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ON THE TRUNCATION OF FUNCTIONS
IN LORENTZ AND MARCINKIEWICZ SPACES

J. APPELL AND E.M. SEMENOV

ABSTRACT. Given a measurable function x on [0, 1], we
study the family Q(x) of all quasi-concave functions ψ such
that ||xh||M(ψ) = o(||xh||Λ(ψ)) as h → ∞, where xh denotes
the truncation of x at height h. We show, in particular, that
Q(x) is nonempty if and only if x ∈ L1\L∞.

Recall that a Banach space E of measurable functions on [0, 1] is
called symmetric space or rearrangement invariant (r.i.) space if the
following holds:

(a) from |x(t)| ≤ |y(t)| and y ∈ E it follows that x ∈ E and
||x||E ≤ ||y||E ;

(b) if x is equi-measurable to y ∈ E, then x ∈ E and ||x||E = ||y||E .

Denote by χe the characteristic function of a measurable set e ⊆ [0, 1].
By (b), the norm ||χe||E depends only then on the measure μe of e.
Consequently, the function ϕE : [0, 1] → [0,∞) given by ϕE(μe) =
||χe||E (the so-called fundamental function of E) is well-defined.

Examples of r.i. spaces are the classical Lebesgue, Orlicz, Lorentz
and Marcinkiewicz spaces. Denote by Ω the set of all quasi-concave
functions ψ : [0, 1] → [0,∞), i.e., ψ(0) = 0, and both functions t �→ ψ(t)
and t �→ t/ψ(t) are increasing. Given ψ ∈ Ω, let

(1) ||x||Λ(ψ) =
∫ 1

0

x∗(t) dψ(t)

and

(2) ||x||M(ψ) = sup
0<τ≤1

ψ(τ )
τ

∫ τ

0

x∗(t) dt

where x∗(t) denotes the decreasing rearrangement of |x(t)|. The space
Λ(ψ) defined by the norm (1) is usually called Lorentz space, the space
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M(ψ) defined by the norm (2) Marcinkiewicz space (see, e.g., [3, 5, 7]).
Even in the very special case ψ(t) = tα, 0 < α ≤ 1, these spaces are
extremely important in interpolation theory [3, 4, 9 13]. Recall that
the fundamental function of an r.i. space is always quasi-concave (see
[7, Chapter II, Theorem 4.7]). If E is an r.i. space whose fundamental
function ϕE is concave, then

(3) Λ(ϕE) ⊆ E ⊆M(ϕE),

and the corresponding imbedding operators have norm 1. On the space
L1 we define an ordering � by requiring that x � y if and only if

∫ τ

0

x∗(t) dt ≤
∫ τ

0

y∗(t) dt

for all τ ∈ [0, 1]. If an r.i. space E is separable, or isomorphic to a
separable space, then x � y implies that ||x||E ≤ ||y||E . In particular,
this holds for any Lorentz space. For more information on the preceding
notions and results, we refer to the monographs [3, 7, 8].

In case E = L1 we have ϕE(t) = t and Λ(ϕE) = M(ϕE) = L1.
Similarly, in case E = L∞ we have ϕE(t) = sign t and Λ(ϕE) =
M(ϕE) = L∞. These two cases are quite exceptional; in fact, the
inclusion Λ(ϕE) ⊂M(ϕE) is always strict for E 
= L1, L∞.

Given a function ψ ∈ Ω, by ψ̃ we denote the concave majorant of ψ.
The functions ψ and ψ̃ are equivalent in the sense that

ψ(t) ≤ ψ̃(t) ≤ 2ψ(t), 0 ≤ t ≤ 1

(see [7, Chapter II, Corollary to Theorem 1.1]). Furthermore, by ψ̂ we
denote the conjugate function of ψ defined by

(4) ψ̂(t) =
t

ψ(t)
.

Lemma 1. Suppose that ψ̂ is concave and

(5) lim
t→0

ψ(t) = lim
t→0

ψ̂(t) = 0.
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Then ∫ 1

0

ψ̃′(t)ψ̂′(t) dt = ∞.

Proof. Suppose that

∫ 1

0

ψ̃′(t)ψ̂′(t) dt = C <∞;

by (1), this means that ψ̂′ ∈ Λ(ψ̃). For any x ∈M(ψ) with ||x||M(ψ) ≤
1 we have then, by (2) and (4),

∫ τ

0

x∗(t) dt ≤ τ

ψ(τ )
=

∫ τ

0

ψ̂′(t) dt, 0 < τ ≤ t,

i.e., x � ψ̂′. By what we have observed before, this implies that

||x||Λ(ψ̃) ≤ ||ψ̂′||Λ(ψ̃) = C.

We have shown that M(ψ) ⊆ Λ(ψ̃) and hence, by (3), that M(ψ) =
Λ(ψ̃) with equivalent norms. But (5) implies that the space Λ(ψ̃) is
separable (see [7, Chapter II, Lemma 5.1]), while M(ψ) is not.

