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ECOLOGICAL MODELS, PERMANENCE
AND SPATIAL HETEROGENEITY

ROBERT STEPHEN CANTRELL, CHRIS COSNER AND VIVIAN HUTSON

ABSTRACT. We model the interactions of two theoretical
populations which are allowed to move at random throughout
a bounded habitat via systems of two weakly coupled reaction-
diffusion equations. The reaction terms in these systems in-
volve parameters which are subject to biological interpretation
and which are assumed to be spatially dependent. We examine
the effect of spatial heterogeneity on the long-term viability
of each of the populations, with the aim of quantifying the
effect in terms of the biological parameters in the models. To
this end, we employ the dynamic concept of permanence of
the interacting populations, conditions for which lead directly
to the spectral theory for linear elliptic boundary value prob-
lems, so that the long-term viability of the populations can be
expressed in terms of eigenvalues depending on the biological
parameters of the models in directly quantifiable ways. We
give a number of examples and demonstrate for the first time
via reaction-diffusion equations that spatial heterogeneity can
lead to coexistence in situations wherein extinction would re-
sult, were the habitat spatially homogeneous.

1. Introduction. In this article we continue the examination of the
long-term dynamics of two interacting species which was begun in [14].
We assume that the species are free to move at random throughout
some bounded habitat. Under this assumption, we model the interac-
tion of the species via a system of partial differential equations of the
form

(1.1)

⎧⎨
⎩
uit

= µi∆ui + fi(x, u1, u2)ui in Ω × (0,∞),
Biui = 0 on ∂Ω × (0,∞),
ui(x, 0) = u0

i (x) ≥ 0 in Ω,

i = 1, 2, where ui denotes the population density of the ith interacting
species, Ω ⊆ RN (usually N = 2 or 3) is the habitat in question and
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the homogeneous boundary condition Bi represents (usually) either
a barrier (i.e., Biui = ∂ui/∂ν, the outer normal derivative) or a
completely hostile exterior (i.e., Biui = ui). Here uit

denotes ∂ui/∂t
and, as usual, ∆ = ∂2/∂x2

1 + · · · + ∂2/∂x2
N is the Laplace operator

(accounting for the freedom of motion for each species), µi > 0 is
the diffusion rate for the ith species, and fi(x, u1, u2) is the local
per capita growth law for the ith species (accounting for possible
spatial heterogeneity in the habitat and for the effects of interspecies
interactions).

There are two fundamental, related questions of biological interest
concerning the model. First, is the effect of interspecies interaction the
long-term survival of both of the species, i.e., coexistence? Second, how
is the answer to the first question affected by the spatial variation in
the problem? (Here the spatial variation is due to the random motion
of the species and the possible spatial heterogeneity in the habitat.) In
order to address the first question, it is necessary to give a precise notion
of what is meant by long-term coexistence. If (1.1) admits a globally
attracting componentwise-positive equilibrium, we would certainly say
that we have long-term coexistence for the species modeled by (1.1).
However, a globally attracting componentwise positive equilibrium is
far too restrictive a notion to use for long-term coexistence since, for
example, a globally attracting componentwise positive periodic orbit
(representing a stable fluctuation in the population densities) should
surely also be a guarantee of long-term coexistence. Consequently, we
employ the more inclusive notions of long-term coexistence in [C(Ω)]2

in (1.1) of uniform persistence and permanence. We say that (1.1) is
uniformly persistent if there are continuous functions on Ω, say v1 and
v2, with vi(x) > 0 for x ∈ Ω and i = 1, 2, so that the solution to (1.1)
corresponding to u0

1(x) �≡ 0 and u0
2(x) �≡ 0 has the property that there

is a t0 depending only on u0
1 and u0

2(t0 = t0(u0
1, u

0
2)) so that

ui(x, t) ≥ vi(x)

for x ∈ Ω and i = 1, 2, provided t ≥ t0. If, in addition, there are
constants V1 and V2 so that

ui(x, t) ≤ Vi

for x ∈ Ω, i = 1, 2, t ≥ t0, we say that (1.1) is permanent.
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In [14], we established conditions which guarantee permanence in
(1.1). We favored permanence as a notion of long-term survival of
both species over the slightly less restrictive uniform persistence since
it is biologically quite reasonable to expect whatever conditions we
impose on (1.1) to prohibit unbounded growth in the densities u1

