ALGEBRAIC CHARACTERIZATION OF CONVOLUTION AND MULTIPLICATION OPERATORS ON HANKEL-TRANSFORMABLE FUNCTION AND DISTRIBUTION SPACES

J.J. BETANCOR AND I. MARRERO

ABSTRACT. In this paper we characterize the continuous linear mapping from \mathcal{B}_{μ} into \mathcal{H}'_{μ} that commutes with Hankel convolutions (equivalently, with Hankel translations) as the convolution operators with symbol in \mathcal{H}'_{μ} . As a consequence, we establish that \mathcal{H}'_{μ} and the space $\operatorname{Hom}\left(\mathcal{H}_{\mu},\mathcal{O}_{\mu,\#}\right)$ of continuous linear mappings from \mathcal{H}_{μ} into $\mathcal{O}_{\mu,\#}$ commuting with Hankel translations are homeomorphic. Also, we prove that $\mathcal{O}'_{\mu,\#}$, respectively \mathcal{O}_{n} , is homeomorphic to $\operatorname{Hom}_{\#}(\mathcal{H}_{\mu})_{n}$, respectively $\operatorname{Hom}_{p}(\mathcal{H}_{\mu})_{n}$, denotes the space of continuous linear mappings from \mathcal{H}_{μ} into itself that commute with Hankel convolutions, respectively with ordinary products.

1. Introduction and preliminaries. I.I. Hirschman [12], D.T. Haimo [11] and F.M. Cholewinski [10] investigated a convolution operation for the Hankel-type transformation

$$(h_{\mu}\psi)(t) = \int_{0}^{\infty} x^{2\mu+1}(xt)^{-\mu} J_{\mu}(xt)\psi(x) dx, \qquad t \in I.$$

Here, as usual, J_{μ} denotes the Bessel function of the first kind and order μ . Throughout this paper, the real parameter μ will be greater than or equal to -1/2.

In [13], we introduced a Hankel convolution closely connected with that cited above. The Hankel translation $\tau_x \psi$, $x \in I = (0, \infty)$, of a suitable function $\psi = \psi(x)$, $x \in I$, was defined by

$$(au_x\psi)(y)=\int_0^\infty \psi(z)D_\mu(x,y,z)\,dz, \qquad x,y\in I,$$

Received by the editors on June 7, 1993. 1980 Mathematics Subject Classification (1991 revision) 46F12.

Copyright ©1995 Rocky Mountain Mathematics Consortium

where

$$D_{\mu}(x,y,z) = \int_{0}^{\infty} t^{-\mu-1/2} (xt)^{1/2} J_{\mu}(xt) (yt)^{1/2} J_{\mu}(yt) (zt)^{1/2} J_{\mu}(zt) dt,$$
$$x, y, z \in I.$$

Then the Hankel convolution $\psi \# \varphi$ of the functions $\psi = \psi(x)$ and $\varphi = \varphi(x)$ is given by

$$(\psi \# \varphi)(x) = \int_0^\infty \varphi(y)(\tau_x \psi)(y) dy, \qquad x \in I,$$

provided that the integral exists. The Hankel translation and the Hankel convolution relate to the Hankel integral transformation

$$(h_{\mu}\psi)(t) = \int_{0}^{\infty} (xt)^{1/2} J_{\mu}(xt)\psi(x) dx$$

by means of the formulae

(1)
$$h_{\mu}(\tau_x \psi)(t) = t^{-\mu - 1/2} (xt)^{1/2} J_{\mu}(xt) (h_{\mu} \psi)(t), \quad x, t \in I,$$

(2)
$$h_{\mu}(\psi \# \varphi)(t) = t^{-\mu - 1/2} (h_{\mu} \psi)(t) (h_{\mu} \varphi)(t), \quad t \in I,$$

valid for suitable ψ and φ .

In a series of papers [5, 6, 7, 8, 9, 13], the authors have investigated the #-convolution in certain spaces of generalized functions. We summarize below the main results in those papers that will be needed in the sequel.

A.H. Zemanian [15] introduced the function space \mathcal{H}_{μ} consisting of all those smooth, complex valued functions $\psi = \psi(x)$, $x \in I$, such that

$$\gamma_{m,k}^{\mu}(\psi) = \sup_{x \in I} \left| x^m \left(\frac{1}{x} D \right)^k (x^{-\mu - 1/2} \psi(x)) \right| < \infty$$

for every $m, k \in \mathbf{N}$. When endowed with the topology generated by the family of seminorms $\{\gamma_{m,k}^{\mu}\}_{m,k\in\mathbf{N}}$, \mathcal{H}_{μ} becomes a Fréchet space. Further properties of the space were found by the authors in [3].

The h_{μ} -transformation is an automorphism of \mathcal{H}_{μ} , [15, Theorem 5.4-1]. As usual, \mathcal{H}'_{μ} will denote the dual space of \mathcal{H}_{μ} . Throughout this

paper \mathcal{H}'_{μ} will be equipped with its strong topology. The generalized Hankel transformation h'_{μ} is defined on \mathcal{H}'_{μ} as the adjoint of the h_{μ} -transformation.

In his study of the Hankel transformation, A.H. Zemanian [14] introduced the space $\mathcal{B}_{\mu} = \bigcup_{a>0} \beta_{\mu,a}$, where, for each a>0, $\mathcal{B}_{\mu,a}$ consists of all those smooth, complex valued functions $\psi=\psi(x), x\in I$, such that $\psi(x)=0$, for x>a, and

$$\gamma_k^{\mu}(\psi) = \sup_{x \in I} \left| \left(\frac{1}{x} D \right)^k (x^{-\mu - 1/2} \psi(x)) \right| < \infty,$$

for every $k \in \mathbf{N}$. The space $\mathcal{B}_{\mu,a}$ is topologized by the family of seminorms $\{\gamma_k^{\mu}\}_{k \in \mathbf{N}}$, and \mathcal{B}_{μ} is endowed with the inductive topology associated to the collection $\{\mathcal{B}_{\mu,a}\}_{a>0}$.