Given a measurable function x : [0, 1] → R consider the truncation

xh(t) =
{
x(t) if |x(t)| ≤ h,
h signx(t) if |x(t)| > h,

and let

Q(x) =
{
ψ : ψ ∈ Ω, lim

h→∞
||xh||Λ(ψ)

||xh||M(ψ)
= ∞

}
.

For example, if we take

ψα(t) = tα, xβ(t) = t−β

for 0 < α < 1 and −∞ < β <∞, a straightforward computation shows
that ψα ∈ Q(xα), but ψα /∈ Q(xβ) for any β 
= α. In particular, Q(xβ)
is nonempty if 0 < β < 1. This is not accidental, as the following
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theorem shows which generalizes and improves some results from [1,
2] and is the main result of the present paper.

Theorem. Let x : [0, 1] → R be a measurable function. Then Q(x)
is nonempty if and only if x ∈ L1\L∞.

For proving this theorem we need some auxiliary lemmas. Denote by
A the set of all increasing positive sequences y = (yk)k such that

(6) lim
k→∞

yk = ∞,

and by T the set of all positive sequences λ = (λk)k such that

(7)
∞∑
k=1

λk = ∞.

For such sequences, we have, for j ≤ n,
n∑
k=1

λkyk ≥
n∑
k=j

λkyk ≥ yj

n∑
k=j

λk,

hence

(8)
∑n
k=1 λkyk

max1≤j≤n yj
∑n
k=j λk

≥ 1.

Consider the functional Φ : T × A → [1,∞) defined by

Φ(λ, y) = lim inf
n→∞

∑n
k=1 λkyk

max1≤j≤n yj
∑n
k=j λk

.

Lemma 2. For any y ∈ A and λ ∈ T one can find z ∈ A and μ ∈ T
such that zk+1 ≥ 2zk, k = 1, 2, 3, . . . , and Φ(λ, y) ≤ 2Φ(μ, z).

Proof. We construct a sequence (ni)i of natural numbers by induction
as follows. Let n1 = 1. If n1, n2, . . . , ni are constructed, we put
ni+1 = min{n : yn ≥ 2yni}. Now, defining z and μ by

zk = ynk , μk = λnk + λnk+1 + · · · + λnk+1−1,
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we have

Φ(λ, y) = lim inf
n→∞

∑n
k=1 λkyk

max1≤j≤n yj
∑n
k=j λk

≤ lim inf
m→∞

∑nm−1
k=1 λkyk

max1≤i≤m−1 yni
∑nm−1
k=ni

λk

≤ lim inf
m→∞

∑m−1
r=1 2ynr

∑nr+1−1
k=nr

λk

max1≤i≤m−1 yni
∑m−1
r=i

∑nr+1−1
k=nr

λk

= 2 lim inf
m→∞

∑m−1
r=1 μrzr

max1≤i≤m−1 zi
∑m−1
r=i μr

= 2Φ(μ, z).

This proves the assertion.

Lemma 3. Let y ∈ A be given with

(9) C = sup
k≥1

yk

∞∑
n=k

1∑n
j=1 yj

<∞.

Then

lim inf
n→∞

∑n
k=1 λkyk

λn
∑n
k=1 yk

≤ C

for every λ ∈ T .

Proof. If the assertion is false, we find d > C and p ∈ N such that
n∑
k=1

λkyk ≥ dλn

n∑
k=1

yk

for all n ≥ p. For q ≥ p, we have then
q∑

n=p

1∑n
j=1 yj

n∑
k=1

λkyk ≥ d

q∑
n=p

λn.

Interchanging the order of summation on the lefthand side, we obtain
q∑

k=1

λkyk

q∑
n=k

1∑n
j=1 yj

≥ d

q∑
n=p

λn,
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which together with

yk

q∑
n=k

1∑n
j=1 yj

≤ yk

∞∑
n=k

1∑n
j=1 yj

≤ C

implies that

C

q∑
k=1

λk ≥ d

q∑
k=p

λk.

Letting q tend to infinity we get a contradiction, by (7) and by our
choice of d.

Lemma 4. For any (λ, y) ∈ T ×A, the estimate

(10) Φ(λ, y) ≤ 8

holds.

Proof. First let y ∈ A satisfy yk+1 ≥ 2yk, k = 1, 2, 3, . . . . We
claim that y then satisfies the hypothesis (9) of Lemma 3. In fact, from
yn ≥ 2n−kyk for n ≥ k, we get

yk

∞∑
n=k

1∑n
j=1 yj

≤ yk

∞∑
n=k

1
yn

≤ yk

∞∑
n=k

1
2n−kyk

= 2,

which is (9) with C = 2. By Lemma 3, for every ε > 0 there exists an
N = N(ε) ∈ N such that

(11) Φ(λ, y) ≤ (2 + ε)
λn

∑N
k=1 yk

max1≤j≤N yj
∑N
k=j λk

.

