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QUOTIENTS OF G-STABLE CLOSED SUBSCHEMES,
CARTESIAN DIAGRAMS, AND CLOSED IMMERSIONS

MARK E. HUIBREGTSE

ABSTRACT. Let T be a separated scheme of finite type
over an algebraically closed field k, G a finite group acting on
T,and ¢: S < T the inclusion of a G-stable closed subscheme
(i.e., for all g € G, the scheme-theoretic image of S under the

composite map S ST 7is equal to S). It then follows
that S inherits a G-action. If the quotient T'/G exists, then so
does the quotient S/G; the universal property of the quotient
gives rise to a map i/G : S/G — T/G. We ask two questions:
Is the commutative square formed by the maps ¢, ¢/G, and
the quotient maps 7g, mr, cartesian? Is the map 7/G a closed
immersion? In case G acts freely on T, we show that both
answers are “yes.” On the other hand, suppose T'= X™ x X
for X a quasiprojective variety, G is a symmetric group on
n letters acting by permuting the factors of X™, and S is a
reduced closed subscheme of T" supported on the locus whose
k-points are all ((t1,...,%n),t) such that ¢ = ¢; for some j,
1 < j < n. Then i/G is a closed immersion, but the square
is not in general cartesian (but is so when X is a nonsingular
curve). This corrects an error in the paper, “The Secant
Bundle of a Projective Variety,” by R.L.E. Schwarzenberger
[11].

1. Introduction. We fix an algebraically closed field k. Let 7" be
a k-scheme, that is, a separated scheme of finite type over k, and let
G be a finite group acting on T'; for g € G, we write gr : T — T for
the associated automorphism of T. Let ¢ : S < T be the inclusion of
a G-stable closed subscheme (i.e., for all ¢ € G, the scheme-theoretic

image of S under the composite map S ST Tis equal to S). It
then follows that S inherits a G-action such that ¢ is a G-morphism (for
all g € G, i0gs = groi). If the quotient T'/G exists, then so does the
quotient S/G; the universal property of the quotient then gives rise to
the map i/G in the following commutative square (in which the vertical
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arrows are the quotient maps):

S —*t T

In this paper we consider two questions concerning this diagram: Is the
square cartesian? Is the map /G a closed immersion? We were led
to consider these questions by the discovery of an erroneous assertion
in Schwarzenberger’s paper [11]; it was therein claimed without proof
that a particular case of the diagram is cartesian when in fact it is not
(see Sections 6 and 7); for this case, the map i/G is a closed immersion.
In case G acts freely on 7', both questions have affirmative answers; we
prove this in Section 5, as well as the very elementary fact that i/G
is always a closed immersion in characteristic 0. It is also possible for
both answers to be negative, as shown by the following.

Ezample 1.1. Let T = Spec (k[z1,z2]), G the symmetric group on
two letters acting by interchanging z; and z3, S = Spec(k[z]), and
i: S — T the diagonal morphism (the comorphism * : k[zy, z2] — k[z]
is defined by z; — x and x5 — ). It is clear that S is pointwise fixed
(and so G-stable) under the G-action on T'; the induced G-action on
S is therefore the trivial action, so that S/G = S. We have that
T/G = Spec (k[z1,22]%) = Spec (k[o1,02]), where o = x; + 2o and
09 = x1-T3 are the elementary symmetric polynomials in two variables.
The diagram above thus corresponds to the following diagram of affine
rings:

k2] «—— k[, 2]

Tg* _id[ }TT*

k[l‘] Y ]{?[0'1,0'2]

(i/G)*
Note that (i/G)*(c1) = 2 -z, (i/G)*(02) = z?; therefore, in charac-
teristic two, (i/G)* is not surjective, which implies that i/G is not a
closed immersion. Using Lemma 7.1, we find that

k(2] ®k(oy,00] klT1, T2] = k[T, 21, 2]/ (20 — (71 + r3),x? — T129);
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in all characteristics not equal to 2, the latter ring is isomorphic
to k[z1,xs]/(z1 — z2)%, and in characteristic two, it is isomorphic
to k[z,x1]/(z — x1)?—since neither of these is isomorphic to k[z] =
k[zy1,z2]/(z1 — x2), our diagram fails to be cartesian in all characteris-
tics. (I do not know of an example for which the diagram is cartesian
and the map i/G is not a closed immersion.)

We now discuss the organization of the paper. We begin in the
next section by recalling some needed preliminaries on scheme-theoretic
images and radicial maps. We develop some of the basic theory of G-
stable subschemes in Section 3; in particular, we give several simple
criteria for G-stability. We discuss quotients in Section 4 and establish
some general technical propositions needed in the sequel; the first
fruits thereof are harvested in Section 5, where, as mentioned above,
we prove that our two basic questions have affirmative answers if G
acts freely on T. Beginning with Section 6, our focus narrows to (a
generalization of) the situation discussed in Schwarzenberger’s paper
[11]: let T = X™ x X for X a quasiprojective variety, G the symmetric
group on n letters acting by permuting the factors of X™, and S the
reduced closed subscheme of T supported on the locus whose k-points
are all ((t1,...,%,),t) such that ¢t = ¢; for some j, 1 < j < n. We
study this situation in detail in Section 6; in particular, we compute
the quotient S/G and verify that i/G is a closed immersion. In Section 7
we show that Schwarzenberger’s general claim of cartesianity is false by
direct computation for the case when X = P,f, the projective plane/k,
and n = 2. However, all is not lost; we conclude the paper in Section 8
by proving that the diagram is cartesian when X is an irreducible and
nonsingular curve.

In addition to those established above, we adopt the following conven-
tions. A wvariety is a reduced and irreducible k-scheme. If f : Z — X is
a map of k-schemes, the image of the k-point z € Z is denoted by f(z),
and the associated map of sheaves is denoted by 07 : Ox — f.(Oz). If
Z = Spec (A) and X = Spec (B) are affine schemes, then the ring map
(or comorphism) associated to f is denoted f*: B — A.

