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ON QUADRATIC SYSTEMS
WITH A DEGENERATE CRITICAL POINT

A. GASULL AND R. PROHENS

ABSTRACT. We study phase portraits of quadratic sys-
tems with exactly two critical points, one of them degenerate.
This problem has already been considered in [10], where part
of the results are obtained by computer. Here we deal with
these systems in terms of semi-complete families of rotated
vector fields. This new approach allows us to prove most of
the bifurcation diagrams that we obtain.

1. Introduction. A quadratic system, QS, is a system of two real
autonomous differential equations

(1) ẋ = P (x, y), ẏ = Q(x, y),

where the dot indicates derivative in respect to a real variable t, and P
and Q are polynomials in two variables with degree at most two and not
both with degree less than or equal to one. We denote by X = (P, Q)
the vector field associated to (1).

QS gives the simplest example of nonlinear differential equations and
also presents most of the difficulties that nonlinear systems have. For
instance, it was not proved that a given QS had a finite number of
limit cycles until 1987 (see [4]). Nothing is known about the maximum
number of limit cycles that a QS may have, except that it is greater than
or equal to four. Hence, both the simplicity and the complexity that
QS present, have been the reasons for which particular subfamilies of
such systems have been extensively studied. In this way we can recall,
for instance, the following subfamilies: homogeneous QS, QS with a
start nodal point, bounded QS, QS without finite critical points, QS
with an invariant straight line, QS with a degenerate critical point, QS
with exactly one critical point, QS with a weak focus, etc., (see [14]).

In the above subfamilies two fundamental questions are studied: the
phase portraits of the QS and the number of limit cycles that they may
have.
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The purpose of this paper is the study of phase portraits of QS, on
the Poincare sphere (see [15], for instance), with two finite critical
points, where one of them, p, is a degenerate critical point with
detDX(p) = trDX(p) = 0.

It is obvious that two different possibilities arise, either DX(p) ≡ 0
or DX(p) �≡ 0. If we assume that DX(p) ≡ 0, the two subcases that
we obtain are:

(i) p is an isolated critical point and hence X is a homogeneous QS.

(ii) p is not an isolated critical point.

As we mentioned above, subcase (i) has been extensively studied, see
for instance [1, 12].

In the second subcase, either a conic or a straight line is a common
factor of P and Q in (1). Consequently, in this subcase, the study of
(1) follows easily from the study of linear systems.

Therefore, only the second case, that is, DX(p) �≡ 0 is considered in
this paper.

We will follow the following notation:

QS with a critical point p for which detDX(p) = trDX(p) = 0 and
DX(p) �≡ 0 will be called QSD.

It is obvious that a QSD can always be written in the following
canonical form

(2) ẋ = y + P2(x, y), ẏ = Q2(x, y),

where P2(x, y) = lx2 + mxy + ny2, and Q2(x, y) = ax2 + bxy + cy2.
It suffices to make a translation (to transport p to 0), a linear change
of coordinates (to put DX(p) in Jordan’s canonical form) and finally
a rescaling of t.

It is not difficult to confirm that a QSD has, at most, three critical
points. QS with exactly one critical point are extensively studied in
[8]. Here we study the QSD with exactly two critical points.

QSD have been already studied in two different papers [6, 10]. In
the first one Coppel shows that this subfamily of QS has, at most, one
limit cycle, and that when it exists it is hyperbolic. In the second one
the problem of determining phase portraits of QSD is solved with the
help of the computer.
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The difference between our work and this latter one is that we deal,
mainly, with semi-complete families of rotated vector fields (see [9,
13]). So we can follow the evolution of the separatrices and limit
cycles, when they exist. This new approach allows us to prove most
of the characteristics of the bifurcation diagrams that the systems
considered present. Nevertheless, in two parts of the paper our analytic
approach has not been sufficient and we also have needed the help of
the computer. At this point the software [3] has been used.

