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ALGEBRAIC CHARACTERIZATION OF CONVOLUTION
AND MULTIPLICATION OPERATORS ON
HANKEL-TRANSFORMABLE FUNCTION

AND DISTRIBUTION SPACES

J.J. BETANCOR AND I. MARRERO

ABSTRACT. In this paper we characterize the continuous
linear mapping from B, into ’H:L that commutes with Han-
kel convolutions (equivalently, with Hankel translations) as
the convolution operators with symbol in HL. As a conse-

quence, we establish that ’H:L and the space Hom (H,, Oy %)
of continuous linear mappings from H, into O, % com-
muting with Hankel translations are homeomorphic. Also,

we prove that O:L # respectively O, is homeomorphic to

Hom 4 (# ), respectively Hom p,(?,), where Hom x (H,), re-
spectively Hom ,(#, ), denotes the space of continuous linear
mappings from #, into itself that commute with Hankel con-
volutions, respectively with ordinary products.

1. Introduction and preliminaries. II. Hirschman [12], D.T.
Haimo [11] and F.M. Cholewinski [10] investigated a convolution
operation for the Hankel-type transformation

(hu¥)(t) = /00 ot (zt) M T, (wt))(z) d, tel

0

Here, as usual, J, denotes the Bessel function of the first kind and
order u. Throughout this paper, the real parameter p will be greater
than or equal to —1/2.

In [13], we introduced a Hankel convolution closely connected with
that cited above. The Hankel translation 7,7, z € I = (0,00), of a
suitable function ¢ = ¢(x), « € I, was defined by

(rat) () = / T () Du(a,y. )z, ayel,
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where

Dyu(z,y,2) = /000 tH 2 (@) 2 () (yt) 2 T (yt) (2) 2 T (2t)

z,y,z € 1.

Then the Hankel convolution 9#¢ of the functions ¥ = ¥ (z) and
© = p(x) is given by

W#@@OZAW¢@XMM@MW cel,

provided that the integral exists. The Hankel translation and the
Hankel convolution relate to the Hankel integral transformation

()0 = [ @)/, at)o(o) do
by means of the formulae

(1) hu(rap)(t) = 2 (@) 2T (et) () (1), it el
(2)  hu(@#e)(t) =t 2 () () (hup)(t),  tE

valid for suitable ¢ and .

In a series of papers [5, 6, 7, 8, 9, 13], the authors have investigated
the #-convolution in certain spaces of generalized functions. We
summarize below the main results in those papers that will be needed
in the sequel.

A H. Zemanian [15] introduced the function space H,, consisting of
all those smooth, complex valued functions ¢ = (), « € I, such that

2™ (iD)k(x_“_l/Qzﬂ(ac))‘ <0

751,k(¢) = sup

xzel

for every m,k € N. When endowed with the topology generated by

the family of seminorms {’Ysl,k}m,keN, H, becomes a Fréchet space.
Further properties of the space were found by the authors in [3].

The h,,-transformation is an automorphism of H,,, [15, Theorem 5.4-
1]. As usual, ’H;L will denote the dual space of #,. Throughout this
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paper ’H:L will be equipped with its strong topology. The generalized
Hankel transformation hL is defined on H:L as the adjoint of the h,-
transformation.

In his study of the Hankel transformation, A.H. Zemanian [14]
introduced the space B, = U,>0Bu,., Where, for each a > 0, B,
consists of all those smooth, complex valued functions ¢ = 9(z), = € I,
such that ¢(z) =0, for z > a, and

Vi, (¢) = sup
zel

(1D)k(w1”w(x>>\ < oo,

x

for every k € N. The space B, is topologized by the family of
seminorms {7} }ren, and B, is endowed with the inductive topology
associated to the collection {B, 4 }a>o0-