2. Preliminaries. Our purpose in this section is to recall what
we need of the theory of scheme-theoretic images and of radicial maps;
see [4, 6.10, pp. 324-325 and 3.7, pp. 246-249], respectively, for the
definitive expositions.
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2.1 Scheme-theoretic images. Let f : Z — X be a morphism of k-
schemes. Roughly speaking, the scheme-theoretic image of f is the
smallest closed subscheme Y of X through which f factors; more
precisely, Y is the unique closed subscheme of X satisfying the following

universal property: f factors as Z E) Y <% X, where i denotes the
inclusion of Y in X, and whenever f factors through a closed immersion
j 'V = X, then i factors through j as well. This definition is
summarized by the following commutative diagram.

Note that the maps f,, f’ and i’ are unique, since (closed) immersions
are categorical monomorphisms [4, 4.2.1, p. 260]; furthermore, i’ is
a closed immersion, by [4, 4.3.6 (iv), p. 265], and f, is scheme-
theoretically dominant (i.e., the sheaf map 6;, : Oy — fou(Oz)
associated to f, is injective), by [7, Proposition 6.10.5, p. 325].

Y is in fact the closed subscheme of X defined by the kernel Z; of
the map 67 : Ox — f.(Oy); this kernel is quasi-coherent since f,(O%)
is, Z being noetherian [5, Proposition 5.8, p. 15]. (In particular, if
Z = Spec(A) and X = Spec(B) are affine, then Y = Spec (B/I),
where I is the kernel of the map of rings f* : B — A induced by f.)
The underlying space of Y is the closure of the image of Z in X if
Z is reduced, then Y is the reduced closed subscheme of X supported
on this locus. Finally, we note that formation of the scheme-theoretic
image is transitive: if we compose f with a map g : X — X’ of k-
schemes, then the scheme-theoretic image of the composition g o f is
equal to the scheme-theoretic image of the map goi:Y — X'.

2.2. Radicial morphisms. Recall that a morphism of schemes f :
X — Y is called radicial provided that f is universally injective; that
is, f is injective, and for any base extension Y’ — Y, the pullback
fy' : X xy Y’ — Y’ is injective. Equivalently, f is radicial provided
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that, for any field K, the induced map of K-points X (K) — Y (K) is
injective; consequently, all categorical monomorphisms, and therefore
all immersions, are radicial [4, Proposition 3.7.1, p. 246; Proposition
3.7.3, p. 248]. For maps of k-schemes (recall that k is an algebraically
closed field), we have the following simple criterion for radiciality:

Proposition 2.1. Let f : X — Y be a map of k-schemes. If f
induces an injection X (k) — Y (k) of k-points, then f is radicial.

Proof. According to [4, Proposition 3.7.1, p. 246], f is radicial if and
only if the diagonal morphism Ay : X — X xy X is surjective, so
we seek to establish the latter condition; since Ay is a morphism of
schemes of finite type/k, it suffices to prove surjectivity on k-points.
Consider therefore a k-point (z1,z2) of X xy X; that is, x; and x5 are
k-points of X such that f(z1) = f(x2) in Y. Since by hypothesis f
induces an injection on k-points, we conclude that z; = zo = z, and
therefore (z1,z2) = Ay (z). It follows that Ay is surjective on k-points,
as desired. ]

3. G-stable closed subschemes. Let T be a k-scheme, G a finite
group acting on T, and ¢ : S — T the inclusion of a closed subscheme.
We say that S is G-stable provided that, for all g € G, we have that S

is the scheme-theoretic image of the composite morphism S S8 T
In this case the universal property of the scheme-theoretic image implies
that each map gr o1 factors through i by a unique map gs : S — 5, as
shown:

S : T
gSJ JgT
S - T

It follows that an action of G on S is induced such that the inclusion
map ¢ is a G-morphism. Conversely, one easily sees that if G acts on
S such that ¢ is a G-morphism, then S is G-stable.

In the remainder of this section, we gather together a variety of simple
criteria for demonstrating that a closed subscheme is G-stable. The
situation for reduced subschemes is particularly simple:
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Proposition 3.1. Let T be a k-scheme, G a finite group acting on
T, and i : S — T the inclusion of a reduced closed subscheme. Then
S is G-stable if and only if S is pointwise stable under G, that is, for
each g € G and each k-point s € S, we have that gr(s) € S.

Proof. One direction is obvious: S is G-stable implies that S is
pointwise stable under G. Conversely, suppose that S is pointwise
stable under G. Then one easily sees that the (closure of the) image of
each of the maps gr o1 is equal to S; since S is reduced, it follows that
the scheme-theoretic image of each of the maps g o7 is again equal to
S; that is, S is G-stable. ]

It is evident that a G-stable closed subscheme of an affine k-scheme is
cut out by a G-stable ideal, and conversely; we record this observation
as

Proposition 3.2. Let T = Spec(B) be an affine k-scheme, G a
finite group acting on T, and S = Spec (B/I) a closed subscheme of
T. Then S is G-stable if and only if (gr-)~(I) = I for all g € G,
where gr= : B — B is the map of rings corresponding to the morphism
gr:T —T.

Proof. Recalling from Section 2.1 that the scheme-theoretic image
of a morphism of affine k-schemes is defined by the kernel of the
induced map of affine rings, we see that the scheme-theoretic image
of gr oi: S — T is defined by the ideal (gr-)~!(I); the proposition
follows immediately from this observation. u]

Next we show that the scheme-theoretic image of a G-morphism is
G-stable:

Proposition 3.3. Let S and T be k-schemes on which the finite
group G acts, ¢ : S — T a G-morphism and i : S < T the inclusion of
the scheme-theoretic image of ¢. Then S is a G-stable closed subscheme
of T. Moreover, the map ¢, : S — S, by which ¢ factors through i, is
a G-morphism for the induced G-action on S.
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Proof. We begin by showing that S inherits a G-action such that 7 is
a G-morphism; as noted earlier, this is equivalent to the G-stability of
S. To do this, we consider the following commutative diagram of solid
arrows, in which S’ denotes the product S X7 T with projection maps
p1 and pa:

\ o 1
\\\; /
d,'\\\ S P2
93 S’ gr

lpl
S_ .