The case of QSD with exactly three critical points also admits this
approach but we do not study this case here.

The structure of this paper is as follows: in Section 2 we make a
classification of QSD, and of QSD with exactly two critical points.
Section 3 deals with QSD with exactly two critical points and without
limit cycles. The study of QSD with exactly two critical points and
which may have limit cycles is made in Section 4.

2. Classification of QS with a degenerate critical point. First
we need a classification of the QSD.

Lemma 2.1. A QSD is affine equivalent, scaling the variable t, if
necessary, to one of the following:

(a) ẋ = y + x2 + ny2, ẏ = y2,

(b) ẋ = y + lx2 + mxy + ny2, ẏ = xy, with l �= 0,

(c) ẋ = y + lx2 + mxy, ẏ = x2 + bxy + cy2.

Proof. First we take a system of coordinates so that the QSD is
written as in (2). If a = b = 0, then the change x1 = cx + (2l)−1cmy,
y1 = l−1c2y, t1 = c−1lt, converts it into (a). If a = 0 and b �= 0, we
can take c = 0 (making the change x1 = bx + cy, y1 = by), and (2)
becomes (b). When a �= 0, we can assume n = 0 (if necessary we can
make the change of variables x1 = y − rx, y1 = y where r �= 0 satisfies
a + (b − a)r + (c − m)r2 − nr3 = 0) and a = 1 (making the change
x1 = ax, y1 = ay) and then (2) is written as in (c).

The behavior of the trajectories of the QSD given in Lemma 2.1 near
the origin is given in the next result.
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Lemma 2.2. (i) The (0, 0) is a saddle-node point, a saddle point,
the union of a hyperbolic and an elliptic sector or a cusp point if the
QSD is written in the forms (a), (b) with l < 0, (b) with l > 0 or (c),
respectively.

(ii) The straight line y = 0 is invariant by the flow of systems (a) and
(b) of Lemma 2.1. Furthermore, this straight line is always a separatrix
through (0, 0) for system (a), and a separatrix for system (b) if and only
if either l < 0 or l ≥ 1/2 (see Figure 2.1).

Proof. (i) Follows from Theorem 66 and 67 of [2].

(ii) The separatrix problem is usually treated by using blow-up
methods, see also [2, pp. 333 334]. For system (a) we obtain that
y = 0 is a separatrix. The straight line y = 0 is not always a separatrix
for system (b). From (i) of this lemma, for system (b) with l < 0, and
because X(x, 0) = (lx2, 0), we have that y = 0 is a separatrix in such a
case. When 0 < l, using the two consecutive blow-ups x = x, y = w1x,
and x = x, w1 = wx, (after omitting the common factor x) we obtain
that it is converted into

{
ẋ = lx + xw + mx2w + nx3w2,

ẇ = (1 − 2l)w − 2w2 − 2mxw2 − 2nx2w3.

The critical points for this system are (0, 0) and (0, (1−2l)/2). So the
behavior of the trajectories of this system in a neighborhood of the x-
axis is obtained from Chapter IV and Theorem 65 of [2]. Consequently
y = 0 is not a separatrix through (0, 0) for system (b), if and only if
0 < l < 1/2, see Figure 2.1.

Coppel has proved that a QSD has at most one limit cycle and that,
when it exists, it is hyperbolic, see [6]. We can rewrite Coppel’s result
as follows.

Theorem 2.3. (i) If a QSD has a degenerate singularity and it is
not a cusp point, then the QSD has no limit cycles.

(ii) If a QSD has a degenerate singularity and it is a cusp point,
then the QSD has, at most, one limit cycle, and when it exists, it is
hyperbolic.
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Proof. (i) From Lemmas 2.1 and 2.2, if a QSD has a degenerate
singularity that is not a cusp point, it is affine equivalent, to either
system (a) or system (b) or system (c) with a degenerate critical point
different from (0, 0).

Obviously system (a) has no limit cycles.

