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ASYMPTOTIC BEHAVIOR OF
IMPULSIVE DIFFERENTIAL EQUATIONS

PATRICIO GONZALEZ AND MANUEL PINTO

ABSTRACT. Based on integral inequalities and on the Ba-
nach’s fixed point theorem, we study the problem of asymp-
totic equilibrium for impulsive differential equations at fixed
times.

1. Introduction. The theory of impulsive differential equations has
been developed over the last ten years (see [2—5; 9—-11]). The evolution
processes which, at certain points in time experience an abrupt change
of state, are subjected to short-time perturbations of negligible lasting
compared to that of the process. We assume that these perturbations
act instantaneously, that is, in the form of impulses. These processes
appear as a natural description of many models in medicine, biology,
optimal control models in economics, etc.

In this paper we study the problem of the asymptotic equilibrium for
a class of impulsive differential equations at fixed times, satisfying the
following condition.

[Ho] Let {¢;}32, C I be an unbounded, strictly increasing sequence
of times and f (¢, z) a continuous function in I x R™, where I = [t¢, ),
with values in R".

We consider the impulsive differential equation at fixed times [2].
) ' = f(t,x), t#t;, i=1,2,...

where the impulse functions ¢;, 2 = 1,2, ... are defined and continuous
in R™ with values in R", Az(t;) = 2(¢; + 0) — 2(¢;) and

z(t; +0) = lim z(¢ +¢).
e—0+
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166 P. GONZALEZ AND M. PINTO

Let B(0,r) = {x € R"/|z| < r}, where |- | is any norm in R™.

Definition 1. We say that the impulsive differential equation (1)
has asymptotic equilibrium if

(i) There exists a positive real number r such that for any a > to,
the equation (1) with initial condition z(a) = zy has a solution z(t)
defined on [a, 00) and it satisfies

(2) lim z(t) =¢

t—o0

for some £ € R™.

(ii) For all £ € R"™ there exist a € I and a solution z(¢) of (1) defined
on [a, 00) and satisfying (2).

We study this problem for the class of impulsive differential equations
(1), defined by the following conditions over f and the sequence of

impulses {@;}5°;.

[H1] a) There exists an integrable function A on I such that for all
(t,z) in I x R™
[f(t, )] < A(t)l=]-

b) There exists a summable sequence of nonnegative real numbers y;,
1 =1,2,... such that for all z € R"

lpi(e)| < pilzl,  i=1,2,...

[H2] a) The function f(t,0) is integrable on I, and there exists an
integrable function A on I such that for all (¢, ), (¢,y) in I x R",

1£(t,2) = f(t,y)] < AB)le — y-

b) The sequence {¢;(0)}$2, is absolutely summable, and there exists
a summable sequence of nonnegative real numbers {f;}72; such that
for all z,y in R™,

pi(z) = pily)| < file — y|

fori=1,2,....
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For this class of impulsive differential equations we will prove that (1)
has global asymptotic equilibrium, that is, the asymptotic equilibrium
is valid for any r > 0. The technique used to study the asymptotic
equilibrium is based on an impulsive generalization of the Gronwall-
Bellman lemma [2, 6] and on the well-known Banach fixed point
theorem. Similar techniques have been used in [1, 2, 3, 7, 8].

In the last two sections, we will give some applications to the theory of
impulsive linear systems and some examples which illustrate the results
obtained.

2. Main results. We need a few preliminary results for proving the
asymptotic equilibrium of (1). The following result (see [2, 10]) show
an equivalence between the impulsive problem (1) and one integral
equation.

Lemma 1. Let ¢ be a piecewise continuous function defined in
[a,T) C [ty, ), with discontinuities of the first kind and left continuous
at tj, a < t; <T. Then ¢ is a solution of (1) with initial condition
Y(a+0) =z if and only if ¢ is a solution of the integral equation

(3) w(t):x(a+0)+/ flssa(s)ds+ Y wile(ts))

a<t; <t
for allt € [a,T).

The following result (see [2, 6]) is an impulsive generalization of the
Gronwall-Bellman lemma.