The space O of all those smooth, complex valued functions ¥ = ¥(z),
x € I, with the property that to every ¥ € N there corresponds
n = n(k) € Z such that sup,; |(1 + z2)"((1/2z)D)*d(z)| < oo, was
characterized by the authors as the space of multipliers of #, and
of H,, [4, Theorem 2.3]. Hence, O can be viewed as a subspace
of the space L£(#H,) of all continuous linear mappings from H, into
itself. Denoting by Ly(#,), respectively L£s(#,), the space L(H,)
endowed with the topology of uniform convergence on bounded subsets
of H,, respectively the topology of pointwise convergence on H,, we
find that both Ly(H,) and L,(#,) induce on O the same topology
[8, Proposition 1], namely, the topology generated by the family of
seminorms {7}, ;. }m keN,pen,, where vy, . (9) =7, ; (99) for every
m,k € N and ¢ € H,, with ¥ € O. Then O is complete [4, Proposition
3.2].

In our study on the generalized #-convolution we introduced [13]
the space Oy 4 = UnezOum, 4, where Oy 4, m € Z, is defined as
follows. Given m € Z, the function space O, m 4 is formed by all
those smooth, complex valued functions ¢ = ¢(z), x € I, such that the
quantities

o™ (¢) = sup (1 + 2°) "z~ 2 Sk p(x))|
xel
are finite, for every £k € N. Here S, denotes the Bessel operator
zH=1/2Dg?r 1 Dg=r=1/2. We endow O, ;4 with the topology gen-
erated by {of™}ken. It is clear that O, 4 contains H,. The



1192 J.J. BETANCOR AND I. MARRERO

space O, m,# is then defined as the closure of #, in Oy m %. On
O,,,» we consider the inductive limit topology associated to the family

{Ouv y#}mez'

The dual O, , of O, 4 was characterized as the subspace of H,
formed by all those functionals T in ’HL such that, for every ¥ € H,,
the function (T#v)(z) = (T, 7.%¢), € I, lies in H,, [6, Proposn'.lon
2.5]. It turns out that hj,(z7#~ 120) = O' e (13, Proposition 4.2].
For every T € O], ,, the mapping 9 — T#1 belongs to £(H,). In this
sense, O, , can be regarded as a subspace of L£(H,). Both Ly(#,)
and L, (’H ) induce in O], , its strong topology as a dual of O, » [8,
Propositions 4 and 9, Proposition 5, Corollary 1].

The Hankel convolution T#S € H,, of ' € H, and S € O, , i
defined by the formula (T#S,v) = <T S#YY, ¢ 6 H, T ¢ H'
and ¢ € H,, then T#¢ € O 4 [9, Proposition 2] This fact
allows us to define S#7' € H,,, when S € O, Ly and T € H,,, by
(S#T,¥) = (S, T#y), v € H,. In [9, Proposn'.lon 3] we proved that
T#S = S#T, for each T € HL and S € O, 4.

In this paper we characterize the continuous linear mappings from
B,, into H;J that commute with Hankel translations (equivalently, with
Hankel convolutions) as the convolution operators with symbol in ’HL.
Motivated by the work of S. Abdullah [1, 2], we prove that #,, is
homeomorphic to the space Hom (#,, O, 4) of all continuous linear
mappings from #, into O, x commuting with Hankel translations.
Furthermore, we establish that the elements in £(#,) that commute
with Hankel translations (equivalently, with Hankel convolutions) are
precisely convolutions with elements of O’ 4+ We also prove that
Hom 4 (#,.), respectively Hom ,(#,), is homeomorphic to O 40 TE-
spectively O, where Hom 4 (#,,), respectively Hom ,(H,,) is the sub-
space of L(H,) consisting of all continuous linear mappings from 7,
into itself that commute with Hankel convolutions, respectively With
ordinary products. Finally, invertibility with respect to the Hankel
convolution in O/{u#’ respectively to the ordinary product in O, and
invertibility in Hom 4 (#,), respectively in Hom ,(#,), are shown to
be equivalent.