§— 1
The dotted arrow ¢’ is induced by the pair of maps (¢, ¢, © gg), since
gro¢ = ¢pogs =io(d,0gs). The dotted arrow i’ is now induced by the
universal property of the scheme-theoretic image, since po, the pullback
of the closed immersion i, is a closed immersion through which ¢ factors.
We therefore obtain a (necessarily unique) map gs = pyo¢ : S — S
satisfying gr o ¢ = i 0 gg. One verifies easily that the maps gs define
a G-action on S (for which i is a G-morphism); whence, S is G-stable.
To prove the second assertion, we simply note that, for each g € G,

gro¢ =¢ogs =
groiog, =iog,09;5 =
10gsod, =10¢,095 —
95 ° ¢o = ¢ © g3,

since 7 is a categorical monomorphism. u]

Finally, we show that the pullback of a G-stable closed subscheme by
a G-morphism is (up to isomorphism) a G-stable closed subscheme. To
do this, we need

Lemma 3.1. Let G be a finite group acting on k-schemes S, T,
T and Z, and let ¢ : S — T, 7 : T' — T be G-morphisms. Then
the product S' = S x7 T’ inherits a unique G-action such that the
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projections p1 : S'" — S, pay : 8" — T' are G-morphisms. Moreover,
given G-morphisms o : Z — S, B: Z — T' such that poa = T0pf, the
induced map (o, B) : Z — S’ is a G-morphism.

Proof. For each g € G, we consider the pair of maps gsop; : S’ — S,
grops : 8" — T'. Since, as is easily seen, ¢ o (gs op1) = 70 (g1’ © p2),
the universal property of the product yields a unique map gs: : S’ — S’
such that p; o gsr = gg o p; and ps o gsr = gr+ © pa; furthermore, the
uniqueness implies that gg- o hg: = (gh)gs for all g,h € G. The first
assertion follows immediately, and the second results from a routine
verification that bio (gS’ © (aaﬁ)) =p;° ((aaﬁ) o gZ)7 i = la 2. 0

We may now prove

Proposition 3.4. Let G be a finite group acting on k-schemes T
and T', 7 : T' — T a G-morphism, and i : S — T the inclusion of a
G-stable closed subscheme. Let S" denote the product S x1 T and p;,
1= 1,2, the projections, as shown in the following diagram:

SI b2 Tl
PIJ JT
S - T

K2

Then ps maps S’ isomorphically onto a G-stable closed subscheme of
T', and p1 s a G-morphism for the resulting G-action induced on S’.

Proof. By Lemma 3.1, we know that S’ inherits a unique G-action
such that p; and p; are G-morphisms; consequently, Proposition 3.3
implies that the scheme-theoretic image of p; is a G-stable closed sub-
scheme of T”. On the other hand, p», the pullback of the closed immer-
sion 1, is itself a closed immersion, and therefore maps S’ isomorphically
onto its scheme-theoretic image. The proposition follows. o

4. Quotients. Let T be a k-scheme and G a finite group acting
on T. Recall that a quotient for the action of G on T is a pair
(T/G,nr), where T/G is a k-scheme and mp : T — T/G is a finite
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surjective morphism satisfying the following universal property: 7 is
G-invariant, that is, mp o gr = mp for all ¢ € G, and any other G-
invariant map f: T — Y factors uniquely through 77, as shown:

f=forp, TIT/G-LY

It follows that a quotient, if one exists, is unique to unique isomorphism;
the quotient map np is evidently a categorical epimorphism, and
therefore scheme-theoretically dominant [4, 5.4.6, p. 285].

Turning to the question of existence, we recall that the quotient exists
if and only if the G-action on 7" has the following property: for every
G-orbitin T, there exists an affine open subscheme of T' containing that
orbit. It follows that every G-action on a quasiprojective k-scheme has
a quotient, since any such T satisfies the following stronger property
[10, p. 69]:

(1) for every finite subset S of points of T', there exists an affine open
subscheme of T' containing S.

In particular, the quotient always exists when T' = Spec (A) is affine,
and in this case we have that T/G = Spec (A%), where A® denotes
the subring of G-invariants of A. (References for these well-known
assertions include [10, pp. 66-69] or [12, pp. 57-59]; the proofs given
there for varieties carry over to k-schemes.)

Suppose now that the G-action on T has a quotient, and that
t: S — T is the inclusion of a G-stable closed subscheme. We then
have that the induced G-action on S has a quotient; indeed, any G-
orbit in S lies in an affine open subscheme U C 7', but then SNU, being
a closed subscheme of U, is an affine open subscheme of S containing
the given G-orbit. We may therefore form the quotients T/G and S/G;
the universal property of the quotient then gives rise to the map i/G
in the following commutative square:

§g—t 7
o T
S/Gi/—G>T/G

This diagram is the focus of our attention in this paper; in particular,
we are interested in the following two questions:
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Question 4.1. Under what conditions is the diagram cartesian?

Question 4.2. Under what conditions is the map i/G a closed
immersion?

In the next section we will consider these questions in the special
case where G acts freely on 7' in this case, we will show that the
diagram is always cartesian and that the map i/G is always a closed
immersion. In subsequent sections we will restrict attention to the
situation presented in Schwarzenberger’s paper [11]; we will show that
the claim of cartesianity made therein is true when the variety X is a
nonsingular curve, but false in general.

