _pr(y(£)),
Y€l ¢eBIRINH

where 'y = {y € C(B[R]NH,H%}) : 7|aB(R)mE = identity}.
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Proof. We take, of course, E = H:, V = H, W = H in Rabinowitz
theorem. The existence of R > 0 such that condition (24) holds easily
follows from Lemma 14. It remains, therefore, to prove the Palais-Smale
condition. To this end, if (z,) is a sequence verifying the assumptions
of the Palais-Smale condition, then we have

= /0 [(@7,(£))* — g(@n())En(t) + e(t)Zn(t)] dt
> [z — CllZnllze,

and hence, using the Wirtinger inequality and the fact that, on H , the
Sobolev norm ||z|| and the norm ||z'||z2 are equivalent, we see that
(Zy) is bounded. On the other hand, we have

[

or(zn) = Ty +A é(t) &, (t) dt
- / (G (@ + Ea(t)) — em] dt,

and, as (¢r(x,)) is bounded, the same must be true for (fOT[G(E +
Z,(t)) — ez, dt). If (z) is not bounded, we therefore get a contra-
diction using condition (ALP). Thus (z,) is bounded, and a standard
argument, given, for example, in [27, Proposition 4.1], implies the ex-
istence of a convergent subsequence. ul

11. Hamiltonian second order sublinear equations: subhar-
monic solutions. We shall now describe a recent argument of Fonda
and Lazer [16] showing how to use the Rabinowitz saddle point the-
orem to obtain the existence of subharmonic solutions for (9) in the
sublinear case. One needs the following standard lemma, a special case
of a result of [23].

Lemma 16. If conditions (B) and (S) hold, then the set of possible
T-periodic solutions of equation (9) is a priori bounded.

Proof. Let x be any possible T-periodic solution of (9). Then
"7+ g(x)7 = e(t)z,
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and hence,

- /0 (@ (8)2dt + /0 g(@(t))F(t) dt — /0 E()i(t) dt,

so that, using condition (B), we get ||2’||2 <C, and hence max;cr |Z(t)]
< C’ by Sobolev inequality. We also have

7 | () - eoae =0,

and hence no T-periodic solution = can be such that || > r+ C’. The
a priori bound for Z and for ||2'||z2 easily implies an a priori bound
for ||x||. o

Theorem 7. Assume that conditions (B), (S) and (ALP) hold.
Then equation (9) has at least one T-periodic solution, and there exists
mo > 1 such that, for each prime integer m > my, equation (9) has a
subharmonic solution of order m.

Proof. For each integer k > 2, one can repeat the argument of
Theorem 6 for the functional pgr defined over

Hpr ={z:R — Rz is kT-periodic,
absolutely continuous, =’ € L*(0,kT)}

(with the usual Sobolev norm ||z||xr) by

kT / 2
prr(z) = /0 {@ — G(z(t)) + e(t)=(t)| dt.

One obtains in this way a critical point xgr of g7 with critical value

orr(zrr) = inf max __ k7 (7(£)),
YELRT ¢€ B[Ry |NHy

where Tyr = {y € C(B[Rx] N Hy, H}p) : Vop(ry)nm, = identity},

and H @ I;Tk is the usual splitting of H ,%T in constant functions and
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functions of mean value zero. For any possible T-periodic solution = of
(9), we have

orr(z) = kor(z),
and therefore, by Lemma 16,

|owr(2)/k| < C.

We shall therefore show that the critical points xxr are not T-periodic
by showing that

orr(zrr) /K — —00

as k — oo. This will be the case, by the characterization of their critical
values, if we can find a sequence of mappings 7, € 'y such that

max M_)—oo as k — oo.

¢cB[R.NHr k

Such a sequence is given by the mappings from B[k] N Hy ~ [k, k]
into H}p defined by
. w
w©0 =&+ (1= )arsin ().

Careful estimates of pr which can be found explicitly in [16] imply
that this sequence has the required property. When m is prime and
sufficiently large, the corresponding critical point x,,7 is mT-periodic
and not kT -periodic for any 1 <k <m — 1. ]

Corollary 6. Assume that the conditions (B) and (LL) hold.
Then equation (9) has at least one T-periodic solution and there exists
mo > 1 such that for each prime integer m > my, equation (9) has a
subharmonic solution of order m.

Remark. By a similar proof also given in [15], one can show that
the conclusion of Theorem 7 holds when condition (B) in Theorem 7 is
replaced by condition (SQ) and

(B') limsup, o g(z)/7 < w?.
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Remark. In a very recent paper, Fonda and Ramos [16] have refined
the arguments above to prove the existence of a sequence of kT-periodic
solutions of (9) whose amplitudes and minimal periods tend to infinity
if conditions (LL) hold, together with conditions

(SQ-) lim,,_o 2G(z)/2% = 0,
and
(5-) (9(z) —€)sgnz > —C,

or if conditions (ALP), (S) and (SQ-) hold. In the same paper, they
have also proved that if the conditions (S'), (LL) and

(BB") limjy|o g(x)/z = 0,

hold, then there exists ko > 2 such that for each integer k > ko, each
p > 0 and each v > 0 such that 1/,/n 4+ 1/y/v > 2k/w, the equation

o+ pxt —vr_ +g(x) = e(t),

has at least a T-periodic solution and a kT -periodic solution which
is not T-periodic. The mountain pass lemma is used instead of the
saddle point theorem. Applications are given to simplified models of
the Tacoma bridge. Results in this direction have also recently been
obtained by Fonda, Schneider and Zanolin using the Poincaré-Birkhoff
theorem [17].
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