Throughout this paper we will use Hankel approximate identities

as considered in [5]. Also, we will refer to the space &, and W},

m € N, a > 0, introduced in [5]. We recall that a smooth, complex
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valued function ¢ = ¥(z), = € I, lies in &, if, and only if, the limit
lim, 04 ((1/2) D)k (z=#~1/24¢)(x)) exists for every k € N. The space &,
becomes a Fréchet space when equipped with the topology generated
by the system of seminorms {n57n}k,n€N7 where

Ten(¥) = sup o Y e

0<z<n

(1D)k<x—“-1%<x»

T

The space W)',, m € N, a > 0, is constituted by all those complex
valued functions ¢ € C?™(I) such that ¢(x) = 0 for * > a, and
lim, o4 ((1/2)D)*(z# 1/ %¢)(z)) exists for k € N, 0 < k < 2m. This

space is normed by

K] p—— Og}&xmsge |w‘“_1/25,’jw(m)|, Y eWr,.
== xr

2. Algebraic characterization of #,. Our first aim in this
section is to prove that the mappings from B, into H:L commuting with
Hankel translations are precisely those which commute with Hankel
convolutions. Moreover, we establish that such mappings are always
(and only) convolution operators with symbol in #,.

Two auxiliary results are previously needed.

Lemma 1. Let {¢,}nen be a sequence in H,,. If {¢n}nen is bounded
in H, and there exists ¢ € £, such that lim, o ¢n = ¢ in the sense
of convergence in &, then ¢ € H,, and lim, o ¢ = ¢ in the sense of
convergence m H,.

Proof. Since {¢n}nen is a bounded sequence in #,,, given m,k € N
there exists a positive constant B, j such that 'yﬁ%k(qﬁn) < Bk, for
each n € N. Also, for every = € I, 2™((1/z)D)kz=r"1/2¢,(z) —
z™((1/z)D)kz=+"1/2¢(x), as n — oo, because ¢, — ¢ in &,, as
n — oo. Then 'yr’;’k(@ < By i, 50 that ¢ € H,,.

Let € > 0. It is easy to find p > 0 such that

1

k
(3) z™ <5D> e Y2 (p () — P()) < e, ne N,z >p.
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On the other hand, since ¢,, — ¢ in £, as n — oo, there exists ng € N
such that

(4)  sup
o<z<p

2" GD)kx—ﬂ—l/?(%(x) —o@)| <6, n>ne

By combining (3) and (4) we conclude that ¢,, — ¢ in H,, as n — oo.
]

Lemma 2. Let a,b > 0. Then for every ¢ € By, and ¢ € By the
convergence

(5) (V#e)(z) = lim — Z¢ Yr.3) (T, 0) ()

rT—oo T

takes place both in the topology of H, and in that of B,, where
Yr,j :a’j/r} T',j EN; 1 SJST

Proof. 1In the first place, we note that (5) holds in the sense of
convergence in ‘H,, if and only if

(o) ——Zzpym ) [CET

as r — o0.

By virtue of (1) and (2), establishing the latter convergence is equiv-
alent to proving that (h,)(t)J-(t) — 0 in H, as r — oo where, for
every r € N, r > 1, and ¢t € I, ¥,.(t) is defined by

9y (t) =t H1/2 ((h;ﬂ/f)(t) - ; Z 1/1(yr,j)(tyr,j)l/zJu(tyr,j)>-

We shall proceed to show that (h,p)(t)d,(t) = 0in &£, as r — oco.
In fact, fix £ € N. Leibniz’s rule leads to

k
© (0) @ 0000.0)
- i () (%D)“@—”-l/%huw)(t)) (%D)imm.
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By using Equation 5.1 (6) in [15], for each fixed i € N, 0 < ¢ < k, one
obtains