Much of our work rests on an analysis (summarized in Proposition
4.1) of the following more general situation: Let S and T be k-schemes,
G a finite group acting on S and 7 such that both quotients exist,
and ¢ : S — T a G-morphism. Consider diagram (3) in which S’
denotes the product S/G X T, with projections p; and ps, and §
the map induced by the pair of maps 7g, ¢. Viewing nr and ¢/G as
G-morphisms for the trivial G-actions on S/G and T/G, we deduce
from Lemma 3.1 that S’ inherits a unique G-action such that p; is G-
invariant and py and ¢ are G-morphisms. We note that the quotient
S’ /G for this action exists; indeed, given a k-point = of S’, we can find
an affine open subscheme U of T such that the orbit of pa(z) lies in
U. Replacing U by the intersection of its translates, we may assume
that U is G-stable. It follows that U/G is an affine open subscheme
of T'/G; letting V' denote an affine open subscheme of S/G such that
pi(z) € V C (¢/G) 1 (U/G), we have that V X/ U C S' is an affine
open subscheme containing the orbit of x. The universal property of
the quotient now gives rise to the maps p1, 6/G and py/G, as shown.
Note that the outermost square in the diagram is cartesian if and only
if the map J is an isomorphism.

s ¢ T
\ Sl /
(3) TS lﬂ's’ T
P1 S//
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Proposition 4.1. Under the hypotheses of the previous paragraph,
we have

(1) the map d is a surjection on k-points, and hence a surjection;
(2) the map 0/G is a surjective closed immersion;

(3) if ¢ is a radicial map, then so too are § (hence § is a bijection

on k-points) and ¢/G;
(4) if ¢ is a closed immersion, then ¢ is a surjective closed immersion;

(5) if ¢ is a closed immersion and S’ is reduced, then & is an
isomorphism; consequently, the outermost square in diagram (3) is
cartestan.

Proof. (1) Let s’ € S’ be a k-point. Since 7g is surjective and ¢ is a
G-morphism, a routine diagram chase yields a k-point s € S such that
ms(s) = p1(s’) and @(s) = pa(s’); the universal property of the product
now implies that d(s) = s'.

(2) Since mgr 0§ = 6/G o wg is surjective, it follows that the
same is true of the map §/G. Moreover, one easily checks that
p100/G omg = ms, which implies that p; o0 0/G = idg/q; since the
identity map is a closed immersion, it follows from [4, p. 265] that §/G
is a closed immersion.

(3) Since ¢ = py 0§ is by hypothesis radicial, it follows from [1, p.
120] that § is radicial and therefore injective on k-points; in view of
(1), we conclude that § is a bijection on k-points. Furthermore, one
easily sees that ¢/G is injective on k-points (since ¢ is), and therefore
radicial, by Proposition 2.1.

(4) Since ¢ = py 0§ is by hypothesis a closed immersion, it follows
as in the proof of (2) that ¢ is a (surjective, by assertion (1)) closed
immersion.

(5) By (4), d is a surjective closed immersion. Recalling that such a
map is defined by a nilpotent sheaf of ideals, we see at once that if S’
is reduced, then § is an isomorphism, and we are done. ]

Remark 4.1. In Section 7 we will give an example showing that the
surjective closed immersion §/G need not be an isomorphism, even
when ¢ is a closed immersion.
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Corollary 4.1. The map i/G in diagram (2) is always a radicial
map.

Proof. Since the closed immersion i : S — T is radicial (Section 2.2),
the corollary results immediately from assertion (3) of the proposition.
O

We end this section with a brief exploration of the relationship
between quotients and scheme-theoretic images. Let S and T be k-
schemes with G-action such that both quotients exist, ¢ : S — T a G-
morphism, and ¢ : § < T the inclusion of the scheme-theoretic image
of ¢. Proposition 3.3 yields that S is a G-stable closed subscheme
of T'; moreover, as noted above, the existence of T/G implies that of
S/G. Let ¢p : S — S be the map by which ¢ factors through 4,
and j : Q — T/G the inclusion of the scheme-theoretic image of the
induced map ¢/G : §/G — T/G. These maps fit into the following
commutative diagram of solid arrows:

s

S T

s S/G T
ip
$0/G 0 i/G
3 %n j
5/G G T/G

We claim that there exists a map p : S/G — @ which renders
the entire diagram commutative. To see this, first note that the
transitivity of scheme-theoretic images (Section 2.1) implies that @ is
the scheme-theoretic image of the composite map (¢/G) o7g, since the
scheme-theoretic image of a quotient map, being scheme-theoretically
dominant, is clearly equal to its target. By appealing twice more to
the transitivity of scheme-theoretic images, we infer in turn that @
is the scheme-theoretic image of the maps nr o : S — T/G and
i/G : S/G — T/G; the latter map therefore factors as

s/a g Iy 7).
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It is a straightforward exercise to show that the diagram remains
commutative after the map p = (i/G), is inserted. We may now prove

Proposition 4.2. Let S, T, ¢, etc., be as in the preceding paragraph.
If, in addition, we are given that the map ¢/G : S/G — T/G is a closed
immersion, then the map ¢,/G : S§/G — S/G is an isomorphism;
briefly, S and S have the same quotient. Consequently, the map i/G is
a closed immersion as well.

Proof. Since ¢/G is a closed immersion, it maps S/G isomorphically
onto its scheme-theoretic image; that is, the map (¢/G), is an isomor-
phism. It is routine to check that the map (¢/G)y o p:S/G — S/G
is the inverse of ¢,/G; whence, the latter is an isomorphism and
i/G = ¢/G o (¢o/G)7! is a closed immersion. O

5. The case of free G-actions. Let 7" be a k-scheme and G a
finite group acting on 7. Recall that the action of G on T is said to
be free, or that G is acting freely on T, provided that gr(¢) # ¢ for
all closed points t € T and all g € G — {1}. In this case (assuming the
quotient exists) the quotient map mr : T — T/G is étale [10, p. 66];
this fact is a key ingredient for the proofs of the results claimed in the
last section. We begin with

Theorem 5.1. Let S and T be k-schemes, G a finite group acting
on S and T such that both quotients exist, and ¢ : S — T a radicial G-
morphism. If G acts freely on T, then the outermost square in diagram
(3) is cartesian.

Proof. Referring to diagram (3), we recall that it suffices to prove
that the map ¢ : § — S’ is an isomorphism, where S' = S/G X1, T.
By hypothesis, G acts freely on 7" and therefore on S; as noted above
this implies that the quotient maps wg and 7 are étale. It follows
that the projection map p; : S’ — S/G, the pullback of 77, is étale,
and consequently ¢ is étale [1, p. 116]. On the other hand, ¢ is both a
surjection and radicial, by assertions (1) and (3) of Proposition 4.1.
Since § is both étale and radicial, [1, p. 121] yields that § is an
open immersion; since ¢ is also a surjection, we conclude that ¢ is
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an isomorphism, as desired. ]

Corollary 5.1. Let G be a finite group acting on a k-scheme T
such that the quotient T/G exists and i : S — T the inclusion of a
G-stable closed subscheme. If G acts freely on T, then the diagram (2)
1§ cartesian.

