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IRRATIONAL SUMS

TOM C. BROWN, D.-Y. PEI AND PETER JAU-SHYONG SHIUE

1. Introduction. In this note we give some sufficient conditions
for the irrationality of the sum of the series Y., 1/H(f(n)), where
(H(E))r>0 is a sequence of integers, positive from some point on, satis-
fying a homogeneous linear recurrence relation with integer coefficients,
and f is a strictly increasing function from the set of positive integers
to the set of nonnegative integers.

We will refer to such a sequence (H(k))g>o simply as a “recurrent
sequence,” and the symbol f will always denote a strictly increasing
function from the set of positive integers to the set of nonnegative
integers.

Let us agree that the symbol > 1/H(f(n)) denotes the summation
of all those terms 1/H(f(n)) for which H(f(n)) > 0.

All of our results are based on the following theorem of C. Badea [1].

Theorem A (Badea [1]). If (ak)k>0 s a sequence of positive integers
such that a1 > aj — ag + 1 for all sufficiently large k, then > 1/ay
is irrational.

A simple example to show that the converges of Badea’s Theorem A
is false is the series ) 1/n! = e. Another easy example to see that the
converse of Badea’s result is false is the following. Let {c,}, n > 1, be
a nonperiodic sequence of 2s and 5s, and let a,, = 10" /¢, n > 1. Then
S 1/ay, is irrational, and a,; < a2 —a, + 1, n > 3.

Thus our goal is to find simple conditions on H(k) and f(n) which
ensure that H(f(n+ 1)) > H(f(n))?> — H(f(n)) + 1 for all sufficiently
large n.

To avoid complications, from now on we will always assume that the
characteristic polynomial of the recurrent sequence H(k) has a unique
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(real) root B > 1 of maximum modulus.

It then follows from standard properties of recurrence relations (see,
for example [6]) that there exist numbers A > 0 and ¢ > 0 such that
limy_,o H(k)/(k°B*) = A. (If B is a root of multiplicity 1, then ¢ = 0.)

2. Main results.

Theorem 1. If f(n+1)—2f(n) — o0 asn — oo and f(n+1) > f(n)?
for all sufficiently large n, then Y 1/H(f(n)) is irrational for every
recurrent sequence H (k).

Proof. Assume that H(k)/k°f* — A as k — oo (where 3 > 1,
A > 0 and ¢ > 0). To apply Badea’s result, we need to show that
H(f(n+1))/(H(f(n))?—H(f(n))+1) > 1 for sufficiently large n. We
do this by dividing the numerator and denominator of the lefthand side
of this inequality by f(n + 1)¢g/(*+1),

Since H(f(n + 1))/f(n + 1)/ 5 A > 0 as n — oo, then
H(f(n+1))/f(n+1)cp "1 > (2/3)A for all sufficiently large n.

Next,

H(f(n))* —H(f(n)) +1
F(n+ 1)epf D)
_ > i( H(f(n))>  H(f(n)) >
Fn+1)° BT\ F(n) @27~ F(ny2eB2 ()
1
T Fn+ DepIED

where ¢ = f(n + 1) — 2f(n). Since the expression inside the large
brackets converges to A? and the other term converges to 0, for
sufficiently large n (using also f(n)%¢/f(n+ 1) < 1)

H(f(n))* — H(f(n)) +1

fn+ D)epforh BTUA%+ 1)+ (1/3)A.
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Finally,
H(f(n+1)) S (2/3)A
H(f(n))? —H(f(n))+1 "~ B79(A2+ 1)+ (1/3)

as required. a

>1,
A

Corollary 1. For every recurrent sequence H(k), S 1/H(2%") is
irrational.

For the next result, we weaken the condition on f and strengthen the
condition on H (k).

Theorem 2. If f(n+1)—2f(n) — co asn — oo, then Y, 1/H(f(n))
is irrational for every recurrent sequence H(k) for which 8 has multi-
plicity 1. (Recall that 8 > 1 is the unique root of mazimum modulus of
the characteristic polynomial of H(k).)