System (b) has no limit cycles either. The proof follows either from
Bamon’s paper [4] (by studying the stability of the possible limit cycle)
or from Jager’s paper [10] (by using the Bendixson-Dulac criterion).

It is not difficult to show that if system (c) has another degenerate
critical point, then it has only these two singularities. Hence, from
standard results on QS it has no limit cycles.

(ii) It follows from Coppel’s paper.

From Lemma 2.1 it is easy to show that a QSD has, at most, three
critical points. As we have explained, our work deals with QSD with
exactly two critical points and, whenever possible, they are studied
when they define a semi-complete family of rotated vector fields. Next,
lemmas are given in this sense.

From Lemma 2.1 we have the following classification.

Lemma 2.4. A QSD, with exactly two critical points, is affine
equivalent, scaling the variable t if necessary, to one of the following:

(I)
{

ẋ = y + Lx2 + Mxy + Ny2,

ẏ = xy, with L < 0, M ∈ {0, 1}, N �= 0,

(II)
{

ẋ = y + Lx2 + Mxy + Ny2,

ẏ = xy, with L > 0, M ∈ {0, 1}, N �= 0,

(III)
{

ẋ = y + Lx2 + Mxy + y2,

ẏ = x2,

(IV)
{

ẋ = y + Lx2 + (L + M)xy,

ẏ = x2 + xy, with M �= 0.

Proof. From Lemma 2.1, we have to consider only systems (a), (b)
and (c).

System (a) has only one critical point, the (0, 0). From system (b)
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we obtain (I) and (II) where l < 0 or l > 0, respectively. n may not be
zero (if n = 0, (0, 0) is its only critical point), and we can consider that
m is either 0 or 1 taking the new coordinates x1 = mx, y1 = m2y and
t1 = m−1t (if m �= 0).

Now consider system (c). Either l or b can be considered greater
than or equal to zero by taking the new coordinates x1 = x, y1 = −y
and t1 = −t. If c �= 0, in the coordinates x1 = |c|x, y1 = |c|3/2y and
t1 = |c|−1/2t, we obtain that c is either 1 or −1 according with c > 0
and c < 0. Furthermore, when c = 0, if system (c) has two critical
points, then b �= 0, and in the new coordinates x1 = b2x, x2 = b3y and
t1 = b−1t, we obtain b = 1.

It is not difficult to confirm that the conditions that ensure that
system (c) has exactly two critical points are the following (we have
taken into account the changes of coordinates given above):

(i) l = 0, m �= 0, c = 1, b = 2.

(ii) l �= 0, m2 − lbm + cl2 �= 0, c = 1, b = 2.

(iii) l �= 0, m2 − lbm + cl2 = 0, 2m − lb �= 0, c = ±1.

(iv) c = 0, b = 1, lb − m �= 0.

We note that conditions (i) and (ii) give system (c) written as

ẋ = y + lx2 + mxy, ẏ = (x + y)2, with l �= m,

hence, after the two changes of variables x + y = x1, y = y1, plus
x2 = (l−m)2/3x1, y2 = (l−m)y1, and t1 = (l−m)−1/3t, they produce
system (III). If conditions (iii) or (iv) hold, we obtain system (IV) in
the following way. If c = 0, it is only necessary to rename m with
L + M . If c �= 0, then c = (m2 − lbm)/m2 and, so, system (c) can be
written as ⎧⎨

⎩
ẋ = y + lx2 + mxy,

ẏ =
(

x + m
l y

)(
x + lb−m

l y

)
.

Then, by means of the changes: x1 = x + ((lb − m)/l)y, y1 = y, plus
x1 = ((2m − lb)/l)2x, y1 = ((2m − lb)/l)3y, t1 = ((2m − lb)/l)−1t, we
transform it into{

ẋ = y + L′x2 + (L′ + N ′)xy + N ′y2,

ẏ = x2 + xy,
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for certain L′ and N ′ depending on l, m and b. Now, in the coordinates
x1 = x + y, y1 = −y, t1 = −t, we get system (IV), where L = −L′ − 1
and M = N ′.