The space \mathcal{O} of all those smooth, complex valued functions $\vartheta=\vartheta(x),$ $x\in I$, with the property that to every $k\in \mathbf{N}$ there corresponds $n=n(k)\in \mathbf{Z}$ such that $\sup_{x\in I}|(1+x^2)^n((1/x)D)^k\vartheta(x)|<\infty$, was characterized by the authors as the space of multipliers of \mathcal{H}_μ and of \mathcal{H}'_μ [4, Theorem 2.3]. Hence, \mathcal{O} can be viewed as a subspace of the space $\mathcal{L}(\mathcal{H}_\mu)$ of all continuous linear mappings from \mathcal{H}_μ into itself. Denoting by $\mathcal{L}_b(\mathcal{H}_\mu)$, respectively $\mathcal{L}_s(\mathcal{H}_\mu)$, the space $\mathcal{L}(\mathcal{H}_\mu)$ endowed with the topology of uniform convergence on bounded subsets of \mathcal{H}_μ , respectively the topology of pointwise convergence on \mathcal{H}_μ , we find that both $\mathcal{L}_b(\mathcal{H}_\mu)$ and $\mathcal{L}_s(\mathcal{H}_\mu)$ induce on \mathcal{O} the same topology [8, Proposition 1], namely, the topology generated by the family of seminorms $\{\gamma_{m,k;\psi}^\mu\}_{m,k\in\mathbf{N},\psi\in\mathcal{H}_\mu}$, where $\gamma_{m,k;\psi}^\mu(\vartheta)=\gamma_{m,k}^\mu(\vartheta\psi)$ for every $m,k\in\mathbf{N}$ and $\psi\in\mathcal{H}_\mu$, with $\vartheta\in\mathcal{O}$. Then \mathcal{O} is complete [4, Proposition 3.2].

In our study on the generalized #-convolution we introduced [13] the space $\mathcal{O}_{\mu,\#} = \bigcup_{m \in \mathbf{Z}} \mathcal{O}_{\mu,m,\#}$, where $\mathcal{O}_{\mu,m,\#}$, $m \in \mathbf{Z}$, is defined as follows. Given $m \in \mathbf{Z}$, the function space $O_{\mu,m,\#}$ is formed by all those smooth, complex valued functions $\phi = \phi(x)$, $x \in I$, such that the quantities

$$o_k^{\mu,m}(\phi) = \sup_{x \in I} |(1+x^2)^m x^{-\mu-1/2} S_\mu^k \phi(x)|$$

are finite, for every $k \in \mathbf{N}$. Here S_{μ} denotes the Bessel operator $x^{-\mu-1/2}Dx^{2\mu+1}Dx^{-\mu-1/2}$. We endow $O_{\mu,m,\#}$ with the topology generated by $\{o_k^{\mu,m}\}_{k\in\mathbf{N}}$. It is clear that $O_{\mu,m,\#}$ contains \mathcal{H}_{μ} . The

space $\mathcal{O}_{\mu,m,\#}$ is then defined as the closure of \mathcal{H}_{μ} in $O_{\mu,m,\#}$. On $\mathcal{O}_{\mu,\#}$ we consider the inductive limit topology associated to the family $\{\mathcal{O}_{\mu,m,\#}\}_{m\in\mathbf{Z}}$.

The dual $\mathcal{O}'_{\mu,\#}$ of $\mathcal{O}_{\mu,\#}$ was characterized as the subspace of \mathcal{H}'_{μ} formed by all those functionals T in \mathcal{H}'_{μ} such that, for every $\psi \in \mathcal{H}_{\mu}$, the function $(T\#\psi)(x) = \langle T, \tau_x \psi \rangle$, $x \in I$, lies in \mathcal{H}_{μ} [6, Proposition 2.5]. It turns out that $h'_{\mu}(x^{-\mu-1/2}\mathcal{O}) = \mathcal{O}'_{\mu,\#}$ [13, Proposition 4.2]. For every $T \in \mathcal{O}'_{\mu,\#}$ the mapping $\psi \mapsto T\#\psi$ belongs to $\mathcal{L}(\mathcal{H}_{\mu})$. In this sense, $\mathcal{O}'_{\mu,\#}$ can be regarded as a subspace of $\mathcal{L}(\mathcal{H}_{\mu})$. Both $\mathcal{L}_b(\mathcal{H}_{\mu})$ and $\mathcal{L}_s(\mathcal{H}_{\mu})$ induce in $\mathcal{O}'_{\mu,\#}$ its strong topology as a dual of $\mathcal{O}_{\mu,\#}$ [8, Propositions 4 and 9, Proposition 5, Corollary 1].

The Hankel convolution $T\#S \in \mathcal{H}'_{\mu}$ of $T \in \mathcal{H}'_{\mu}$ and $S \in \mathcal{O}'_{\mu,\#}$ is defined by the formula $\langle T\#S, \psi \rangle = \langle T, S\#\psi \rangle$, $\psi \in \mathcal{H}_{\mu}$. If $T \in \mathcal{H}'_{\mu}$ and $\psi \in \mathcal{H}_{\mu}$, then $T\#\psi \in \mathcal{O}_{\mu,\#}$ [9, Proposition 2]. This fact allows us to define $S\#T \in \mathcal{H}'_{\mu}$, when $S \in \mathcal{O}'_{\mu,\#}$ and $T \in \mathcal{H}'_{\mu}$, by $\langle S\#T, \psi \rangle = \langle S, T\#\psi \rangle$, $\psi \in \mathcal{H}_{\mu}$. In [9, Proposition 3] we proved that T#S = S#T, for each $T \in \mathcal{H}'_{\mu}$ and $S \in \mathcal{O}'_{\mu,\#}$.

In this paper we characterize the continuous linear mappings from \mathcal{B}_{μ} into \mathcal{H}'_{μ} that commute with Hankel translations (equivalently, with Hankel convolutions) as the convolution operators with symbol in \mathcal{H}'_{μ} . Motivated by the work of S. Abdullah [1, 2], we prove that \mathcal{H}'_{μ} is homeomorphic to the space Hom $(\mathcal{H}_{\mu}, \mathcal{O}_{\mu,\#})$ of all continuous linear mappings from \mathcal{H}_{μ} into $\mathcal{O}_{\mu,\#}$ commuting with Hankel translations. Furthermore, we establish that the elements in $\mathcal{L}(\mathcal{H}_{\mu})$ that commute with Hankel translations (equivalently, with Hankel convolutions) are precisely convolutions with elements of $\mathcal{O}'_{\mu,\#}$. We also prove that $\operatorname{Hom}_{\#}(\mathcal{H}_{\mu})$, respectively $\operatorname{Hom}_{p}(\mathcal{H}_{\mu})$, is homeomorphic to $\mathcal{O}'_{\mu,\#}$, respectively \mathcal{O} , where Hom $_{\#}(\mathcal{H}_{\mu})$, respectively Hom $_{p}(\mathcal{H}_{\mu})$ is the subspace of $\mathcal{L}(\mathcal{H}_{\mu})$ consisting of all continuous linear mappings from \mathcal{H}_{μ} into itself that commute with Hankel convolutions, respectively with ordinary products. Finally, invertibility with respect to the Hankel convolution in $\mathcal{O}'_{\mu,\#}$, respectively to the ordinary product in \mathcal{O} , and invertibility in $\operatorname{Hom}_{\#}(\mathcal{H}_{\mu})$, respectively in $\operatorname{Hom}_{p}(\mathcal{H}_{\mu})$, are shown to be equivalent.