Lemma 2. Assume that m is a piecewise continuous real function
in I, with discontinuities of the first kind and left continuous at t;,
t=1,2,.... Moreover, if p is a nonnegative continuous function in I
and

m) et [ pem(s)ds+ Y pm(), 2t

to to<t;<t
where ¢ and {B;}2, are nonnegative constants, then fort > ty, we have

mit) < el o1+ e | [ :p<o> da].
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The next result shows that the class of impulsive differential equations
(1) verifying hypothesis H; satisfies condition (i) of definition 1. The
proof is based on Lemmas 1 and 2 and hypothesis [H].

Theorem 1. Assume that conditions [Hy| and [Hy] hold. Then every
solution z(t) of (1) with initial condition x(a) = xg, a > to, is defined
on [a,00) and satisfies (2) for some £ € R™.

Proof. If z(t) is a solution of (1) with initial condition z(a) = =z,
a > to, defined on a finite subinterval J C [a, 00), then z(¢) is a solution
of (3), and for all ¢t € J we have

z(t)| < |z(a+0)| +/ £ (s, 2(s))| ds
+ Y leile(t)]

< le(a+0)] + / A(s)|(s)] ds
+ Y mile(t)]

a<lt; <t

then by Lemma 2 we have
t
2(8)] < Je(a + 0) Tacr, (L + i) exp [ [ 26 ds].

We know that the summability of the sequence {y;}5°, implies that
the product IT,<¢,<¢(1+ ;) converges. Now the integrability condition
of X in I proves that x(t) is bounded on J, thus it can be continued
beyond sup J.

As z(t) is a solution of (3), hypothesis [Hp] implies that x(¢) is
continuable to [a,00) and bounded in this interval. Since f(¢,z(t))
is integrable and the sequence {p;(z(¢;))}s2, is absolutely summable,
then from (3) we deduce that lim; ., x(¢) exists and hence (2) holds.
So the proof is complete. o
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In the following theorem, we will prove the terminal value problem
ii) of definition 1. For this, we apply Banach’s fixed point theorem and
hypothesis [Hy].

Theorem 2. Assume that conditions [Hy| and [Hs] hold. Then for
each & € R™ there exist a € I and a solution x(t) of (1) defined on
[a, 00) which verifies (2).

Proof. Using hypothesis Hsz, we can choose a sufficiently large real
number a > tg, so that

a:/ X(s)ds+2ﬂi<1.

ti>a

Let B be the Banach space of bounded functions defined on [a, c0)
with values in R™. The norm is given by

11l = sup{|£(¢)| : ¢ € [a,00)}-

Let us take the operator T : B — B defined by

(Ta)(t) = € - / T il ds - Y eila(t).

t; >t

Integrability of f(-,0) and summability of the sequence {y;(0)}5°,
guarantee that T is an operator with values in B. To show that T has
a fixed point, it suffices to prove that T is a contradiction on B. By
using Lipschitz condition on f and ¢;, ¢ = 1,2,..., we see that the
following estimates are valid for all z1,z9 € B and ¢ € [a, o0):

Ty (t) — Tz(t)| = I/too[f(s,wl(é’)) — f(s,22(s))] ds
+ D lpi(@a(t:) = il (8)]]

t;>t
<| [T Ao+ S adle - ol
t t; >t

< a||lzr — z2,
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and this shows that 7" is a contraction on . Therefore, Banach’s fixed
point theorem guarantees that 7" will have a unique fixed point z in B,
ie.,

oy =¢- | " fsa(s))ds — 3 wila(t),

t; >t
for all ¢t > a. Clearly (2) is satisfied and

z(t) =¢ + / f(s,z(s))ds+ Z wi(z(ts)),

ti<t
where -
=c [ flsalds— 3 eilelt)
@ t;>a
i.e., z(t) is a solution of (1). O

3. Applications to linear systems. In this section we assume the
following hypothesis.

[Hy] Let {¢;}2, C I be an unbounded, strictly increasing sequence
of times, A a continuous n X n matrix in [ty, c0) and {D;}$2, a sequence
of constant n X m matrices called the impulse matrices.