(7) |
< - %D>Zﬁr(t) = /Oa(xt)—“—mi(wt)w”*”” “Y(x) de

.
a —p—i 2i+put1/2
- ; Zw(yﬂj)(tyﬂj) M ZJM+i(tyr7]')yr,1j+u+ / )
j=1
tel
Now let n € N. The (uniform) continuity of

h(z,t) = { (xt) # () T 2 (z), 0<t<nand0<z<a
, 0 0<t<nandz=0

in {(z,t) : 0 <t < n,0 <z < a} guarantees that ((1/t)D)™,.(t) —
0 uniformly in 0 < t < n, as r — oo. Moreover, the function

((1/t)D)k=(t=#=1/2(h,p)(t)) is bounded on I, because h,p € H,.
Hence, (hu)(t)0,(t) = 0in &,, as r — oo.

The proof that (h,p)(t)d-(t) — 0 in H,, as r — oo, may now be
accomplished by establishing the boundedness in H, of the sequence
{(hpup)(t)Vr(t)}ren (Lemma 1). To this end, fix m,k € N. From (6)

we infer that
GD) ﬂT(t)‘.

The function z~#J,(z) being bounded on I, (7) implies

k
k
751,k((hu90)19r) < Z <Z.)’Y¢:L7k_i(h”<p) st1€11;)

=0

sup
tel

(%Dy’?’“(t)‘ : A(/ ZB 2 ()| da

a " 2i+p+1/2
S ol ) <
j=1

for certain A, B > 0. Thus (5) holds in the topology of #,,.

Finally we are going to prove that (5) holds also in B,. According
to [5, Proposition 3.4], ¥#¢ belongs to B, 4+» Whenever ¢ € B, , and
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¢ € Bup. By [5, Corollary 3.3], 7, ;¢ € By aqp for every r,j € N,

1 < j <r. Hence, (Y#¢)(z) — (a/r) 327, ¥ (¥r;)(7y,,9)() € Buaty
for every » € N, r > 1. Since (5) holds in #,,, it is true also in B, q15.
O

We are now ready to establish the main result in this section.

Proposition 1. Let U : B, — H:L be a continuous linear mapping.
Then the following are equivalent.

(i) U commutes with Hankel translations, that is, T,Uy = Uty for
z €l andy € B,,.

(ii) U commutes with Hankel convolutions, that is, U(p#¢) =
Up)#) for ¢, € By,.
(iii) There exists a unique T € H,, such that U = T#, 1 € By,.

Proof. (i) = (ii). Let a,b > 0 and take ¥ € B, 4, ¢ € B, . According
to Lemma 2, the identity

(p#)(@) = lim =" (yr)(7y,,;9) (@)

j=1
holds both in the sense of convergence in %, and in that of B, where,
as in Lemma 2, y,; = aj/r,r,j e N, 1 <j <r.

As U is a continuous linear mapping commuting with Hankel trans-
lations, for every ¢ € B, we may write

U(p#).6) = Tim =3 (yn))Ul(ry,,¢). 0)

. a u
- Th—?(,)lo ? E :¢(yr,j)<u‘1"’ Tyrs®)
j=1

r

= Up, Tim 3" (Y )7y, 9)

r—00 T
J

= (Up,¥#¢)
= (Up)#, ¢)-
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The density of B, in H,, establishes (ii).

(i) = (iii). Let {kn}nen be a Hankel approximate identity. Since U
is continuous and commutes with convolutions, and since k,#v¢ — ¥
in B, as n — oo, whenever ¢ € B,, [5, Proposition 3.6], one has

(8) Uy = lim Ulk#v) = lim Uk)H#Y, Y EB,

in the topology of ’H:L Now, for each n € N, write T,, = Uk, and
define
Uy : By, — HL
Y — T #p.

According to [13, Proposition 3.5], each U, is a continuous linear
mapping. Moreover, (8) guarantees that the sequence {U,¥}neN is
bounded in H,, for every ¢ € B,.

