IRRATIONAL SUMS

TOM C. BROWN, D.-Y. PEI AND PETER JAU-SHYONG SHIUE

1. Introduction. In this note we give some sufficient conditions for the irrationality of the sum of the series $\sum_{n=1}^{\infty} 1/H(f(n))$, where $(H(k))_{k\geq 0}$ is a sequence of integers, positive from some point on, satisfying a homogeneous linear recurrence relation with integer coefficients, and f is a strictly increasing function from the set of positive integers to the set of nonnegative integers.

We will refer to such a sequence $(H(k))_{k\geq 0}$ simply as a "recurrent sequence," and the symbol f will always denote a strictly increasing function from the set of positive integers to the set of nonnegative integers.

Let us agree that the symbol $\sum 1/H(f(n))$ denotes the summation of all those terms 1/H(f(n)) for which H(f(n)) > 0.

All of our results are based on the following theorem of C. Badea [1].

Theorem A (Badea [1]). If $(a_k)_{k\geq 0}$ is a sequence of positive integers such that $a_{k+1} > a_k^2 - a_k + 1$ for all sufficiently large k, then $\sum 1/a_k$ is irrational.

A simple example to show that the converges of Badea's Theorem A is false is the series $\sum 1/n! = e$. Another easy example to see that the converse of Badea's result is false is the following. Let $\{c_n\}$, $n \ge 1$, be a nonperiodic sequence of 2s and 5s, and let $a_n = 10^n/c_n$, $n \ge 1$. Then $\sum 1/a_n$ is irrational, and $a_{n+1} \le a_n^2 - a_n + 1$, $n \ge 3$.

Thus our goal is to find simple conditions on H(k) and f(n) which ensure that $H(f(n+1)) > H(f(n))^2 - H(f(n)) + 1$ for all sufficiently large n.

To avoid complications, from now on we will always assume that the characteristic polynomial of the recurrent sequence H(k) has a unique

Copyright ©1995 Rocky Mountain Mathematics Consortium

Received by the editors on July 20, 1992, and in revised form on January 25, 1994.

(real) root $\beta > 1$ of maximum modulus.

It then follows from standard properties of recurrence relations (see, for example [6]) that there exist numbers A>0 and $c\geq 0$ such that $\lim_{k\to\infty} H(k)/(k^c\beta^k)=A$. (If β is a root of multiplicity 1, then c=0.)

2. Main results.

Theorem 1. If $f(n+1)-2f(n) \to \infty$ as $n \to \infty$ and $f(n+1) \ge f(n)^2$ for all sufficiently large n, then $\sum 1/H(f(n))$ is irrational for every recurrent sequence H(k).

Proof. Assume that $H(k)/k^c\beta^k \to A$ as $k \to \infty$ (where $\beta > 1$, A > 0 and $c \ge 0$). To apply Badea's result, we need to show that $H(f(n+1))/(H(f(n))^2 - H(f(n)) + 1) > 1$ for sufficiently large n. We do this by dividing the numerator and denominator of the lefthand side of this inequality by $f(n+1)^c\beta^{f(n+1)}$.

Since $H(f(n+1))/f(n+1)^c\beta^{f(n+1)}\to A>0$ as $n\to\infty$, then $H(f(n+1))/f(n+1)^c\beta^{f(n+1)}>(2/3)A$ for all sufficiently large n. Next.

$$\begin{split} \frac{H(f(n))^2 - H(f(n)) + 1}{f(n+1)^c \beta^{f(n+1)}} \\ &= \frac{f(n)^{2c}}{f(n+1)^c} \frac{1}{\beta^q} \left(\frac{H(f(n))^2}{f(n)^{2c} \beta^{2f(n)}} - \frac{H(f(n))}{f(n)^{2c} \beta^{2f(n)}} \right) \\ &+ \frac{1}{f(n+1)^c \beta^{f(n+1)}}, \end{split}$$

where q = f(n+1) - 2f(n). Since the expression inside the large brackets converges to A^2 and the other term converges to 0, for sufficiently large n (using also $f(n)^{2c}/f(n+1)^c \leq 1$)

$$\frac{H(f(n))^2 - H(f(n)) + 1}{f(n+1)^c \beta^{f(n+1)}} < \beta^{-q} (A^2 + 1) + (1/3)A.$$