Proof. Since i is a closed immersion, it is radicial, by [4, p. 260]; the
result therefore follows immediately from the theorem. O

Our next goal is to show that the map i/G : S/G — T'/G in diagram
(2) is a closed immersion whenever G acts freely on T. To do this, we
need the following

Lemma 5.1. Suppose given a cartesian diagram

XI f’ Yl
axJ Jay
X 7 Y

of k-schemes and morphisms thereof, such that ay is flat and f is affine
and scheme-theoretically dominant. Then f' is scheme-theoretically
dominant.

Proof. By definition, we are given that the map of sheaves 0 :
Oy — f«Ox is injective, and we want to show the same is true of the
map 0y : Oy — flOx:. However, these maps fit into the following
commutative diagram, in which X is the natural map defined in [3, II,
1.5.2): ‘o

ay Oy L alCN ay” f,Ox
Ix
fiax™Ox
I

OY’ e—f’> f:( OX/
In view of our hypotheses, the main result of the cited passage [3, II,

1.5.2] implies that X is an isomorphism. Furthermore, since ay is flat,

1R
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the functor ay* is exact, and therefore ay* () is injective. From this
it follows immediately that 64 is injective, as desired. o

Theorem 5.2. Let T be a k-scheme, G a finite group acting freely
on T such that the quotient exists, and i : S — T the inclusion of a
G-stable closed subscheme. Then the induced map i/G : S/G — T/G
s a closed immersion.

Proof. Let j : Q@ — T/G denote the inclusion of the scheme-theoretic
image of the map i/G and s = (¢/G), : S/G — Q the map by which
i/G factors through j. Asnoted in Section 4, the transitivity of scheme-
theoretic images implies that @ is the scheme-theoretic image of the
map i/G o mg = mr o i. The support of @ is therefore the image of S
under 77 o ¢ (which is closed since 7y is a finite map); it follows from
this that the map s is surjective. Let Q" = Q x7/¢ T, and consider the
following diagram, in which the map s’ is defined by the pair of maps
(somg,i) and p;,ps denote the projection maps.

S : T
N A
TS Q’ T

J;Dl

S/G—+Q———T/G

We are out to show that the map s is an isomorphism; since we already
know that s is surjective, it will suffice to prove that s is both étale
and radicial, and therefore an open immersion by [1, p. 121]. That s is
radicial is immediate: Corollary 4.1 implies that i/G = j o s is radicial;
whence, s is radicial by [1, p. 120].

It therefore remains to show that s is étale. Suppose for the moment
that we have shown that the map s’ is an isomorphism. Then we may
focus attention on the left of diagram (4), which reduces to the following
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triangle of maps:

S

5/G s Q
As in the proof of Theorem 5.1, we have that the maps np, mg and p;
are étale, therefore the diagonal arrows in the triangle are étale. Let
x be a k-point of S, and let y = mg(z), 2 = (p1 o ¢')(z). Since the
diagonal arrows are étale, they induce isomorphisms on completions

75:Os/ay = Ose  (9165') : Oq,. = Os,4;

since (p16s’) = #g o §, it follows that § : @Q,z — @S/ny is an
isomorphism; whence, s is étale at y [1, p. 116]. Since this argument
applies to any k-point y € S/G, we conclude from [1, p. 116] that s is
étale (everywhere), as desired.

We are reduced to showing that the map s’ is an isomorphism; to
do this, we will show that s’ is both a closed immersion and scheme-
theoretically dominant since any such map must be an isomorphism
[4, p. 283]. That s’ is a closed immersion follows immediately from
[4, p. 264], since i = py o s’ is a closed immersion. To show that s
is scheme-theoretically dominant, we apply Lemma 5.1 to the leftmost
subsquare of diagram (4): Note that this subsquare is cartesian by
abstract nonsense, since the outermost and rightmost subsquares of
the diagram are cartesian; furthermore, the map p;, being étale, is flat,
and s = (¢/G), is scheme-theoretically dominant by the generalities
on scheme-theoretic images. We claim in addition that s is an affine
morphism; indeed, given an affine open subscheme U C @, we have
that (p1 o 8')71(U) = V is a G-stable affine open subscheme of S
(since py, the pullback of 7, is affine, s’ is a closed immersion, and
p1 o s = somg is G-invariant); therefore, by the construction of the
quotient, it follows that s~!(U) = V/G is an affine open subscheme of
S/G. Lemma 5.1 now yields that s’ is scheme-theoretically dominant,
whence an isomorphism, and the proof is complete. O

In [12, p. 62], Serre gives an example of a G-stable subvariety S
of a variety T for which the inclusion i/G : S/G — T/G is not a
closed immersion (Example 1.1 is a special case of this example). He
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had previously asserted without proof [12, p. 60] that the map i/G
is always a closed immersion whenever the characteristic is zero or the
group acts freely. Theorem 5.2 extends the second part of this assertion
from varieties to k-schemes. The following elementary result, included
for completeness, similarly extends the first part:

Proposition 5.1. Let T be a k-scheme with char (k) = 0, G a
finite group acting on T such that T has a quotient, and i : S — T
the inclusion of a G-stable closed subscheme. Then the induced map
i/G:S8/G — T/G is a closed immersion.