Lemma 2.5. (a) Systems (III) and (IV) are semi-complete families
of rotated vector fields, with parameter L (mod x2) in system (III) and
with parameter L (mod x2 + xy) in system (IV).

(b) System (III) is a semi-complete family of rotated vector fields,
with parameter M (mod x3y), in the fourth quadrant.

Proof. (a) It is because x2(∂/∂L)(y + Lx2 + Mxy + y2) + (y +
Lx2 + Mxy + y2)(∂/∂L)x2 = x4 ≥ 0, for system (III), and because
of (x2 + xy)(∂/∂L)(y + Lx2 + (L + M)xy + Ny2) + (y + Lx2 + (L +
M)xy + Ny2)(∂/∂L)(x2 + xy) = (x2 + xy)2 ≥ 0, for system (IV); see
[13].

(b) The proof follows in the same way as in the previous one.

Proposition 2.6. If a QSD, with exactly two critical points, can
have limit cycles then it is affine equivalent, scaling the variable t, if
necessary, to system (IV) of Lemma 2.5.

Proof. From Lemma 2.4 we only have to consider the systems from (I)
to (IV). By using Lemma 2.2 and Theorem 2.3, we know that systems
(I) and (II) have no limit cycles. System (III) also, cannot have limit
cycles because ẏ ≥ 0. System (IV) can have limit cycles. In fact, the
finite critical point difference from (0,0), can be a weak focus of the
first order.

3. QSD without limit cycles. From Lemma 2.4 and Proposition
2.6 the families of QSD with exactly two critical points and which have
no limit cycles run from (I) to (III) of Lemma 2.4. Now we will study
them case by case.

Family (I). The (0, 0) is a saddle point with the invariant straight
line y = 0 through it (see Lemma 2.2). The other critical point is
(0,−1/N), and it is a saddle point or a nondegenerate point of index 1
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where N > 0 or N < 0, respectively.

The directions s associated with the infinite critical points are given
by the roots of

s(−Ns2 − Ms + (1 − L)) = 0;

hence system (I) has 3, 2 or 1 infinite critical points according to
Δ = M2 + 4N(1 − L) > 0, Δ = 0 or Δ < 0, respectively. It is
not difficult to study the type of these critical points.

If M = 0, the vector field remains invariant by the change of variables
x1 = −x, y1 = y and t1 = −t. From this symmetry and the above
results, we obtain Figure 3.1. When M = 1, the above considerations
give Figure 3.2.

Remark 3.1. There are five different phase portraits for system (I).
Phase portrait corresponding with the case M = 0, N > 0, coincides
with the one numbered 1 in the case M = 1.

N < 0 N > 0

FIGURE 3.1. Phase portraits of system (I) when M = 0.

Family (II). The study of the infinite critical points and of the finite
critical point different from (0, 0) is similar to the study made in the
preceding family. The major difference appears when we study whether
the invariant straight line y = 0 is a separatrix for the origin, see Lemma
2.2(ii).
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FIGURE 3.2. (L, N)-plane of parameters and phase portraits of system (I)

when M = 1 and N �= 0. The curve in the (L, N)-plane is M2 + 4N(1 − L) = 0.

If we consider L as a parameter, three special values appear, L = 1/2,
L = L∗ and L = 1. For L = 1/2 the straight line, y = 0 changes its
behavior with respect to the flow (see Lemma 2.2(ii) again). If we
denote the value by L = L∗ so that Δ = M + 4N(1−L∗) = 0, for this
value of L, system (II) has an infinite double critical point. If L = 1,
the infinite critical point associated with the direction y = 0 is also a
double critical point if M �= 0, or a triple critical point if M = 0.

If M = 0, under the change of variables x1 = −x, y1 = y and t1 = −t,
the vector field remains invariant.