Throughout this paper we will use Hankel approximate identities as considered in [5]. Also, we will refer to the space \mathcal{E}_{μ} and $\mathcal{W}_{\mu,a}^{m}$, $m \in \mathbb{N}$, a > 0, introduced in [5]. We recall that a smooth, complex

valued function $\psi = \psi(x)$, $x \in I$, lies in \mathcal{E}_{μ} if, and only if, the limit $\lim_{x\to 0+} ((1/x)D)^k (x^{-\mu-1/2}\psi(x))$ exists for every $k \in \mathbb{N}$. The space \mathcal{E}_{μ} becomes a Fréchet space when equipped with the topology generated by the system of seminorms $\{\eta_{k}^{\mu}\}_{k,n\in\mathbb{N}}$, where

$$\eta_{k,n}^{\mu}(\psi) = \sup_{0 < x < n} \left| \left(\frac{1}{x} D \right)^k (x^{-\mu - 1/2} \psi(x)) \right|, \qquad \psi \in \mathcal{E}_{\mu}.$$

The space $\mathcal{W}_{\mu,a}^m$, $m \in \mathbf{N}$, a > 0, is constituted by all those complex valued functions $\psi \in C^{2m}(I)$ such that $\psi(x) = 0$ for $x \geq a$, and $\lim_{x\to 0+}((1/x)D)^k(x^{-\mu-1/2}\psi(x))$ exists for $k\in \mathbf{N}$, $0\leq k\leq 2m$. This space is normed by

$$|\psi|_{\mu,\infty,m} = \max_{0 \le k \le m} \sup_{x \in I} |x^{-\mu-1/2} S_{\mu}^k \psi(x)|, \qquad \psi \in \mathcal{W}_{\mu,a}^m.$$

2. Algebraic characterization of \mathcal{H}'_{μ} . Our first aim in this section is to prove that the mappings from \mathcal{B}_{μ} into \mathcal{H}'_{μ} commuting with Hankel translations are precisely those which commute with Hankel convolutions. Moreover, we establish that such mappings are always (and only) convolution operators with symbol in \mathcal{H}'_{μ} .

Two auxiliary results are previously needed.

Lemma 1. Let $\{\phi_n\}_{n\in\mathbb{N}}$ be a sequence in \mathcal{H}_{μ} . If $\{\phi_n\}_{n\in\mathbb{N}}$ is bounded in \mathcal{H}_{μ} and there exists $\phi \in \mathcal{E}_{\mu}$ such that $\lim_{n\to\infty} \phi_n = \phi$ in the sense of convergence in \mathcal{E}_{μ} , then $\phi \in \mathcal{H}_{\mu}$ and $\lim_{n\to\infty} \phi_n = \phi$ in the sense of convergence in \mathcal{H}_{μ} .

Proof. Since $\{\phi_n\}_{n\in\mathbb{N}}$ is a bounded sequence in \mathcal{H}_{μ} , given $m,k\in\mathbb{N}$ there exists a positive constant $B_{m,k}$ such that $\gamma_{m,k}^{\mu}(\phi_n) \leq B_{m,k}$, for each $n\in\mathbb{N}$. Also, for every $x\in I$, $x^m((1/x)D)^kx^{-\mu-1/2}\phi_n(x)\to x^m((1/x)D)^kx^{-\mu-1/2}\phi(x)$, as $n\to\infty$, because $\phi_n\to\phi$ in \mathcal{E}_{μ} , as $n\to\infty$. Then $\gamma_{m,k}^{\mu}(\phi)\leq B_{m,k}$, so that $\phi\in\mathcal{H}_{\mu}$.

Let $\varepsilon > 0$. It is easy to find $\rho > 0$ such that

(3)
$$\left| x^m \left(\frac{1}{x} D \right)^k x^{-\mu - 1/2} (\phi_n(x) - \phi(x)) \right| < \varepsilon, \qquad n \in \mathbf{N}, x \ge \rho.$$

On the other hand, since $\phi_n \to \phi$ in \mathcal{E}_{μ} as $n \to \infty$, there exists $n_0 \in \mathbf{N}$ such that

(4)
$$\sup_{0 < x < \rho} \left| x^m \left(\frac{1}{x} D \right)^k x^{-\mu - 1/2} (\phi_n(x) - \phi(x)) \right| < \varepsilon, \qquad n \ge n_0.$$

By combining (3) and (4) we conclude that $\phi_n \to \phi$ in \mathcal{H}_{μ} , as $n \to \infty$.

Lemma 2. Let a, b > 0. Then for every $\psi \in \mathcal{B}_{\mu,a}$ and $\varphi \in \mathcal{B}_{\mu,b}$ the convergence

(5)
$$(\psi \# \varphi)(x) = \lim_{r \to \infty} \frac{a}{r} \sum_{j=1}^{r} \psi(y_{r,j})(\tau_{y_{r,j}}\varphi)(x)$$

takes place both in the topology of \mathcal{H}_{μ} and in that of \mathcal{B}_{μ} , where $y_{r,j} = aj/r, r, j \in \mathbf{N}, 1 \leq j \leq r$.

Proof. In the first place, we note that (5) holds in the sense of convergence in \mathcal{H}_{μ} if and only if

$$h_{\mu}\bigg((\psi \# \varphi)(x) - \frac{a}{r} \sum_{j=1}^{r} \psi(y_{r,j})(\tau_{y_{r,j}}\varphi)(x)\bigg)(t) \to 0 \quad \text{in } \mathcal{H}_{\mu},$$
as $r \to \infty$.