Proof. One easily reduces to the case where T' = Spec (B) and S =
Spec (B/I) are affine (here I is a G-stable ideal of B; see Proposition
3.2). The comorphism of i/G is the map (i/G)* : B¢ — (B/I)%, which
sends b € B to the G-invariant coset b + I; we must show that this
map is surjective. But given a G-invariant coset ¢ + I, we have that

gri(e)+I=c+1I, VgeG;

that is,
c=gr"(c) + ay, ag eI, Vged.
Summing over g € G, we obtain

Gl =Y gr*(e) + ) ay,

geG geG
therefore (char 0!)
. * 1 *
c+I=(i/G) (E ZgT (c)),
geG

and we are done. O

6. Cartesian and symmetric products. Let X be a k-scheme,
X™ the n-fold cartesian product of X, and G,, the symmetric group on
n letters (we view the elements of G, as permutations of {1,...,n}).
Let p, j : X™ — X denote the j-th projection map. The group G™ acts
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on X" by permuting the factors; more precisely, the action is given by
the maps
an:Xn—>Xn, gEGn,

where gxn is defined by requiring that
Pn,j © gxn = Pn,g-1(j)s 1<j<n.

The quotient X"/G,, = X for this action (if it exists) is called the
n-fold symmetric product of X; the quotient map is denoted mwxn :
X" — X()_ Referring to Section 4, we recall that the quotient exists
provided that every G,-orbit in X™ lies in an affine open subscheme
of X™. To ensure that this holds, it suffices to assume that X satisfies
property (1), which we will do for the balance of the paper; recall that
all quasiprojective k-schemes satisfy this property.

Now let X7, 1 < j < n, denote n disjoint copies of X™, and
in,j t X — X™ x X the map defined by the pair of maps (idxn,pn ),
where id x» denotes the identity map on X". On k-points, we have

(1, Tn) = (21, ..., T0), T5).

We remark that 7, ; is a closed immersion; indeed, the pair (XJ", in,j)
is the kernel [4, pp. 276, 278] of the pair of maps

Pnjopr: X" x X — X, p2: X" x X — X,

where p;, p2 denote the projections to X™ and X, respectively. Let X,
denote the disjoint union of the X7 and in t Xy — X" x X the map
induced by the maps %, ;. Note that G, acts on X" x X by acting
on the first factor; we define a compatible G, -action on X,, using the
maps } B

9z, + Xn — Xn, g € Gy,

where g is defined on each component X7 as follows:

9/\?”|X}‘:X?:Xngx_n>Xn:X;(j)a I<j<n
It is then easy to check that the map %, is a G,-morphism; that is, for
all g € Gy, o
(gX" X ldX) Oty =1lp Ogj'n-
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Let i, : X,, — X™ x X denote the inclusion of the scheme-theoretic
image of the map i,. By Proposition 3.3, we have that X, is a G,-
stable closed subscheme of X™ x X, and that the map (fn)o : X, = X,
by which i, factors through i,, is a G,,-morphism. The focus of our
attention for the remainder of this paper is the diagram

X, — ' L Xx"xX
(5) WXHJ Jﬂ'xn xid x

X /G ——5— XM x X,
the specialization of diagram (2) to the present situation. In particular,
we seek answers to our two basic questions:

Question 6.1. Is the diagram cartesian?
Question 6.2. Is the map i, /G, a closed immersion?

We will show that the answer to the second question is always “yes,”
but the answer to the first question depends on X; in general, the
answer is “no,” but if X is a nonsingular and irreducible curve, the
answer is “yes.” As we proceed, we will exemplify several of the general
results obtained in previous sections.

Our first goal is to compute the quotients X, /Gy, and X,,/G,, (which
in fact turn out to be the same). For each j, 1 < j < n, consider the
action of G,,_1 on XJ’.L = X7 given by viewing G,,_; as the subgroup of
G, consisting of the permutations of {1,... ,n} which fix the integer j.
It is clear that the quotient X7' /Gr—1 for this action is isomorphic to
X1 x X; we denote the quotient map by 7, ; : X7 — X1« X,
One easily verifies that the following diagram commutes for all j,
1<j<n,andall g € G,:

o n
9%, ‘Xj

Xp X

(4)
(6) /<>

xX(=1 » X,
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We write o, : X" D x X — X for the map which “adds zero-
cycles”—formally, a,, is the map induced on the quotient by the G,, _1-
invariant map 7x» : X"~ ' x X = X" — X(); whence, Op 0Ty j = Txn
for each j, 1 < j < n.

Proposition 6.1. Let X, X", X,, Gn, etc., be as above. Then
the quotient .}\;n/G'n is isomorphic to X"~V x X, and the quotient
map mp X = X (=1 » X is the map whose restriction to the j-th
component X3 is the map m, ; : X7 — X(=1) » X. Furthermore, the
induced map z;/Gn : /'\?n/Gn — XM x X is a closed immersion.

Proof. Let the map 75 : X, - X1 x X be defined as in the
first assertion above; the commutativity of diagram (6) implies that
this map is G,,-invariant. To complete the proof of the first assertion,
we must show that 73 satisfies the universal property of the quotient;

to this end, let ¢ : X, — T be an arbitrary G,,-invariant map. Then,
for each j, 1 < j < n, the restriction ¢|X;L = ¢; : X} — T is invariant
for the “j-fixing” action of G,—1 on X7 defined above, hence induces
a unique map ¢; : X1 x X — T satisfying ¢; = ¢jom, ;. We claim
that the maps qgj are all equal to one another. Indeed, if 1 < j # 1 < n,
and g € G, satisfies g(j) = [, then we have

¢;j =P Oggzn|X; =@ omp, Og;zn|x; =¢iomyj,

where the last equality results from the commutativity of diagram (6);
from the uniqueness of the maps q_Sj, we now conclude that q_Sj = ¢y, as
claimed. It follows that the G,-invariant map ¢ factors uniquely (via
gz_Sj) through 75 , which completes the proof of the first assertion.

We now prove the second assertion. We claim that the induced map
in/Gn : X, )G — XM7Y 5 X

is in fact the map X1 x X — X" x X defined by the pair of
maps (@, ps2), where a,, denotes the “addition map” and ps the second
projection X ("= x X — X. To see this, it suffices to verify that the
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diagram

Xp—" S X"x X

ﬂ—n’jJ ‘Trxn Xidx

XD x L x)yx

(ctn,p2)
commutes for each j, 1 < j < n, but this is an easy exercise. Since the

map (o, p2) is known to be a closed immersion [6, p. 22], the second
assertion follows immediately. O

Combining Propositions 4.2 and 6.1, we obtain the following result,
which both computes the quotient X, /G, and gives an affirmative
answer to Question 6.2.