Since
N∑
k=1

yk ≤ yN

N∑
k=1

2k−N < 2yN ,

we conclude that

(12)
λN

∑N
k=1 yk

max1≤j≤N yj
∑N
k=j λk

≤ 2λNyN
yNλN

= 2.
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Combining (11) and (12) yields Φ(λ, y) ≤ 4. For general y the proof is
reduced to the above case by using Lemma 2. The assertion is proved.

We point out that the estimate (10) is nontrivial only for sequences
y = (yk)k satisfying (6). In fact, if (yk)k is bounded, then Φ(λ, y) ≡ 1
for all λ ∈ T . To see this, fix ε > 0 and choose j ∈ N such that
||y||∞ = sup{y1, y2, . . . } ≤ (1 + ε)yj ; we then get

lim inf
n→∞

∑n
k=1 λkyk

max1≤j≤n yj
∑n
k=j λk

≤ lim inf
n→∞

||y||∞
∑n
k=1 λk

||y||∞
1+ε

∑n
k=j λk

= 1 + ε,

which together with the trivial estimate (8) proves the assertion.

Similarly, condition (7) is also important for the validity of the
estimate (10). In fact, one can prove that, if λ = (λk)k is a positive
sequence such that

∞∑
k=1

λk <∞,

one can always find a sequence y = (yk)k ∈ A such that Φ(λ, y) = ∞.
To see this, it suffices to put

yj =
1∑∞

k=j λk
.

In fact, from the convergence of the series
∑∞

k=1 λk, it follows that the
series ∞∑

k=1

λk∑∞
i=1 λi

is divergent [6].

We turn now to the proof of the theorem. Let x : [0, 1] → R be
a measurable function. Suppose first that Q(x) is nonempty and fix
ψ ∈ Q(x). With the measurable function x, we associate the function

u(t) =
∞∑
k=0

x∗(2−k)χ(2−k−1,2−k](t).
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Then
u(t) ≤ x∗(t) ≤ u(t/2)

and

(13) ||u||E ≤ ||x||E ≤ 2||u||E

for any r.i. space E, hence Q(x) = Q(u). Fix n ∈ N and put
h = x∗(2−n). For any ψ ∈ Ω, we have

||uh||Λ(ψ)

=
∣∣∣∣
∣∣∣∣x∗(2−n)χ(0,2−n] +

n−1∑
k=0

x∗(2−k)χ(2−k−1,2−k]

∣∣∣∣
∣∣∣∣
Λ(ψ)

≤ 2
∥∥∥∥

n∑
k=0

x∗(2−k)χ(2−k−1,2−k]

∣∣∣∣
∣∣∣∣
Λ(ψ)

= 2
n∑
k=0

x∗(2−k)[ψ(2−k) − ψ(2−k−1)]

≤ 2
n∑
k=0

x∗(2−k)ψ(2−k)

and

||uh||M(ψ) = max
0≤j≤n

ψ(2−j)
2−j

∫ 2−j

0

uh(t) dt

≥ max
0≤j≤n

ψ(2−j)2j
n∑
k=j

x∗(2−k)2−k−1.

Putting
λk = x∗(2−k)2−k, yk = ψ(2−k)2k

we get
(14)

lim inf
h→∞

||uh||Λψ
||uh||Mψ

≤ lim inf
n→∞

2
∑n
k=0 x

∗(2−k)ψ(2−k)
max0≤j≤n ψ(2−j)2j

∑n
k=j x

∗(2−k)2−k−1

= 4Φ(λ, y).

The sequence y = (yk)k is increasing and tends to infinity. Indeed, the
boundedness of the sequence ψ(2−k)2k is equivalent to the fact that
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ψ(t) ∼ ct for some c > 0. But in this case we have Λ(ψ) = M(ψ) = L1,
and there is nothing to prove.

Now the assumption x /∈ L1 implies (7), i.e., λ = (λk)k ∈ T . From
(13), (14) and Lemma 4 we conclude that

lim inf
h→∞

||xh||Λ(ψ)

||xh||M(ψ)
≤ 2 lim inf

h→∞
||uh||Λ(ψ)

||uh||M(ψ)
≤ 8Φ(λ, y) ≤ 64.

In this way we have shown that Q(x) 
= ∅ implies that x ∈ L1; the fact
that Q(x) 
= ∅ implies that x /∈ L∞ is obvious.

Conversely, suppose now that x ∈ L1\L∞. Putting

(15) ψ(t) =
t∫ t

0
x∗(τ ) dτ

,

it is not hard to see that the function

ψ̂(t) =
∫ t

0

x∗(τ ) dτ

is concave and (5) holds. By Lemma 1,

∫ 1

0

ψ̃′(t)x∗(t) dt =
∫ 1

0

ψ̃′(t)ψ̂′(t) dt = ∞,

which shows that x /∈ Λ(ψ̃). On the other hand, it follows immediately
from definition (15) that x ∈M(ψ), and hence ψ ∈ Q(x). This finishes
the proof of the theorem.
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(1939), 1272 1273.

10. M. Riesz, Sur les maxima des formes bilinéaires et sur les fonctionnelles
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