Fix a > 0. By [6, Lemma 2.3] there exists s € N such that each
Uy, can be continuously extended up to W; , (this extension will be
denoted again by U,,) to obtain an equicontinuous family of mappings
from W; , into #H,. Choose 0 < b < a and m,r € N such that
m > p+s+2and r > p+2m+ 1. The identity 6, = (1 —5,) %o — @o
holds for suitable ¢y € W/, and ¢y € By [6, Lemma 2.1]], where

6u € O, 4 is defined by

(O, ¥) = cu lim o™= 2(z), ¢ € Hy

Then
Tn = Tn#ap = (1 - Su)rTn#dJO - Tn#‘PO
= (1 - SH)T nwO - unSOOa n e Na

because S, commutes with the #-convolution [13, Proposition 2.2].
Arguing as in the proof that (ili) = (i) in [6, Proposition 2.4], we
infer that the sequence {T,},en is bounded in ”H:L. The space ”H:L
being Montel [3, Corollary 4.3], there exists a subsequence of {7}, }nen
(that we will denote again by {7}, }nen) which converges to a certain
T € M, as n — oo. According to [5, Propositions 3.6 and 4.1] we
have that T}, #1 — T4, as n — oo, whenever ¢ € By, in the sense
of convergence in H],. From (8), we conclude that Uy = T#1 for all
Y € By.
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Uniqueness of T' can be established as follows. If T'#1 = 0 whenever
Y € By, then

(T, ¢) = (T#6u,¥) = (0, T#¢) =0, ¥ € By.
Since B, is dense in H,,, necessarily T' = 0.

(iii) = (i). This follows immediately from [7, Lemma 2.2]. O
An interesting consequence of Proposition 1 is the next.

Corollary 1. Let U be a continuous linear mapping from H,, into
O,,%. The following are equivalent.

(i) U commutes with Hankel translations.
(ii) U commutes with Hankel convolutions.

iii) There exists a unique T € H!, such that Uy = T#1p whenever
nw
v eH,.

Proof. It is easily seen that ’HL contains O, x. Moreover, if 7
denotes the topology induced on O, « by the strong topology of HL,
then O, m 4 is continuously embedded in (O, 4, T), for every m € Z.
In fact, let m € Z. For f € Oy 4 and ¢ € H,,, we have

1, 0)] < / T (L a2yt 2 ()
(@4 2 2t ()| (L4 2?) T d,

where r is a nonnegative integer such that m 4+ r —2u > 2. Hence, the
inductive topology of O, 4 is stronger than 7,. Corollary 1 may now
be derived from Proposition 1 by taking into account the density of B,
in H,. ]

The next Proposition 2 yields an algebraic characterization of ’HL.
The space Hom (#,,, O, 4) consists of all those continuous linear map-
pings from H, into O, » commuting with Hankel translations. A 0-
neighborhood base for the topology of Hom (#,,, 0, «) is given by the
sets

V(B,G) ={F € Hom (H,,0, %) : F(v) € G,¢ € B},
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where B runs over the family of all bounded subsets of H, and G
denotes any neighborhood of the origin in O, 4.

Proposition 2. The spaces H,, and Hom (H,, Oy, ) are homeomor-
phic.

Proof. 1t is clear that, given T' € H,,, the mapping U(T’), defined by
U(T)y = T#y, ¥ € H,, belongs to Hom (H,, O, »). Moreover, by
virtue of Corollary 1, to every F' € Hom (H,, O, 4) there corresponds a
unique 7" € H,, such that F(¢)) = T#1, 1 € H,. Hence U establishes
an algebraic isomorphism from #;, onto Hom (H,,0, 4). We claim
this isomorphism is also topological.