Proof. The proof of Theorem 1, with ¢ set equal to 0 throughout,
gives a proof of Theorem 2. O

Corollary 2. Let H(k) be a recurrent sequence for which B has
multiplicity 1. Then for every e > 0, Y 1/H([(2 + €)"]) is irrational.
For every 0 <e <1, 1/H(2™ — [(2 — £)"]) is irrational.

Theorem 3. Let H(k) be a recurrent sequence for which B has
multiplicity 1. Then there exists an integer P such that for every pair
of fized integers s,p with s > 0, —oo < p < P, > 1/H(s2"™ + p) is
irrational.

Proof. Assume that H(k)/B* — A as k — oo, where 3 > 1 and
A > 0. Let s,p be given with s > 0 and p < —logA/logB. Let
f(n) = 2™ +p, n > 1. Since f(n+1) —2f(n) = —p,

H(f(n)?* - H(f(n)) +1
3In+1)

327 () 327

1 <H(f(n))2 H(f(n))>+ L ogra,

B—* Bf(n+1)
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Thus, since H(f(n+1))/p7*) — A,

H(f(n+1)) . 1
H(f(n))? — H(f(n))+1 ~ prA
Since SPA < 1 by the choice of p,

H(f(n+1))
H(f(n))? — H(f(n)) +1

for sufficiently large n, and therefore Y 1/H(f(n)) = >_1/H(s2" + p)
is irrational, by Badea’s theorem. O

>1

3. Remarks. For the Fibonacci sequence F'(k), where

F()=0, FQ1)=1, Fk+2) =Fk+1)+F(k), k>0,
F(k) = (1L/VB)((L+v5)/2)F — (1 —v5)/2)"),
B=(1++5)/2, A=1/5,

—log A/logB = 1.67.... Thus, according to the proof of Theorem 3,
> 1/F(s2™ + p) is irrational for every fixed pair of integers s > 0 and
p < 1. This is a generalization of a result of C. Badea [1], who showed,
answering a question of Erdés and Graham [2], that Y 1/F(2" +1) is
irrational.

More generally, let H(0) =0, H(1) = 1, H(k+2) = aH(k+1)+bH(k),
kE > 0, where a > 1, b > 1. Then H(k) = (1/va?+4b)(((a +
Va2 +4b)/2)* — ((a — VaZ +4b)/2)%), B = (a + Va2 +4b)/2, A =
1/va? +4b, and BPA < 1 for p < 1, so again ) 1/H(s2™ + p) is
irrational for every fixed pair of integers s > 0 and p < 1. This extends
a result of Kuipers [4], who showed this in the case b = 1 and p = 0.
(One can relax the requirement a > 1,b>1toa=1,b>1or a > 2,
a® +4b > 0. In these cases A < 1 < 3, so that 37A < 1 holds for p < 0
and > 1/H(s2™ + p) is irrational for s > 0 and p < 0.)

If a® 4 4b < 0, so that the characteristic polynomial z? — ax — b of
the sequence H (k) no longer has a unique root of maximum modulus,
it is easy to verify that the sequence H (k) has infinitely many negative
terms, for any nontrivial initial values H(0), H(1). For such a sequence
the present methods give no information about the irrationality of
>>1/H(f(n)) for any function f.
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Some examples of polynomials for which § > 1 and b has multiplicity
1 (B is the unique root of maximum modulus of the given polynomial)

are discussed in Hua and Wang [3], including the polynomials z% —
gt — ...z —1,d>2, (which come from the generalized Fibonacci
sequences F(0) = F(1) =---F(d—2)=0, F(d—1) =1, F(k+d) =

F(k+d—1)+F(k+d—2)+---+F(k+1)+F(k), k > 0), 24— La®1 -1,
d>2,L>2and 2t —t2rt tat L4 (— 1) 2 A _ort 22t Ayra—
1=0,t> 2, where

2t 2t 2t — 2 2t — 2k + 2
= (V) = () (E0) e (1),
t —2 >k > 1, and the positive integer r satisfies t? > 2/rt"1 +
[Arl/rt2 + o+ [Apa] /1.

Acknowledgment. We are grateful to the referee for several helpful
remarks.
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