By virtue of (1) and (2), establishing the latter convergence is equivalent to proving that $(h_{\mu}\varphi)(t)\vartheta_{r}(t) \to 0$ in \mathcal{H}_{μ} as $r \to \infty$ where, for every $r \in \mathbf{N}, r \geq 1$, and $t \in I$, $\vartheta_{r}(t)$ is defined by

$$\vartheta_r(t) = t^{-\mu - 1/2} \bigg((h_\mu \psi)(t) - \frac{a}{r} \sum_{i=1}^r \psi(y_{r,i}) (ty_{r,i})^{1/2} J_\mu(ty_{r,i}) \bigg).$$

We shall proceed to show that $(h_{\mu}\varphi)(t)\vartheta_{r}(t) \to 0$ in \mathcal{E}_{μ} , as $r \to \infty$. In fact, fix $k \in \mathbb{N}$. Leibniz's rule leads to

(6)
$$\left(\frac{1}{t}D\right)^{k} (t^{-\mu-1/2}(h_{\mu}\varphi)(t)\vartheta_{r}(t))$$

$$= \sum_{i=0}^{k} {k \choose i} \left(\frac{1}{t}D\right)^{k-i} (t^{-\mu-1/2}(h_{\mu}\varphi)(t)) \left(\frac{1}{t}D\right)^{i} \vartheta_{r}(t).$$

By using Equation 5.1 (6) in [15], for each fixed $i \in \mathbb{N}$, $0 \le i \le k$, one obtains

(7)
$$\left(-\frac{1}{t}D\right)^{i}\vartheta_{r}(t) = \int_{0}^{a} (xt)^{-\mu-i}J_{\mu+i}(xt)x^{2i+\mu+1/2}\psi(x) dx$$

$$-\frac{a}{r}\sum_{j=1}^{r}\psi(y_{r,j})(ty_{r,j})^{-\mu-i}J_{\mu+i}(ty_{r,j})y_{r,j}^{2i+\mu+1/2},$$

$$t \in I.$$

Now let $n \in \mathbb{N}$. The (uniform) continuity of

$$h(x,t) = \begin{cases} (xt)^{-\mu - i} J_{\mu+i}(xt) x^{2i+\mu+1/2} \psi(x), & 0 \le t \le n \text{ and } 0 < x \le a \\ 0 & 0 \le t \le n \text{ and } x = 0 \end{cases}$$

in $\{(x,t): 0 \leq t \leq n, 0 \leq x \leq a\}$ guarantees that $((1/t)D)^i \vartheta_r(t) \to 0$ uniformly in $0 \leq t \leq n$, as $r \to \infty$. Moreover, the function $((1/t)D)^{k-i}(t^{-\mu-1/2}(h_\mu\varphi)(t))$ is bounded on I, because $h_\mu\varphi \in \mathcal{H}_\mu$. Hence, $(h_\mu\varphi)(t)\vartheta_r(t) \to 0$ in \mathcal{E}_μ , as $r \to \infty$.

The proof that $(h_{\mu}\varphi)(t)\vartheta_{r}(t) \to 0$ in \mathcal{H}_{μ} , as $r \to \infty$, may now be accomplished by establishing the boundedness in \mathcal{H}_{μ} of the sequence $\{(h_{\mu}\varphi)(t)\vartheta_{r}(t)\}_{r\in\mathbb{N}}$ (Lemma 1). To this end, fix $m,k\in\mathbb{N}$. From (6) we infer that

$$\gamma_{m,k}^{\mu}((h_{\mu}\varphi)\vartheta_{r}) \leq \sum_{i=0}^{k} \binom{k}{i} \gamma_{m,k-i}^{\mu}(h_{\mu}\varphi) \sup_{t \in I} \left| \left(\frac{1}{t}D\right)^{i} \vartheta_{r}(t) \right|.$$

The function $x^{-\mu}J_{\mu}(x)$ being bounded on I, (7) implies

$$\begin{split} \sup_{t \in I} \left| \left(\frac{1}{t} D \right)^i \vartheta_r(t) \right| &\leq A \bigg(\int_0^a x^{2i + \mu + 1/2} |\psi(x)| \, dx \\ &+ \frac{a}{r} \sum_{j=1}^r |\psi(y_{r,j})| y_{r,j}^{2i + \mu + 1/2} \bigg) \leq B \end{split}$$

for certain A, B > 0. Thus (5) holds in the topology of \mathcal{H}_{μ} .

Finally we are going to prove that (5) holds also in \mathcal{B}_{μ} . According to [5, Proposition 3.4], $\psi \# \varphi$ belongs to $\mathcal{B}_{\mu,a+b}$ whenever $\psi \in \mathcal{B}_{\mu,a}$ and

 $\varphi \in \mathcal{B}_{\mu,b}$. By [5, Corollary 3.3], $\tau_{y_{r,j}}\psi \in \mathcal{B}_{\mu,a+b}$ for every $r, j \in \mathbf{N}$, $1 \leq j \leq r$. Hence, $(\psi \# \varphi)(x) - (a/r) \sum_{j=1}^{r} \psi(y_{r,j})(\tau_{y_{r,j}}\varphi)(x) \in \mathcal{B}_{\mu,a+b}$ for every $r \in \mathbf{N}$, $r \geq 1$. Since (5) holds in \mathcal{H}_{μ} , it is true also in $\mathcal{B}_{\mu,a+b}$.

We are now ready to establish the main result in this section.

Proposition 1. Let $\mathcal{U}: \mathcal{B}_{\mu} \to \mathcal{H}'_{\mu}$ be a continuous linear mapping. Then the following are equivalent.

- (i) \mathcal{U} commutes with Hankel translations, that is, $\tau_x \mathcal{U} \psi = \mathcal{U} \tau_x \psi$ for $x \in I$ and $\psi \in \mathcal{B}_{\mu}$.
- (ii) \mathcal{U} commutes with Hankel convolutions, that is, $\mathcal{U}(\varphi \# \psi) = (\mathcal{U}\varphi) \# \psi$ for $\varphi, \psi \in \mathcal{B}_{\mu}$.
 - (iii) There exists a unique $T \in \mathcal{H}'_{\mu}$ such that $\mathcal{U}\psi = T \# \psi$, $\psi \in \mathcal{B}_{\mu}$.

Proof. (i) \Rightarrow (ii). Let a, b > 0 and take $\psi \in \mathcal{B}_{\mu,a}, \varphi \in \mathcal{B}_{\mu,b}$. According to Lemma 2, the identity

$$(\varphi \# \psi)(x) = \lim_{r \to \infty} \frac{a}{r} \sum_{i=1}^{r} \psi(y_{r,j})(\tau_{y_{r,j}} \varphi)(x)$$

holds both in the sense of convergence in \mathcal{H}_{μ} and in that of \mathcal{B}_{μ} where, as in Lemma 2, $y_{r,j} = aj/r$, $r, j \in \mathbb{N}$, $1 \leq j \leq r$.