From the above considerations, the 17 phase portraits of system (II),
depicted in Figure 3.4 in accordance with Figure 3.3, follow. There is
only a particular difficulty in drawing picture 14 of Figure 3.4. In this
case y = 0 is not a separatrix through (0, 0), and so we do not know if
the two separatrices of (0, 0) coincide or not.

Assuming that they coincide for some values of L and N , consider
the system {

ẋ = y + Lx2 + (1 + ε)xy + Ny2,

ẏ = xy.

This system is a semi-complete family of rotated vector fields with
parameter ε (mod xy = 0). Hence, for ε with suitable sign, a limit
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(a) (b)

FIGURE 3.3. Different behaviors of the flow of system (II) in the (L, N)-
plane of parameters, for cases: (a) M = 0, (b) M = 1, in accordance with
Figure 3.4.

cycle appears from the separatrix loop (see [9, 13]) and this fact
contradicts Theorem 2.3(i). So the separatrices do not coincide and,
again from this theorem, phase portrait of this system must be like that
in picture 14 of Figure 3.4.

Family (III). The critical points of system (III) are (0, 0) and (0,−1).
Using Lemma 2.2 the first one is a cusp point. From Theorems 65 and
67 of [2], (0,−1) is either a cusp point or a saddle-node point, according
to M = 0 or M �= 0, respectively.

FIGURE 3.5. Different behaviors of the flow of system (3) at infinity, in the
(l, m)-plane of parameters, with m �= l.
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FIGURE 3.7. Different behaviors of the flow of system (III) at infinity. Phase
portraits are depicted in Figure 3.8. The plotted curve is C.

Proposition 3.2. The behavior of the trajectories of system (III) of
Lemma 2.4, in a neighborhood of infinity, is given in Figures 3.7 and
3.8.

Proof. To study the infinite critical of system (III), it is more
convenient to use its expression before applying the two changes of
coordinates given in the proof of Lemma 2.4, that is, system

(3)
{

ẋ = y + lx2 + mxy,

ẏ = (x + y)2, with l �= m.

FIGURE 3.8. Phase portraits of system (III) in a neighborhood of infinity
according to the regions in the (L, M)-plane given in Figure 3.7.
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The infinite critical points are given by the zeros of x(x+ y)2 − y(lx2 +
mxy) = x(x2 + (2− l)xy + (1−m)y2) = 0. Note that there are double
critical points at infinity if either 4m + l2 − 4l = 0 or m = 1. These
curves are the ones depicted in Figure 3.5.

Figures 3.5 and 3.6 follow, again, using [2].

To obtain the behavior of the trajectories of system (III) in a neigh-
borhood of the infinity in terms of the parameters (L, M), it is enough
to study the relation between (l, m) and (L, M) that comes from the
proof of Lemma 2.4. This relation is

L = (l + 1)(l − m)−1/3, M = (m − 2l)(l − m)−2/3.

The results obtained are summarized in Figures 3.7 and 3.8. From now
on, we will call C the curve −4M3−L2M2+18LM +4L3+27 = 0, that
separates different behaviors, at infinity, for the flow of system (III), in
the (L, M)-plane of parameters.

The relationship between the notations used in Figures 3.6 and 3.8 is
the following: phase portraits, in the (l, m)-plane of parameters, with
the same small letter correspond with the same phase portrait, in the
(L, M)-plane, with that capital letter.

From the above considerations, and using the following facts:

(i) the curve y = −Mx − 1 is a straight line without contact
(respectively, invariant) when LM + 1 �= 0 (respectively LM + 1 = 0),

(ii) if A gives the slope of an infinite critical point, and (M +A)(M +
2A) �= 0, then the straight line y = Ax − A/(M + 2A) is without
contact and, when A < 0 and M ≤ 0, we have, in addition, that
−1 < −A/(M + 2A) < 0.