Finally,

$$\frac{H(f(n+1))}{H(f(n))^2 - H(f(n)) + 1} > \frac{(2/3)A}{\beta^{-q}(A^2 + 1) + (1/3)A} > 1,$$

as required. \Box

Corollary 1. For every recurrent sequence H(k), $\sum 1/H(2^{2^n})$ is irrational.

For the next result, we weaken the condition on f and strengthen the condition on H(k).

Theorem 2. If $f(n+1)-2f(n) \to \infty$ as $n \to \infty$, then $\sum 1/H(f(n))$ is irrational for every recurrent sequence H(k) for which β has multiplicity 1. (Recall that $\beta > 1$ is the unique root of maximum modulus of the characteristic polynomial of H(k).)

Proof. The proof of Theorem 1, with c set equal to 0 throughout, gives a proof of Theorem 2. \Box

Corollary 2. Let H(k) be a recurrent sequence for which β has multiplicity 1. Then for every $\varepsilon > 0$, $\sum 1/H([(2+\varepsilon)^n])$ is irrational. For every $0 < \varepsilon < 1$, $\sum 1/H(2^n - [(2-\varepsilon)^n])$ is irrational.

Theorem 3. Let H(k) be a recurrent sequence for which β has multiplicity 1. Then there exists an integer P such that for every pair of fixed integers s, p with s > 0, $-\infty , <math>\sum 1/H(s2^n + p)$ is irrational.

Proof. Assume that $H(k)/\beta^k \to A$ as $k \to \infty$, where $\beta > 1$ and A > 0. Let s, p be given with s > 0 and $p < -\log A/\log \beta$. Let $f(n) = s2^n + p, n \ge 1$. Since f(n+1) - 2f(n) = -p,

$$\begin{split} \frac{H(f(n))^2 - H(f(n)) + 1}{\beta^{f(n+1)}} \\ &= \frac{1}{\beta^{-p}} \left(\frac{H(f(n))^2}{\beta^{2f(n)}} - \frac{H(f(n))}{\beta^{2f(n)}} \right) + \frac{1}{\beta^{f(n+1)}} \to \beta^p A^2. \end{split}$$

Thus, since $H(f(n+1))/\beta^{f(n+1)} \to A$,

$$\frac{H(f(n+1))}{H(f(n))^2 - H(f(n)) + 1} \to \frac{1}{\beta^p A}.$$

Since $\beta^p A < 1$ by the choice of p,

$$\frac{H(f(n+1))}{H(f(n))^2 - H(f(n)) + 1} > 1$$

for sufficiently large n, and therefore $\sum 1/H(f(n)) = \sum 1/H(s2^n + p)$ is irrational, by Badea's theorem. \Box

3. Remarks. For the Fibonacci sequence F(k), where

$$F(0) = 0, F(1) = 1, F(k+2) = F(k+1) + F(k), k \ge 0,$$

$$F(k) = (1/\sqrt{5})(((1+\sqrt{5})/2)^k - ((1-\sqrt{5})/2)^k),$$

$$\beta = (1+\sqrt{5})/2, A = 1/\sqrt{5},$$

 $-\log A/\log \beta = 1.67\ldots$. Thus, according to the proof of Theorem 3, $\sum 1/F(s2^n+p)$ is irrational for every fixed pair of integers s>0 and $p\leq 1$. This is a generalization of a result of C. Badea [1], who showed, answering a question of Erdös and Graham [2], that $\sum 1/F(2^n+1)$ is irrational.