As \mathcal{U} is a continuous linear mapping commuting with Hankel translations, for every $\phi \in \mathcal{B}_{\mu}$ we may write

$$\langle \mathcal{U}(\varphi \# \psi), \phi \rangle = \lim_{r \to \infty} \frac{a}{r} \sum_{j=1}^{r} \psi(y_{r,j}) \langle \mathcal{U}(\tau_{y_{r,j}} \varphi), \phi \rangle$$

$$= \lim_{r \to \infty} \frac{a}{r} \sum_{j=1}^{r} \psi(y_{r,j}) \langle \mathcal{U}\varphi, \tau_{y_{r,j}} \phi \rangle$$

$$= \langle \mathcal{U}\varphi, \lim_{r \to \infty} \frac{a}{r} \sum_{j=1}^{r} \psi(y_{r,j}) \tau_{y_{r,j}} \phi \rangle$$

$$= \langle \mathcal{U}\varphi, \psi \# \phi \rangle$$

$$= \langle (\mathcal{U}\varphi) \# \psi, \phi \rangle.$$

The density of \mathcal{B}_{μ} in \mathcal{H}_{μ} establishes (ii).

(ii) \Rightarrow (iii). Let $\{k_n\}_{n\in\mathbb{N}}$ be a Hankel approximate identity. Since \mathcal{U} is continuous and commutes with convolutions, and since $k_n\#\psi \to \psi$ in \mathcal{B}_{μ} , as $n \to \infty$, whenever $\psi \in \mathcal{B}_{\mu}$ [5, Proposition 3.6], one has

(8)
$$\mathcal{U}\psi = \lim_{n \to \infty} \mathcal{U}(k_n \# \psi) = \lim_{n \to \infty} (\mathcal{U}k_n) \# \psi, \qquad \psi \in \mathcal{B}_{\mu}$$

in the topology of \mathcal{H}'_{μ} . Now, for each $n \in \mathbb{N}$, write $T_n = \mathcal{U}k_n$ and define

$$\mathcal{U}_n: \mathcal{B}_{\mu} \longrightarrow \mathcal{H}'_{\mu}$$
$$\psi \longmapsto T_n \# \psi.$$

According to [13, Proposition 3.5], each \mathcal{U}_n is a continuous linear mapping. Moreover, (8) guarantees that the sequence $\{\mathcal{U}_n\psi\}_{n\in\mathbb{N}}$ is bounded in \mathcal{H}'_{μ} for every $\psi\in\mathcal{B}_{\mu}$.

Fix a>0. By [6, Lemma 2.3] there exists $s\in \mathbb{N}$ such that each \mathcal{U}_n can be continuously extended up to $\mathcal{W}^s_{\mu,a}$ (this extension will be denoted again by \mathcal{U}_n) to obtain an equicontinuous family of mappings from $\mathcal{W}^s_{\mu,a}$ into \mathcal{H}'_{μ} . Choose 0< b< a and $m,r\in \mathbb{N}$ such that $m>\mu+s+2$ and $r>\mu+2m+1$. The identity $\delta_{\mu}=(1-S_{\mu})^r\psi_0-\varphi_0$ holds for suitable $\psi_0\in\mathcal{W}^m_{\mu,b}$ and $\varphi_0\in\mathcal{B}_{\mu,b}$ [6, Lemma 2.1]], where $\delta_{\mu}\in\mathcal{O}'_{\mu,\#}$ is defined by

$$\langle \delta_{\mu}, \psi \rangle = c_{\mu} \lim_{x \to 0+} x^{-\mu - 1/2} \psi(x), \qquad \psi \in \mathcal{H}_{\mu}.$$

Then

$$T_n = T_n \# \delta_{\mu} = (1 - S_{\mu})^r T_n \# \psi_0 - T_n \# \varphi_0$$

= $(1 - S_{\mu})^r \mathcal{U}_n \psi_0 - \mathcal{U}_n \varphi_0, \qquad n \in \mathbf{N},$

because S_{μ} commutes with the #-convolution [13, Proposition 2.2]. Arguing as in the proof that (iii) \Rightarrow (i) in [6, Proposition 2.4], we infer that the sequence $\{T_n\}_{n\in\mathbb{N}}$ is bounded in \mathcal{H}'_{μ} . The space \mathcal{H}'_{μ} being Montel [3, Corollary 4.3], there exists a subsequence of $\{T_n\}_{n\in\mathbb{N}}$ (that we will denote again by $\{T_n\}_{n\in\mathbb{N}}$) which converges to a certain $T \in \mathcal{H}'_{\mu}$, as $n \to \infty$. According to [5, Propositions 3.6 and 4.1] we have that $T_n \# \psi \to T \# \psi$, as $n \to \infty$, whenever $\psi \in \mathcal{B}_{\mu}$, in the sense of convergence in \mathcal{H}'_{μ} . From (8), we conclude that $\mathcal{U}\psi = T \# \psi$ for all $\psi \in \mathcal{B}_{\mu}$.

Uniqueness of T can be established as follows. If $T\#\psi=0$ whenever $\psi\in\mathcal{B}_{\mu}$, then

$$\langle T, \psi \rangle = \langle T \# \delta_{\mu}, \psi \rangle = \langle \delta_{\mu}, T \# \psi \rangle = 0, \qquad \psi \in \mathcal{B}_{\mu}.$$

Since \mathcal{B}_{μ} is dense in \mathcal{H}_{μ} , necessarily T=0.

(iii) \Rightarrow (i). This follows immediately from [7, Lemma 2.2].

An interesting consequence of Proposition 1 is the next.

Corollary 1. Let \mathcal{U} be a continuous linear mapping from \mathcal{H}_{μ} into $\mathcal{O}_{\mu,\#}$. The following are equivalent.

- (i) U commutes with Hankel translations.
- (ii) U commutes with Hankel convolutions.
- (iii) There exists a unique $T \in \mathcal{H}'_{\mu}$ such that $\mathcal{U}\psi = T \# \psi$ whenever $\psi \in \mathcal{H}_{\mu}$.

Proof. It is easily seen that \mathcal{H}'_{μ} contains $\mathcal{O}_{\mu,\#}$. Moreover, if \mathcal{T}_s denotes the topology induced on $\mathcal{O}_{\mu,\#}$ by the strong topology of \mathcal{H}'_{μ} , then $\mathcal{O}_{\mu,m,\#}$ is continuously embedded in $(\mathcal{O}_{\mu,\#},\mathcal{T}_s)$, for every $m \in \mathbf{Z}$. In fact, let $m \in \mathbf{Z}$. For $f \in \mathcal{O}_{\mu,m,\#}$ and $\psi \in \mathcal{H}_{\mu}$, we have

$$\begin{split} |\langle f, \psi \rangle| & \leq \int_0^\infty x^{2\mu+1} |(1+x^2)^m x^{-\mu-1/2} f(x)| \\ & \cdot |(1+x^2)^r x^{-\mu-1/2} \psi(x)| (1+x^2)^{-r-m} \, dx, \end{split}$$

where r is a nonnegative integer such that $m+r-2\mu>2$. Hence, the inductive topology of $\mathcal{O}_{\mu,\#}$ is stronger than \mathcal{T}_s . Corollary 1 may now be derived from Proposition 1 by taking into account the density of \mathcal{B}_{μ} in \mathcal{H}_{μ} .