(iii) for phase portraits 21 and 22 in Figure 3.16, we have M +A < 0
and M + 2A < 0,

(iv) the scalar product of the vector field given by (III), on a straight
line y = Ax, where A is the slope of an infinite critical point, with the
vector (−A, 1) is −A2x. (Note that this is a general property of any
quadratic system, see [16]).

We can obtain most of the phase portraits of system (III). To be more
precise, we can get the global phase portrait in all the (L, M)-plane of
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FIGURE 3.9. Zones R1, R2 and R3 where the study of the phase portraits of
system (III) is more complicated.

parameters except in the regions:

R1 = {(L, M) | L ∈ (−∞,−3 · 2−2/3], M ∈ (0,−1/L)},
R2 = {(L, M) | L ∈ (−3 · 2−2/3,−1], M ∈ (C(L),−1/L)},

and

R3 = {(L, M) | L ∈ (−∞,−3 · 2−2/3], M ∈ (C(L),−∞)}
∪ {(L, M) | L ∈ (−3 · 2−2/3, 0), M ∈ (0,−∞)}
∪ {(L, M) | L ∈ (0, +∞), M ∈ (0,−1/L)},

where (L, C(L)) is a parametrization of the curve C. See Figure 3.9 for
more details.

As an example of the above assertion, we will prove that the phase
portrait of (III) in the region R4 of Figure 3.9 is 21 of Figure 3.16. In
this case by using all the results obtained above, we get Figure 3.10(a).
From the Poincare-Bendixson theory, we have Figure 3.10(b), that is
phase portrait 21 of Figure 3.16. All phase portraits obtained in this
way are summarized in Figure 3.16.

To finish our classification we must study regions R1, R2 and R3.

Region R1. In this region the α-limit and ω-limit set of all the
separatrices is determined, except for one of the stable separatrices of
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(a) (b)

FIGURE 3.10. (a) The flow of system (III) on the straight lines: y = Ax,
y = −Mx − 1 and y = Ax − A/(M + 2A), for phase portrait 21. (b) Phase
portrait 21.

the saddle-node point and the unstable separatrix of the infinite saddle.
In Figure 3.11 we can see the three possible phase portraits that can
occur.

In the boundaries of the set R1, {(L, M) | L ∈ (−∞,−3 ·2−2/3), M =
−1/L} and {(L, M) | L ∈ (−∞,−3 · 2−2/3), M = 0}, we know that
the phase portraits of (III) are 1 and 12 of Figure 3.16, respectively.
Therefore, using the continuous dependence with respect to parameters,
for the vector field (III), we get that, for a fixed L, there exists at least
one M such that (III) has phase portrait 9 of Figure 3.16. Furthermore,
using Lemma 2.5(b) and the fact that, in a neighborhood of phase
portrait 9, the movement of the infinite critical points in the fourth
quadrant is as we show in Figure 3.11, we have that the value of M
obtained above is unique (we call it M1(L)). Hence, the information
showed for R1 in Figures 3.15 and 3.16, follows.

Region R2. The study of phase portraits in this region is more
complicated than the above one. The reason is that we do not
know the phase portrait of (III) on the boundary of R2 given by
R1

2 = {(L, M) | L ∈ (−3 · 2−2/3,−1], M = C(L)}. More explicitly,
in the boundary of R1

2, that is, at the points (−3 ·2−2/3, 0) and (−1, 1),
in the (L, M)-plane, the phase portraits of (III) are 13 and 6 of Figure
3.16, respectively. By using similar ideas to those in the above case, we
can get the information summarized in Figure 3.12(a).
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FIGURE 3.13. Phase portrait of system (III) in the region R3.

We have not been able to prove that the phase portrait 8 of Figure
3.16 only occurs at one point of R1

2. The major difficulty is that
on R1

2, system (III) is not a semi-complete family of rotated vector
fields. A numerical study made using [3], seems to show that, in
fact, the phase portrait 8 of Figure 3.16 only occurs for the point
(L, M) ≈ (−1.56, 0.38) and that on R1

2 phase portraits of (III) are
like we indicate in Figure 3.12(b).