Theorem 6.1. Let X be a k-scheme satisfying property (1), and
let X, X,, Gy, etc., be as above. Then the induced map (in)o/Gy :
/f’n/Gn — X, /G, is an isomorphism; that is, X, /G, ~ X~V x
X. Furthermore, the induced map i,/G, in diagram (5) is a closed
1TMMErsion.

We now turn our attention to Question 6.1. In case X is a reduced
projective k-scheme, Schwarzenberger asserts without proof in [11, p.
375] that “[t]he definitions imply that W, = W] xx, X,,” (which is
equivalent to an affirmative answer to Question 6.1). Unfortunately,
this assertion is false in general; we show in Section 7 that it fails
for X = P2, the projective plane over k. On the other hand, we
show in Section 8 that the assertion is true when X is an irreducible
and nonsingular curve. In consequence, [11, Proposition 3.2, p. 375],
which depends on the erroneous assertion, is false in general, but holds
whenever diagram (5) is cartesian.

Before leaving this section, we show that diagram (5), although not
cartesian in general, is always “generically” cartesian. Indeed, let X7
denote the open subscheme of X™ which is the complement of the
multidiagonal; that is, the set of k-points of X7 is

{k-points(x1,...,x,) € X" |x; #x; for 1 <i# j <n}.

It is clear that the G,-action on X™ restricts to a free GG,,-action on
X?2; the quotient X7/G, = X for this action can be identified
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with the open subscheme of X () which is the image of X” under
mxn. Consider the following diagram, in which X, denotes the product
X /G X (xmxx) (X™ x X), p1 and py the projection maps, and J the
map induced by the pair of maps (7mxn,iy,):

X, in X" x X

(7) Xy, X! mxn xidx

We wish to consider the pullback of this diagram over the open sub-
scheme X{™ x X C X™ x X; if we denote i 1(X? x X) and
Py (X2 x X) by X, . and X/, , respectively, we see that this pullback

is the diagram

,07

Xoo il o X" x X
N AL
P2l
(8) LE X, mxn Xidx
Pilxy |
X 0/Gr XM x X

(inlzn.0)/Gn

We may now state precisely and prove the “generic cartesianity” of
diagram (5):

Proposition 6.2. The outer square in diagram (8) is cartesian;
equivalently, the map 6| X, 18 an isomorphism.

Proof. By Proposition 3.4, the map iy,|x, , is the inclusion of a G-
stable closed subscheme; therefore, since G,, acts freely on X7 x X,
Corollary 5.1 implies that the outer square in diagram (8) is cartesian.
Since the inner square of diagram (8) is the pullback of a cartesian
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square, and therefore cartesian, it is clear that the outer square is
cartesian if and only if the map 4|, , is an isomorphism. o

Corollary 6.1. If X is a reduced and irreducible k-scheme, then the
cartesian product X in diagram (7) is generically reduced.

Proof. The hypothesis implies that the product X" is reduced (and
irreducible); therefore, X, (the disjoint union of n copies of X") is
reduced, and consequently X, the scheme-theoretic image of X, is
reduced. Since X,, and X, have the same underlying space, by (4)
of Proposition 4.1, and since each irreducible component of X, meets
&n,o, Proposition 6.2 yields the result. a

7. Case X = P?. Our purpose in this section is to show that the
answer to Question 6.1 is “no” when X = P?, the projective plane/k.
We begin with a simple observation which enables us to reduce the
question to an affine computation. Returning briefly to the general
situation of Section 4, we consider a k-scheme T with G-action such
that the quotient T'/G exists, a G-stable closed subscheme ¢ : S — T,
and an open subscheme U of T/G. We observe that if diagram (2) is
cartesian, then so is the following diagram obtained by pullback:

il 1 (mp !
iil(ﬂ'Til(U)) [;=1 (w2 (U))

"5|i1<7rT1<U>>J J”TnTl(U)

mr (V)

(i/G)~H(U) U.

i/Glise-1w)

Equivalently, if the latter diagram is not cartesian, then neither is
diagram (2). We apply this to diagram (5) in case X = PZ, n = 2, and
U=vV@ xvcCcXx®x X, where V C X is one of the standard affine
patches; one easily checks that the pullback of (5) over V) x V is the
following diagram of affine k-schemes (Vs is to V as X5 is to X):

V2i42>V2XV

(9) WVQJ Jﬂvz xidy

(2
VQ/GQ Wv XV
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We will show that this last diagram is not cartesian by explicitly
computing the tensor product of the affine rings of V, /Gy and V? x V
over the affine ring of V(® x V, and showing that the result is not
isomorphic to the affine ring of V5. We need the following

Lemma 7.1. Let

A:k[acl,...,mn]/I, I:(fl,...,fr),
B =kly1,.-- yyml/J, J=1(91,---,9s),
C=k[z,...,2)/K, K = (hy,...,ht),

be three finitely generated k-algebras, and suppose we have k-algebra
maps ¢ : C — A, ¢ : C — B. Then the tensor product A ®¢c B is
isomorphic to the k-algebra

D:k[xla"' y Ly Yiy- - ’ym]/(flv"' afT‘;gla"' 795;215"' 7217)’
where, for 1 <1i <p, Z; is a polynomial in the x’s and y’s of the form

2; = (representative of ¢(z;)) — (representative of ¥(z;)).