We consider the impulsive differential system at fixed times t;, ¢ =
1,2,...,

' = A(t)x, t#t;, i=1,2,...
(4)

Corollary 1. Assume that condition [H)| is fulfilled. If A(t) is
integrable on [tg,00) and the sequence {D;}$2, is absolutely summable,
then every solution of (4) with initial condition xz(a) = xzg, a > tg, is
defined on [a,0) and verifies (2) for some £ € R™. Conversely, for all
€ € R" there exists a >ty and a solution z(t) of (1) defined on [a, o)
satisfying (2).

Corollary 2. Assume that condition [H)| is fulfilled. If R(t) is a
continuous n X n matrix on [ty,00), ®(t) is a fundamental matriz of
the linear system
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and the following conditions hold
i) ® L(t)R(t)®(t) is integrable in [ty, 00).
i) Yoo, @7 () Di®(t;)| is convergent.
Then every solution xz(t) with initial condition z(a) = g, a > to, of
the impulsive differential system
z' = (A(t) + R(t))z, t#t, i=12,...
Az(t;) = D;z(t;), 1=1,2,...

is defined on [a,00), and there exists & € R™ such that

(6) z(t) = 2(t)[€ +o(1)]

as t tends to co. Conversely, for all £ € R™ there exist a > ty and a
solution z(t) of (5) defined on [a,00) such that (6) is verified.

Proof. Consider the change of variable z(t) = ®(¢)u(t). Equation (5)
becomes
u' = L R)P(H)u, tFEt, i=1,2,...

(7) Au(ti) = <I>_1(ti)Di<I>(ti)u(ti), = 1, 2, .

Now the result is a consequence of Theorems 1 and 2. ]

4. Examples. a) Consider the impulsive differential system at fixed
times t; =1 =1,2,...
' =0, t#£t,t; =i=1,2,...

(8) Az(t;) = aiz(ti), i=1,2,...

in the interval [0, c0), where a; are real numbers.
The solutions of ' = 0 are the constants; therefore the solution of
(8) with initial condition z(0) = z¢ is defined by
o, ift e [0, 1]
z(t) = k .
zo[[;i_1(1+a;), ifte(kk+1].

Clearly the limit of z(t) as ¢ approaches infinity exists if and only if
the product [[;2, (1 + a;) converges. This product may be convergent
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even when the sequence {|a;|}$2, is not summable. So, our conditions
are only sufficient.

b) Consider the impulsive differential system for ¢ > 0 given by
, 1
(9) ~ !

y =etz fort#t;, t;=i=12,...

with impulses at fixed times {¢;}2°, defined by

Az(ti),y(t) = (1/27 ) (2(ta), (),  i=1,2,...

Observe that 0 L
A(t) = (t+1)?
®) <et 0

is a continuous and integrable matrix on [0, c0). Moreover, for a > 0,
for a suitable norm

/G|A(t)|dt—/a Tt o

In this example, with a suitable norm

_1_ 1
|Di:‘<2z61 i)‘zﬁ’ fori=1,2,...,

thus

Then every solution of (9) converges as ¢t approaches infinity. Moreover,
if @ > 1 then for all £ € R?, there exists a solution defined on [a,c0)
such that (2) is verified.

c) Let A(t) be a continuous and integrable n x n matrix defined on
I = [tg,00) and h a K-Lipschitz function defined and with values in
R”, where K is a positive constant. Consider a sequence {¢;}°, of
impulses such that the hypothesis Hy(b) is verified. Then every solution
z(t) of the impulsive differential system

— ADh(z), t#t, i=1,2,...

(10) Aw(tl) = wi(m(ti)), 1= 1,2,...
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with initial condition z(a) = zg, a > to, is defined on [a,00) and
converges as t approaches infinity. Moreover, if hypothesis Hy(b) is
verified and a satisfies

a—/ KIA(t) dt+ ) i <1,

ti>a

then for all £ € R" there exists a solution z(t) of (9) defined on [a, o)
such that (2) is verified.
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