The next Proposition 2 yields an algebraic characterization of \mathcal{H}'_{μ} . The space $\operatorname{Hom}(\mathcal{H}_{\mu}, \mathcal{O}_{\mu, \#})$ consists of all those continuous linear mappings from \mathcal{H}_{μ} into $\mathcal{O}_{\mu, \#}$ commuting with Hankel translations. A 0-neighborhood base for the topology of $\operatorname{Hom}(\mathcal{H}_{\mu}, \mathcal{O}_{\mu, \#})$ is given by the sets

$$V(B,G) = \{ F \in \text{Hom} (\mathcal{H}_{\mu}, \mathcal{O}_{\mu,\#}) : F(\psi) \in G, \psi \in B \},$$

where B runs over the family of all bounded subsets of \mathcal{H}_{μ} and G denotes any neighborhood of the origin in $\mathcal{O}_{\mu,\#}$.

Proposition 2. The spaces \mathcal{H}'_{μ} and $\operatorname{Hom}(\mathcal{H}_{\mu}, \mathcal{O}_{\mu, \#})$ are homeomorphic.

Proof. It is clear that, given $T \in \mathcal{H}'_{\mu}$, the mapping $\mathbf{U}(T)$, defined by $\mathbf{U}(T)\psi = T\#\psi$, $\psi \in \mathcal{H}_{\mu}$, belongs to $\mathrm{Hom}\,(\mathcal{H}_{\mu},\mathcal{O}_{\mu,\#})$. Moreover, by virtue of Corollary 1, to every $F \in \mathrm{Hom}\,(\mathcal{H}_{\mu},\mathcal{O}_{\mu,\#})$ there corresponds a unique $T \in \mathcal{H}'_{\mu}$ such that $F(\psi) = T\#\psi$, $\psi \in \mathcal{H}_{\mu}$. Hence \mathbf{U} establishes an algebraic isomorphism from \mathcal{H}'_{μ} onto $\mathrm{Hom}\,(\mathcal{H}_{\mu},\mathcal{O}_{\mu,\#})$. We claim this isomorphism is also topological.

To begin with, **U** is continuous. Let V denote the neighborhood of the origin in Hom $(\mathcal{H}_{\mu}, \mathcal{O}_{\mu,\#})$ defined by

$$V = V(B, W^{\circ}) = \{ F \in \operatorname{Hom} (\mathcal{H}_{\mu}, \mathcal{O}_{\mu, \#}) : F(\psi) \in W^{\circ}, \psi \in B \},$$

where B is a bounded set in \mathcal{H}_{μ} and W is a bounded set in $\mathcal{O}'_{\mu,\#}$. We want to show that $\mathbf{U}^{-1}(V)$ is a neighborhood of the origin in \mathcal{H}'_{μ} . To this end, consider $U = \{S \# \psi : S \in W, \psi \in B\}$. Then U is bounded in \mathcal{H}_{μ} . For, given a 0-neighborhood D in \mathcal{H}_{μ} , the set

$$C = C(B, D) = \{ S \in \mathcal{O}'_{\mu, \#} : S \# \psi \in D, \psi \in B \}$$

defines a 0-neighborhood in $\mathcal{O}'_{\mu,\#}$ so that $\lambda W \subseteq C$ for some $\lambda > 0$. Consequently $\lambda(S\#\psi) = (\lambda S)\#\psi \in D$, for each $S \in W$ and $\psi \in B$, and we conclude that $\lambda U \subseteq D$. Now $T \in \mathbf{U}^{-1}(V)$ if and only if

$$|\langle T\#\psi, S\rangle| = |\langle S\#T, \psi\rangle| = |\langle T\#S, \psi\rangle| = |\langle T, S\#\psi\rangle| < 1$$

for every $S \in W$ and $\psi \in B$. Therefore, $\mathbf{U}^{-1}(V) = U^{\circ}$, thus proving that $\mathbf{U}^{-1}(V)$ is a neighborhood of the origin in \mathcal{H}'_{μ} .

In order to establish the continuity of \mathbf{U}^{-1} , let B be a bounded set in \mathcal{H}_{μ} . We aim to show that $\mathbf{U}(B^{\circ})$ is a neighborhood of the origin in $\mathrm{Hom}(\mathcal{H}_{\mu},\mathcal{O}_{\mu,\#})$. This will be done by proving that

$$\mathbf{U}(B^{\circ}) = V(B, \{\delta_{\mu}\}^{\circ}) = \{F \in \text{Hom}(\mathcal{H}_{\mu}, \mathcal{O}_{\mu, \#}) : F(\psi) \in \{\delta_{\mu}\}^{\circ}, \psi \in B\}.$$

In fact, $F \in V(B, \{\delta_{\mu}\}^{\circ})$ if and only if $F(\psi) \in \{\delta_{\mu}\}^{\circ}$ for every $\psi \in B$ or, equivalently,

$$|\langle \delta_{\mu}, T \# \psi \rangle| = |\langle T \# \delta_{\mu}, \psi \rangle| = |\langle T, \psi \rangle| < 1$$

for every $\psi \in B$, where $T = \mathbf{U}^{-1}(F)$. Thus $\mathbf{U}(B^{\circ}) = V(B, \{\delta_{\mu}\}^{\circ})$, as asserted. \square

Proposition 2 suggests that we define in \mathcal{H}'_{μ} the topology \mathcal{T}_{H} which has as 0-neighborhood base the family of all sets of the form

$$V(B, W) = \{ T \in \mathcal{H}'_{\mu} : T \# \psi \in W, \psi \in B \},$$

where B is any bounded set in \mathcal{H}_{μ} and W is any neighborhood of the origin in $\mathcal{O}_{\mu,\#}$. As an immediate consequence of Proposition 2, we have the following.

Corollary 2. The strong topology of \mathcal{H}'_{μ} coincides with \mathcal{T}_H .

3. Algebraic characterization of \mathcal{H}_{μ} . In [7, Theorem 2.3] the authors established that any continuous linear mapping from \mathcal{H}_{μ} into itself commuting with Hankel translations can be represented as a convolution with an element of $\mathcal{O}'_{\mu,\#}$. This result can be improved as follows.

Proposition 3. Let \mathcal{U} be a continuous linear mapping from \mathcal{H}_{μ} into itself. Then the following are equivalent.