To begin with, U is continuous. Let V denote the neighborhood of
the origin in Hom (H,,, O, ») defined by

V =V(B,W°) = {F € Hom (H,, O 4) : F(4) € W°,4 € B},

where B is a bounded set in #,, and W is a bounded set in (9;’#. We

want to show that U~!(V) is a neighborhood of the origin in #,. To
this end, consider U = {S# : S € W,4¢ € B}. Then U is bounded in
‘H,. For, given a O-neighborhood D in #,,, the set

C=C(B,D)={S€0, ,:S#yeD,ye B}

defines a 0-neighborhood in (9;7# so that AW C C for some \ > 0.
Consequently A(S#v¢) = (AS)#v¢ € D, for each S € W and ¢ € B,
and we conclude that AU C D. Now 7 € U~(V) if and only if

[(T#4, S)| = (S#T, ¢)| = (T#S, )| = (T, S#4)| < 1
for every S € W and ¢ € B. Therefore, U~}(V) = U°, thus proving

that U~!(V) is a neighborhood of the origin in #,.

In order to establish the continuity of U1, let B be a bounded set
in H,,. We aim to show that U(B°) is a neighborhood of the origin in
Hom (H,, Op,#). This will be done by proving that

U(B°) =V(B,{6,}°) ={F € Hom (H,,Op %) : F(¥) € {0,.}°,¢ € B}.
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In fact, F' € V(B,{6,}°) if and only if F(¢) € {§,}° for every ¢ € B
or, equivalently,

(0, T#P) = [(T#6, )| = (T> ) <1

for every ¢ € B, where T' = U~!(F). Thus U(B°) = V(B,{4,}°), as
asserted. O

Proposition 2 suggests that we define in H:L the topology 7y which
has as 0-neighborhood base the family of all sets of the form

V(B,W)={T € H,,: T#y € W, % € B},

where B is any bounded set in H, and W is any neighborhood of the
origin in O, ». As an immediate consequence of Proposition 2, we have
the following.

Corollary 2. The strong topology of ’HL coincides with Tg.

3. Algebraic characterization of #,. In [7, Theorem 2.3] the
authors established that any continuous linear mapping from %, into
itself commuting with Hankel translations can be represented as a
convolution with an element of O:"#. This result can be improved
as follows.

Proposition 3. Let U be a continuous linear mapping from H,, into
itself. Then the following are equivalent.

(i) U commutes with Hankel translations.
(ii) U commutes with Hankel convolutions.

(iii) There exists a unique S € O:L’# such that Uy = S#, for every
Y e H,.

Proof. The equivalence between (i) and (iii) is Theorem 2.3 in [7].
That (iii) implies (ii) follows immediately from [7, Lemma 2.2]. To
finish the proof we shall establish that (ii) implies (i). Assume that U
satisfies (ii). Let {k,}nen be a Hankel approximate identity, and let
¥ € H,. An argument similar to the one developed in the proof of
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[5, Proposition 3.5] reveals that k,#% — v in H,, as n — oco. Since
Tz, © € I, is a continuous linear mapping from #, into itself which
commutes with Hankel convolutions, for every « € I we may write

ol = ToU( im ko) = lim mld ()
= lim 7, (Ukn)#)) = lim Ukn)#7.¢
= lim U(ka#rod) = U( i (ko #7:9))
= U(Ta1)).

The proof is thus complete. O

We denote by Hom 4(#,,) the subspace of £(H,) constituted by all
continuous linear mappings from #, into itself that commute with
Hankel convolutions. The space Hom 4 (#,) is endowed with the
topology it inherits from Ly(#,,).

Proposition 3 yields the following algebraic characterization of OLY#.
Corollary 3. The spaces O, , and Hom »(H,) are homeomorphic.

Proof. By virtue of Proposition 3, the mapping

L:0, , — Homy(H,)
S—L(S):H, — H,
Y —> S#HY

is an algebraic isomorphism. This isomorphism is also topological
because the topology of O, ,, is precisely that inherited from Ly(#,)
via L. O

The isomorphisms in Hom 4 (#,,) may be identified with the invertible
elements in (’)L7 # with respect to the convolution product, as Proposi-
tion 4 shows.