Assuming the above information on R1
2, we may conclude that the

function M1(L), found in the study of R1, can be continued for L ∈
[−3 · 2−2/3,−1/56 . . . ], and that M1(−1.56 . . . ) = 0.38 . . . . Therefore,
we have the information summarized in Figure 3.12(b). We want to
indicate that, using numerical derivation with eight points, we get that
the common point of (L, M1(L)) with (L, C(L)) is a C0 contact point.

Region R3. In this region previous results allow us to establish the
information given in Figure 3.13.

In order to finish the phase portrait, we proceed in the following way.
If we assume that M < 0, L < 0 and L2 + M ≥ 0, it is easy to prove
that there exists s < 0 such that the flow associated with the vector
field (III) on the segment {(sy, y) | −1 ≤ y < 0} is as we show in Figure
3.14.

Therefore, in this subregion of R3 the phase portrait of (III) is 17
of Figure 3.16. On the other hand, on the branch of the hyperbola
{(L, M) | LM + 1 = 0, M < 0} the phase portrait of (III) is 19 of the
same Figure.

Hence, arguing as in the previous regions and using Lemma 2.5(a),
we have that, for M < 0, there exists a unique continuous curve L3(M)
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such that −2
√

M < L3(M) < −1/M , on which the phase portrait of
(III) is 18 of Figure 3.16. Therefore, the results of Figures 3.15 and
3.16, for the region R3, follow.

From all the above considerations, we can summarize all the phase
portraits of system (III). There are 22 of them, drawn in Figure 3.16
following Figure 3.15.

4. QSD with limit cycles. From Proposition 2.6 we have to
consider system (IV) of Lemma 2.4.

First of all we study its infinite and finite critical points. From Lemma
2.2, (0,0) is a cusp point. The next result gives the nature of the other
critical point.

Lemma 4.1. The critical point of (IV), different from the origin, is
(−1/M, 1/M) and it is:

(i) A saddle point if M > 0.

(ii) A nondegenerate critical point of index 1 if M < 0. More exactly:

(a) An attractor if M > L + 1 (node or focus).

(b) A weak repellor focus of first order if M = L + 1.

(c) A repellor if M < L + 1 (node or focus).

Furthermore, the point is a node or a focus according to whether
(M − L − 1)2 + 4M ≥ 0 or (M − L − 1)2 + 4M < 0.

Proposition 4.2. The behavior of the trajectories of system (IV) of
Lemma 2.4 in a neighborhood of infinity is given in Figures 4.2 and 4.3.

Proof. The directions x = sy associated with the infinite critical
points are the real roots of

s(s2 − (L − 1)s − (L + M)) = 0.

Note that there are double or triple critical points at infinity if either
(L − 1)2 + 4(L + M) = 0 or L + M = 0. These curves are plotted in
Figure 4.2.

Except when L + M = 0, the results of Figures 4.2 and 4.3 follow
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L < l < 1/2 ⇓ L = 1/2 ⇓ 1/2 < L < 1 ⇓

L = 1 ⇓ 1 < L ⇓

FIGURE 4.1. Behavior of the trajectories in a neighborhood of the

infinite critical point (0, 0) of U2 for system (IV) when L + M = 0.
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from standard use of Theorems 65 of [2] and the study of the simple
equilibrium states (see [2, Chapter IV], for instance).

When L+M = 0, the problem of determining if the circle at infinity,
in the Poincare compactification, is a separatrix through the singularity
associated with s = 0 appears. We will make a more detailed study of
this case. Consider the expression of (IV) in the local coordinates of
chart U2 (see [15]) when L + M = 0.

ż1 = z2 + (L − 1)z2
1 − z3

1 , ż2 = −z1z2(1 + z1).