- (i) U commutes with Hankel translations.
- (ii) U commutes with Hankel convolutions.
- (iii) There exists a unique $S \in \mathcal{O}'_{\mu,\#}$ such that $\mathcal{U}\psi = S\#\psi$, for every $\psi \in \mathcal{H}_{\mu}$.

Proof. The equivalence between (i) and (iii) is Theorem 2.3 in [7]. That (iii) implies (ii) follows immediately from [7, Lemma 2.2]. To finish the proof we shall establish that (ii) implies (i). Assume that \mathcal{U} satisfies (ii). Let $\{k_n\}_{n\in\mathbb{N}}$ be a Hankel approximate identity, and let $\psi \in \mathcal{H}_{\mu}$. An argument similar to the one developed in the proof of

[5, Proposition 3.5] reveals that $k_n \# \psi \to \psi$ in \mathcal{H}_{μ} , as $n \to \infty$. Since τ_x , $x \in I$, is a continuous linear mapping from \mathcal{H}_{μ} into itself which commutes with Hankel convolutions, for every $x \in I$ we may write

$$\tau_{x}\mathcal{U}\psi = \tau_{x}\mathcal{U}(\lim_{n \to \infty} k_{n}\#\psi) = \lim_{n \to \infty} \tau_{x}\mathcal{U}(k_{n}\#\psi)$$

$$= \lim_{n \to \infty} \tau_{x}((\mathcal{U}k_{n})\#\psi)) = \lim_{n \to \infty} (\mathcal{U}k_{n})\#\tau_{x}\psi$$

$$= \lim_{n \to \infty} \mathcal{U}(k_{n}\#\tau_{x}\psi) = \mathcal{U}(\lim_{n \to \infty} (k_{n}\#\tau_{x}\psi))$$

$$= \mathcal{U}(\tau_{x}\psi).$$

The proof is thus complete.

We denote by $\operatorname{Hom}_{\#}(\mathcal{H}_{\mu})$ the subspace of $\mathcal{L}(\mathcal{H}_{\mu})$ constituted by all continuous linear mappings from \mathcal{H}_{μ} into itself that commute with Hankel convolutions. The space $\operatorname{Hom}_{\#}(\mathcal{H}_{\mu})$ is endowed with the topology it inherits from $\mathcal{L}_{b}(\mathcal{H}_{\mu})$.

Proposition 3 yields the following algebraic characterization of $\mathcal{O}'_{u,\#}$.

Corollary 3. The spaces $\mathcal{O}'_{\mu,\#}$ and $\operatorname{Hom}_{\#}(\mathcal{H}_{\mu})$ are homeomorphic.

Proof. By virtue of Proposition 3, the mapping

$$\mathbf{L}: \mathcal{O}'_{\mu,\#} \longrightarrow \operatorname{Hom}_{\#}(\mathcal{H}_{\mu})$$

$$S \longmapsto \mathbf{L}(S): \mathcal{H}_{\mu} \longrightarrow \mathcal{H}_{\mu}$$

$$\psi \longmapsto S \# \psi$$

is an algebraic isomorphism. This isomorphism is also topological because the topology of $\mathcal{O}'_{\mu,\#}$ is precisely that inherited from $\mathcal{L}_b(\mathcal{H}_{\mu})$ via \mathbf{L} . \square

The isomorphisms in Hom $_{\#}(\mathcal{H}_{\mu})$ may be identified with the invertible elements in $\mathcal{O}'_{\mu,\#}$ with respect to the convolution product, as Proposition 4 shows.

Proposition 4. Let $S \in \mathcal{O}'_{\mu,\#}$, and denote by F_s the member of $\operatorname{Hom}_{\#}(\mathcal{H}_{\mu})$ defined by $F_s(\psi) = S \# \psi$, $\psi \in \mathcal{H}_{\mu}$. Then $S \# \mathcal{O}'_{\mu,\#} = \mathcal{O}'_{\mu,\#}$ if and only if F_s is an isomorphism.

Proof. First assume that $S\#\mathcal{O}'_{\mu,\#}=\mathcal{O}'_{\mu,\#}$. Then some $u\in\mathcal{O}'_{\mu,\#}$ satisfies $S\#u=\delta_{\mu}$, so that $S\#(u\#\psi)=(S\#u)\#\psi=\delta_{\mu}\#\psi=\psi$, for every $\psi\in\mathcal{H}_{\mu}$. As $u\#\psi\in\mathcal{H}_{\mu}$ whenever $\psi\in\mathcal{H}_{\mu}$ [13, Proposition 4.3], we conclude that F_s is onto. On the other hand, if $\psi\in\mathcal{H}_{\mu}$ and $S\#\psi=0$ then $\psi=\delta_{\mu}\#\psi=(S\#u)\#\psi=u\#(S\#\psi)=0$. Therefore, F_s is one-to-one.

Now suppose that F_s is bijective. It is easily checked that the inverse F_s^{-1} of F_s also belongs to $\text{Hom }_{\#}(\mathcal{H}_{\mu})$. Then the linear functional

$$u: \mathcal{H}_{\mu} \longrightarrow \mathbf{C}$$

 $\psi \longmapsto \langle \delta_{\mu}, F_s^{-1}(\psi) \rangle$

lies in \mathcal{H}'_{μ} . Moreover,

$$\langle u \# S, \psi \rangle = \langle u, S \# \psi \rangle = \langle \delta_{\mu}, F_s^{-1}(S \# \psi) \rangle = \langle \delta_{\mu}, \psi \rangle, \qquad \psi \in \mathcal{H}_{\mu}.$$

This means that $u\#S = \delta_{\mu}$, whence $u\#(S\#\psi) = (u\#S)\#\psi = \psi$ for every $\psi \in \mathcal{H}_{\mu}$. The suprajectivity of F_s , along with [6, Proposition 2.5], yields that $u \in \mathcal{O}'_{\mu,\#}$. Now, if $T \in \mathcal{O}'_{\mu,\#}$ then $u\#T \in \mathcal{O}'_{\mu,\#}$ and $S\#(u\#T) = (S\#u)\#T = \delta_{\mu}\#T = T$. This completes the proof. \square

At this point we introduce the space $\operatorname{Hom}_{p}(\mathcal{H}_{\mu})$ consisting of all those continuous linear mappings F from \mathcal{H}_{μ} into itself, such that

$$F(x^{-\mu-1/2}\varphi(x)\psi(x)) = x^{-\mu-1/2}(F\varphi)(x)\psi(x), \qquad \varphi, \psi \in \mathcal{H}_{\mu}.$$

We endow $\operatorname{Hom}_{p}(\mathcal{H}_{\mu})$ with the relative topology inherited from $\mathcal{L}_{b}(\mathcal{H}_{\mu})$. Our next objective is to prove that $\operatorname{Hom}_{p}(\mathcal{H}_{\mu})$ is homeomorphic to the space \mathcal{O} of multipliers of \mathcal{H}_{μ} . Previously, the following must be established.