Proposition 4. Let S € OLY#, and denote by Fs the member of
Hom 4(H,) defined by Fs(¢) = S#, ¥ € Hy. Then S#0,, , =0, 4

if and only if Fs is an isomorphism.
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Proof. First assume that S#0, , = O, ,. Then some u € O, ,
satisfies S#u = J,, so that S#(u#y) = (S#u)#zp =0, #Y =, for
every ¥ € H,. As u#y € H, whenever ¢y € H, [13, Proposition
4.3], we conclude that F; is onto. On the other hand, if ¢ € H, and
S#1p = 0 then ¢ = §,#¢ = (SH#u)#Y = u#(S#1) = 0. Therefore,

F; is one-to-one.
Now suppose that F is bijective. It is easily checked that the inverse
7! of F, also belongs to Hom 4 (#,,). Then the linear functional

u:H, — C
% — (8, F ' (¥))

lies in ’HL Moreover,

(u#S,¥) = (u, SH#Y) = (0, Fo H(S#Y)) = (0, %), ¥ € Hye

This means that u#S = 0,, whence u#(S#v¢) = (u#S)#¢ = o for
every ¢ € H,. The suprajectivity of F,, along with [6, Proposition
2.5], yields that u € O, ,. Now, if T' € O], ,, then u#T € O, , and
SH#uH#T) = (S#Hu)#T = 6,#T =T. This Completes the proof O

At this point we introduce the space Hom ,(#,,) consisting of all those
continuous linear mappings F' from H, into itself, such that

F(m_“_l/ng(x)TP(l‘)) _ m—u—1/2(F<P)(ac)¢(x), 0, € Hy.

We endow Hom ,,(#,,) with the relative topology inherited from Ly (#,,).
Our next objective is to prove that Hom ,(7,,) is homeomorphic to the

space O of multipliers of #,,. Previously, the following must be estab-
lished.

Lemma 3. For every ¥ € O there exists a sequence {tn tnen in H,
such that lim,, :vff"l/ZdJn =19 in O.

Proof. Let {k,}nen be a Hankel approximate identity. An argument
similar to that developed in the proof of [5, Proposition 3.5] reveals
that k,#vy — ¢ in H,, as n — oo, for ¢y € H,. Then h, being
an automorphism of #,, and taking into account (2), we infer that
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zHY2(h, k) () p(z) — ¢(x) in H, as n — oo, for ¢ € H,, or, in
other words, that z=#~'/2(h,k,)(z) — 1in O, as n — oo. Hence,
for each ¥ € O we have that z7#~%/2(h,k,)(z)d(z) — Y(z) in O as
n — oo, with (h,k,)9 € H,, for every n € N. The proof is thus
complete. ]

Proposition 5. The spaces O and Hom ,(H,) are homeomorphic.

Proof. Define
H:O — Hom,(H,)
V— H@) : Hy — Hy
Y — .

Clearly, H is one-to-one. Moreover, H is onto. In fact, let F €
Hom ,(#,). By virtue of Lemma 3, there exists a sequence {ty, }nen
in #, such that z=# /24, (z) — 1in O, as n — oo. Then, for
every o € H,, x4 124, (z)p(z) — ¢(x) in H,, as n — oo, whence
eTHVPE (Yn)(2)p(x) = F(27 720 (2)p(2)) = Fp)(z) in Hy, as
n — co. This means that the sequence {z~#~1/2F(3,,)},en is Cauchy
in O. Since O is complete [4, Proposition 3.2], there exists ¥ € O such
that @ # Y2F(¢,)(z) — 9(z) in O, as n — oco. Hence F(yp) = d,
¢ € H,. This proves that H defines an algebraic isomorphism. That
this isomorphism is also topological can be seen easily. u]

Concerning invertibility in the spaces Hom ,(#,,) and O, the following
analogue of Proposition 4 holds.

Proposition 6. Let ¥ € O, and let Fy denote the element of
Hom ,(#H,) defined by Fy(y) = 9, ¥ € H,. Then 9O = O if and
only if Fy is an isomorphism.
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