Proof. Let i4 : A — D and ig : B — D denote the obvious natural
maps; since i4 0 ¢ = ig o ¥, we have that D is a C-algebra and iz
and ¢p are maps of C-algebras. Moreover, given any C-algebra E, and
C-algebra maps  : A — E and 8 : B — E, it is evident that there
exists a unique map £ : D — FE of k-algebras satisfying £ 04 = o and
& oip = B; whence, £ is a map of C-algebras as well. In other words,
the triple (D,i4,ip) satisfies the universal property of the coproduct
in the category of C-algebras; the lemma follows immediately. o

We now set V = Spec (k[z,y]), and identify the affine rings of the
k-schemes in diagram (9). We write

V2 x V = Spec (k[z1, y1, 2, y2; ¢, y));
the affine ring of V(?) x V is therefore given by

(k[z1,y1, 22, 92])9? @ klz, y].
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The subring (k[z1,y1,72,y2])? of polynomials invariant under the
interchange of (z1,y1) and (z2,y2) is generated by the following five
polynomials [7, p. 687]:

z1 = x1 + T3, 22 = Y1 + Yo, Z3 = T1T2,

Z4 = Y1Y2, Z5 = T2Y1 + T1Y2,

modulo an ideal K of relations which we need not make explicit.
Lemma 7.1 therefore yields

V) XV = k21, 22, 23, 24, 255 7, Y] / K.
By Theorem 6.1, we have that
V2 /Gy m VD x V =V x V = Spec (k[z}, y}, 5, y5));
the ring morphism (iz/G2)* sends 21 to z} + %, 22 to yi + v, etc., and
x to zh, y to y4. We may therefore apply Lemma 7.1 to compute the

affine ring D of the product V5 = Va/Ga X (v <y (VZ X V):

D = k[mllayllaxéayéawlaylam27y27x7y]/’]17

where
21 = (o) +25) — (21 + ®2),
(¥1 +v3) — (y1 + y2),
z3 = (7175) — (T172),
Ji= Z4 = (y192) — (Y192), ;
Z5 = (zoy) + 1y2) — (T2y1 + T1Y2),

Lo !
z=uah —x,
A
Yy=4Yy—-Y

since 7, = z and y) = y, this simplifies to

D= k[xllay’hxlaylaw%y%may]/J%

where
(27 + ) = (z1 + 22),
(y1 +y) — (y1 + y2),
Jo = (z12) — (T172),
(y19) — (y192),

(zy) + 21y) — (z2y1 + T192)
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Now using the congruences z)j = (z1 + z2) — = and y; = (y1 + y2) — v,
we further simplify to obtain

D = k[Il,ylyw%y% may]/‘]3’
where

a=(z1+z— )z — (T122),
Js3 = B=+y2—yy— (n1y2),
v = (z(y1 +y2 —y) + (z1 + T2 — 2)y) — (T291 + T1Y2)

On the other hand, the affine ring of Vs is given by k[z1, y1, z2, y2, x, y]/I,
where I is the ideal of all polynomials vanishing on the locus of k-points

S ={((p1,p2),p) € V> x V | p=p1 or p=ps}.

If, for i = 1,2, we let S; = {((p1,p2),p) € V2 XV | p = p;}, we
have that the ideals of all polynomials vanishing on S; and Sy are
I = (z1 —z,y1 —y) and Ir = (z2 — x, y2 — y), respectively. Therefore,

—« —((J;l 532(1‘2 - 33)
_ o g =x1 — Y2 —
I—Ilﬂ12211 12— (yl_ )(Ig—x)
,8 (y1—y)(y2—y)

(it can in fact be shown that Iy NI = I;-I5). Observe that v = —(f+g);
therefore, J3 C I. Moreover, assertion (4) of Proposition 4.1 implies
that V, and V} have the same support, so that in fact I = /J3 must
hold. If diagram (9) were cartesian, we would have J3 = I, but it is an
easy exercise to show that f ¢ J; and g ¢ Js; therefore, J; # I and
diagram (9) is not cartesian.

We may now present the example promised in Remark 4.1. We begin
by noting that «- 8 = f - g, and therefore

P=ff+9) —fg=f(-v)—aB e Js,

and

=g9(f+9)— fg=9(—7) —ap € J3;



QUOTIENTS OF G-STABLE CLOSED SUBSCHEMES 1383

consequently, I? C J;. In addition, we observe that, under the induced
Go-action on D = k[z1,y1,Z2,Y2,2,y]/Js (given by interchanging the
pair (z1,y;) with (z2,y2)), the nonzero nilpotent elements represented
by f and g are conjugate. Since f + g = —y € J3, we have that f =
—g(mod J3); therefore, in characteristic two, we find that f = —g =g
represents a nilpotent invariant element for the action of G; on D. It
follows that the quotient V4/Gs = Spec (D%?) is a nonreduced scheme
and therefore not isomorphic to V2/G2 which, being the quotient of
a reduced scheme, is reduced. Recalling assertion (2) of Proposition
4.1, we conclude that the map 6/Gs : Va/G2 — V5 /G2 is a nontrivial
surjective closed immersion in characteristic two.

8. Case X = irreducible and nonsingular curve. We bring this
paper to a close by showing that the answer to Question 6.1 is “yes”
in at least one case:

Theorem 8.1. Let X be an irreducible and nonsingular curve. Then
diagram (5) is cartesian.

Proof. Referring to diagram (7), we recall that the desired conclusion
will follow if we can prove that the product X, is reduced, by assertion
(5) of Proposition 4.1. Moreover, Corollary 6.1 implies that X}, is
generically reduced, so it suffices to prove, in addition, that X has
no embedded components [1, p. 132]; this we proceed to do.

It is well known that the n-fold symmetric product of an irreducible
and nonsingular curve is a nonsingular variety (see, e.g., [8, p. 226]);
therefore, X(™ and X, /Gn ~ X (n=1) % X are nonsingular varieties.
Since the map mxn xidx : X™ x X — X (") x X is finite, and therefore
quasi-finite, it follows from [1, p. 95] that this map is flat; consequently,
the pullback py : X} — X,,/G,, is finite and flat as well. It is clear that
the generic points of the irreducible components of X lie over the
generic point & of X,,/G,, which is the only associated point of the
latter. Since the map p; is flat, it follows from [9, p. 41] that any other
associated point of X! must lie over £ as well, but, since p; is finite,
this is impossible [2, p. 61]. We conclude that X/ has no associated
points other than the generic points of its irreducible components, that
is, X! has no embedded components, and the proof is complete. ]
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We recommend to the reader the instructive and amusing exercise of
checking that the diagram (5) is cartesian in case X = A,lc, the affine
lines over k, using a direct computation similar to that given in Section
7.
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