Lemma 3. For every $\vartheta \in \mathcal{O}$ there exists a sequence $\{\psi_n\}_{n \in \mathbb{N}}$ in \mathcal{H}_{μ} such that $\lim_{n \to \infty} x^{-\mu - 1/2} \psi_n = \vartheta$ in \mathcal{O} .

Proof. Let $\{k_n\}_{n\in\mathbb{N}}$ be a Hankel approximate identity. An argument similar to that developed in the proof of [5, Proposition 3.5] reveals that $k_n\#\psi \to \psi$ in \mathcal{H}_{μ} , as $n \to \infty$, for $\psi \in \mathcal{H}_{\mu}$. Then h_{μ} being an automorphism of \mathcal{H}_{μ} , and taking into account (2), we infer that

 $x^{-\mu-1/2}(h_{\mu}k_n)(x)\phi(x) \to \phi(x)$ in \mathcal{H}_{μ} as $n \to \infty$, for $\phi \in \mathcal{H}_{\mu}$, or, in other words, that $x^{-\mu-1/2}(h_{\mu}k_n)(x) \to 1$ in \mathcal{O} , as $n \to \infty$. Hence, for each $\vartheta \in \mathcal{O}$ we have that $x^{-\mu-1/2}(h_{\mu}k_n)(x)\vartheta(x) \to \vartheta(x)$ in \mathcal{O} as $n \to \infty$, with $(h_{\mu}k_n)\vartheta \in \mathcal{H}_{\mu}$, for every $n \in \mathbb{N}$. The proof is thus complete. \square

Proposition 5. The spaces \mathcal{O} and $\operatorname{Hom}_{p}(\mathcal{H}_{\mu})$ are homeomorphic.

Proof. Define

$$\mathbf{H}: \mathcal{O} \longrightarrow \operatorname{Hom}_{p}(\mathcal{H}_{\mu})$$

$$\vartheta \longmapsto \mathbf{H}(\vartheta): \mathcal{H}_{\mu} \longrightarrow \mathcal{H}_{\mu}$$

$$\psi \longmapsto \vartheta \psi.$$

Clearly, **H** is one-to-one. Moreover, **H** is onto. In fact, let $F \in \operatorname{Hom}_p(\mathcal{H}_\mu)$. By virtue of Lemma 3, there exists a sequence $\{\psi_n\}_{n\in\mathbb{N}}$ in \mathcal{H}_μ such that $x^{-\mu-1/2}\psi_n(x)\to 1$ in \mathcal{O} , as $n\to\infty$. Then, for every $\varphi\in\mathcal{H}_\mu$, $x^{-\mu-1/2}\psi_n(x)\varphi(x)\to\varphi(x)$ in \mathcal{H}_μ , as $n\to\infty$, whence $x^{-\mu-1/2}F(\psi_n)(x)\varphi(x)=F(x^{-\mu-1/2}\psi_n(x)\varphi(x))\to F(\varphi)(x)$ in \mathcal{H}_μ , as $n\to\infty$. This means that the sequence $\{x^{-\mu-1/2}F(\psi_n)\}_{n\in\mathbb{N}}$ is Cauchy in \mathcal{O} . Since \mathcal{O} is complete [4, Proposition 3.2], there exists $\vartheta\in\mathcal{O}$ such that $x^{-\mu-1/2}F(\psi_n)(x)\to\vartheta(x)$ in \mathcal{O} , as $n\to\infty$. Hence $F(\varphi)=\vartheta\varphi$, $\varphi\in\mathcal{H}_\mu$. This proves that **H** defines an algebraic isomorphism. That this isomorphism is also topological can be seen easily. \square

Concerning invertibility in the spaces $\operatorname{Hom}_{p}(\mathcal{H}_{\mu})$ and \mathcal{O} , the following analogue of Proposition 4 holds.

Proposition 6. Let $\vartheta \in \mathcal{O}$, and let F_{ϑ} denote the element of $\operatorname{Hom}_p(\mathcal{H}_{\mu})$ defined by $F_{\vartheta}(\psi) = \vartheta \psi$, $\psi \in \mathcal{H}_{\mu}$. Then $\vartheta \mathcal{O} = \mathcal{O}$ if and only if F_{ϑ} is an isomorphism.

REFERENCES

- 1. S. Abdullah, Algebraic characterization of \mathcal{K}'_p ; $p\geq 1$, Rev. Roumaine Math. Pures Appl. 34 (1989), 269–276.
- 2. ———, Algebraic characterization of distributions of rapid growth, Rocky Mountain J. Math. 22 (1992), 1217–1226.

- 3. J.J. Betancor and I. Marrero, Some linear topological properties of the Zemanian space \mathcal{H}_{μ} , Bull. Soc. Roy. Sci. Liège **61** (1992), 299–314.
- 4. ——, Multipliers of Hankel transformable generalized functions, Comment. Math. Univ. Carolin. 33 (1992), 389–401.
- **5.** ——, The Hankel convolution and the Zemanian spaces β_{μ} and β'_{μ} , Math. Nachr. **160** (1993), 277–298.
- 6. ——, Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japon. 38 (1993), 1141–1155.
- 7. ——, Some properties of Hankel convolution operators, Canad. Math. Bull. 36 (1993), 398–406.
- 8. ——, On the topology of Hankel multipliers and of Hankel convolution operators, Rend. Circ. Mat. Palermo, to appear.
 - 9. ———, On the topology of the space of Hankel convolution operators, 1993.
- ${\bf 10.}$ F.M. Cholewinski, A Hankel convolution complex inversion theory, Mem. Amer. Math. Soc. ${\bf 58}$ (1965).
- 11. D.T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc. 116 (1965), 330–375.
- 12. I.I. Hirschman, Jr., Variation diminishing Hankel transform, J. Analyse Math. 8 (1960/61), 307–336.
- 13. I. Marrero and J.J. Betancor, *Hankel convolution of generalized functions*, Rend. Mat., to appear.
- 14. A.H. Zemanian, The Hankel transformation of certain distributions of rapid growth, SIAM J. Appl. Math. 14 (1966), 678–690.
- **15.** ——, Generalized integral transformations, Interscience Publishers, New York, 1968.

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, UNIVERSIDAD DE LA LAGUNA, 38271 LA LAGUNA (TENERIFE), CANARY ISLANDS, SPAIN