More generally, let H(0)=0, H(1)=1, H(k+2)=aH(k+1)+bH(k), $k\geq 0$, where $a\geq 1$, $b\geq 1$. Then $H(k)=(1/\sqrt{a^2+4b})(((a+\sqrt{a^2+4b})/2)^k-((a-\sqrt{a^2+4b})/2)^k)$, $\beta=(a+\sqrt{a^2+4b})/2$, $A=1/\sqrt{a^2+4b}$, and $\beta^pA<1$ for $p\leq 1$, so again $\sum 1/H(s2^n+p)$ is irrational for every fixed pair of integers s>0 and $p\leq 1$. This extends a result of Kuipers [4], who showed this in the case b=1 and p=0. (One can relax the requirement $a\geq 1$, $b\geq 1$ to a=1, $b\geq 1$ or $a\geq 2$, $a^2+4b>0$. In these cases $A<1<\beta$, so that $\beta^pA<1$ holds for $p\leq 0$ and $\sum 1/H(s2^n+p)$ is irrational for s>0 and $p\leq 0$.)

If $a^2 + 4b < 0$, so that the characteristic polynomial $x^2 - ax - b$ of the sequence H(k) no longer has a unique root of maximum modulus, it is easy to verify that the sequence H(k) has infinitely many negative terms, for any nontrivial initial values H(0), H(1). For such a sequence the present methods give no information about the irrationality of $\sum 1/H(f(n))$ for any function f.

Some examples of polynomials for which $\beta>1$ and b has multiplicity 1 (β is the unique root of maximum modulus of the given polynomial) are discussed in Hua and Wang [3], including the polynomials $x^d-x^{d-1}-\cdots-x-1,\ d\geq 2$, (which come from the generalized Fibonacci sequences $F(0)=F(1)=\cdots F(d-2)=0,\ F(d-1)=1,\ F(k+d)=F(k+d-1)+F(k+d-2)+\cdots+F(k+1)+F(k),\ k\geq 0),\ x^d-Lx^{d-1}-1,\ d\geq 2,\ L\geq 2,\ \text{and}\ x^t-t^2r^{t-1}x^{t-1}+(-1)^{t-2}A_{t-2}r^{t-2}x^{t-2}+\cdots-A_1rx-1=0,\ t\geq 2,\ \text{where}$

$$A_1 = \begin{pmatrix} 2t \\ 1 \end{pmatrix}, \qquad A_k = \begin{pmatrix} 2t \\ k \end{pmatrix} - A_1 \begin{pmatrix} 2t-2 \\ k-1 \end{pmatrix} - \cdots - A_{k-1} \begin{pmatrix} 2t-2k+2 \\ 1 \end{pmatrix},$$

 $t-2 \ge k > 1$, and the positive integer r satisfies $t^2 > 2/r^{t-1} + |A_1|/r^{t-2} + \cdots + |A_{t-2}|/r$.

Acknowledgment. We are grateful to the referee for several helpful remarks.

REFERENCES

- 1. C. Badea, The irrationality of certain infinite series, Glasgow Math. J. 29 (1987), 221–228.
- 2. P. Erdös and R.L. Graham, Old and new problems and results in combinatorial number theory, L'Enseignement Mathematique, Universite de Geneve, Geneva, 1980
- 3. L.K. Hua and Y. Wang, Applications of number theory to numerical analysis, Springer, New York, 1981.
 - 4. L. Kuipers, An irrational sum, Southeast Asian Bull. Math. 1 (1977), 20-21.
- ${\bf 5.~V.}$ Laohakosol and N. Roenrom, A remark on a result of L. Kuipers, Southeast Asian Bull. Math. ${\bf 8}$ (1984), 22–23.
 - 6. C.L. Liu, Elements of discrete mathematics, McGraw-Hill, New York, 1985.

SIMON FRASER UNIVERSITY, BURNABY, B.C., CANADA V5A 1S6

Graduate School, Academia Sinica, Beijing, People's Republic of China University of Nevada, Las Vegas, Nevada, 89154-4020