From Theorems 66 and 67 of [2], the (0, 0) is the union of a hyperbolic
sector and an elliptic one, or a saddle-node point or a saddle point
when L < 1, L = 1 or L > 1, respectively. Applying the two successive
blow-ups z1 = z1, z2 = z1w1 and z1 = z1, w1 = wz1, we obtain, after
omitting a common factor z1,

ż1 = z1(w − z1), ẇ = w(−1 + z1 − 2w).

Using similar considerations to those in the proof of Lemma 2.2(ii) we
obtain Figure 4.1.

Note that the circle at infinity (z2 = 0) is not a separatrix through
(0, 0) when 1/2 < L < 1. Hence, the proposition follows.

Proposition 4.3. System (IV) has, at most, one limit cycle and,
when it exists, it is hyperbolic. It exists if, and only if, M < 0
and L∗(M) < L < M − 1. Here L∗(M) is a function of M that
satisfies (M − 1) − 2

√−M < L∗(M) < M − 1, if M ≤ −4, and
M − 1 − 2

√−M < L∗(M) ≤ −1 − 2
√−M if M > −4.

Proof. From Theorem 2.3, system (IV) has at most one limit cycle
and, when it exists, it is hyperbolic.

It is well known (see [5], for instance) that a limit cycle for a QS
must surround a focus. Hence, system (IV) can have limit cycles only
when M < 0 and (M − L − 1)2 + 4M < 0. The origin is a repellor
weak focus of order one when L = M −1 (see [11]), therefore, from the
theory of rotated vector fields and Lemma 2.5(a), we have an unstable
limit cycle arising from the origin when L � M − 1, and growing when
L decreases.
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FIGURE 4.3. Phase portraits of system (IV) in a neighborhood of infinity, in
accordance with the regions in the (L, M)-plane given in Figure 4.2.
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Furthermore, the limit cycle must disappear for some value of L,
called L∗(M), which of course, must be such that L∗(M) > M −
1 − 2

√−M . When M > −4, arguing in a similar way, we get
L∗(M) ≤ −1 − 2

√−M .

In order to depict some of the 24 phase portraits of system (IV), as we
show in Figure 4.5 in accordance with Figure 4.4, we need, in addition
to the previous consideration, the following facts:

(i) on the straight line y = Ax, the scalar product of the vector
field associated with (IV) and (−A, 1), is −A2x,

(ii) if A gives the slope on an infinite critical point (a saddle or a
saddle-node point), and 1 − (L + M)A �= 0, then the straight line y =
Ax+A2/(1−(L+M)A) is without a contact line and, in addition, when
M < 0 and L < 0 we have that 1/M < −A/M + A2/(1 − (L + M)A),

(iii) when L = 0, x = −1/M is an invariant straight line.

When −4 < M < 0, we do not know whether or not the curve
(L∗(M), M) touches the parabola P = {(L, M) | (L + 1)2 + 4M = 0}
(of course this curve cannot cross P). Furthermore, assuming that both
curves have a common point, we neither know if at this point the phase
portrait is either 10 or 11 of Figure 4.5.

Numerical calculations, made using [3], suggest that when M ∈
(−4,−1.771205517) (respectively, M ∈ (−1.771205517, 0)) the phase
portraits of (IV) on the parabola P are like 9 (respectively, 11) of
Figure 4.5. Therefore, it seems that, for M ∈ [−1.771205517 . . . , 0), P
and the curve (L∗(M), M) coincide and there the phase portrait is 11.
We think that, when M ∈ [−1.771205517 . . . , 0), the phase portrait
that occurs is 11 because phase portrait 10 looks as a codimension 2
system, but we have not been able to prove that assertion. We point
out that using numerical derivation and six points we obtain that the
common point between the parabola P and the curve (L∗(M), M) is a
C1 contact point.

Hence, we conjecture that the bifurcation diagram, of system (IV),
in the box (L∗(−4), 0)× (−4, 0) of Figure 4.4 is as we depict in Figure
4.6, where we have dashed the area with limit cycles.
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