and u2 as t → ∞. The criterion for permanence in the context
of (1.1) in [14] was expressed in terms of the signs of eigenvalues
to linear elliptic differential equations whose coefficients are closely
related to the coefficients in (1.1). As a consequence, in determining
conditions for permanence, we were also implicitly measuring the effect
of the geometry of the habitat and the spatial variation therein on the
question of the long-term survival of both species. In this present article
we use the criterion established in [14] as a starting point to explore the
effect of spatial heterogeneity on the predictions for coexistence of the
species modeled by (1.1). Our approach is to analyze several specific
but representative examples. In particular, we focus on Lotka-Volterra
systems wherein growth rates and/or interaction rates are allowed to
vary with location. Such models not only provide good examples
for illustrating our techniques but also have biological implications of
independent interest. For example, one of the biological conclusions
that we draw is that spatial heterogeneity permits coexistence in
situations when it would not be possible in a spatially homogeneous
environment. This phenomenon has been observed elsewhere, though
not deduced from a reaction-diffusion model.

The remainder of the article is structured as follows. In Section 2
we reinterpret the conditions σ1 > 0 and σ2 > 0 from Theorem 1.1 so
as to highlight the interrelations among the biological parameters of
the system that permit the assertion of permanence in (1.1). We then
use the results to explore the interplay among diffusion, spatial hetero-
geneity, species interaction and habitat geometry that will guarantee
permanence. In Section 3 we consider some examples with nontrivial
spatial variation that nevertheless permit exactly computable condi-
tions for permanence, sometimes involving well-known classical special
functions. In Section 4 we discuss the role of spatial heterogeneity
in maintaining biodiversity. Specifically, we give in Theorem 4.2 con-
ditions under which spatial heterogeneity may permit coexistence of
competitors in situations when it would not be possible in a spatially
homogeneous environment. Finally, our analysis requires some new
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results on a single diffusive logistic equation subject to homogeneous
Neumann boundary data, and these are presented in the Appendix.

Before recalling the criterion for permanence in (1.1) that will serve
as the point of departure for our present analysis, we briefly describe
its development. A full, detailed presentation of the development is
available to the interested reader in [14], and we make no attempt to
duplicate that effort here. However, we believe that it is particularly
important that this article be reasonably self-contained, since we hope
the paper will be read by mathematical and biological scientists, and
we believe a brief summary of the development of our criterion for
permanence in (1.1) is necessary to achieve the goal of self-containment.

To begin, we use the theory of reaction-diffusion equations as pre-
sented in [26] to formulate (1.1) as a semi-dynamical system in an ap-
propriate Banach space, where we employ the theory of semi-dynamical
systems as in [18, 21] to obtain permanence in the context of semiflows.
We then show that this notion of permanence implies permanence of
(1.1) in the sense previously described in this paper. The choice of Ba-
nach space is contingent upon the boundary data imposed in (1.1). The
reason for this is that the dynamical systems machinery we use requires
a cone with nonempty interior upon which the semiflow in question is
forward invariant. In the case of (1.1), this cone corresponds to or-
dered pairs of nonnegative functions. In case both u1 and u2 in (1.1)
are subject to a homogeneous Neumann boundary condition, it suffices
to consider the Cartesian product [C(Ω)]2 of continuous functions on
Ω. In this case the interior of the cone of ordered pairs of nonnegative
functions consists of ordered pairs of functions which are positive on
Ω, and the parabolic maximum principle guarantees ui(x, t) > 0 on Ω
for i = 1, 2, and t > 0 (so long as ui(x, 0) �≡ 0). However, the cone
of ordered pairs of nonnegative functions fails to have interior in the
closed subspace [C0(Ω)]2 of [C(Ω)]2 determined by the additional re-
quirement that the functions vanish in ∂Ω. Consequently, in the case of
zero Dirichlet boundary data on u1 and u2 in (1.1), we use the Banach
space [C1

0 (Ω)]2 of ordered pairs of continuously differentiable functions
which vanish on ∂Ω, for the cone of pairs of nonnegative functions in
this case has interior

{
(v1, v2) : vi(x) > 0 on Ω and

∂vi

∂ν
< 0 on ∂Ω, i = 1, 2

}
.
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The first step in showing that the semiflow π arising from (1.1) is
permanent is demonstrating the existence of a compact global attractor,
say A, relative to the cone Y of ordered pairs of nonnegative functions.
By a result of Bilotti and LaSalle [5] (see also [18]), a compact
global attractor is assured if we know that π is point dissipative (i.e.,
there is a bounded subset U of Y so that π((u0

1(x), u
0
2(x)), t) ∈ U

for all t ≥ t0, where t0 is a fixed time dependent only on (u0
1, u

0
2)

and U) and that π(·, t) : Y → Y is compact for t > 0. We meet
these requirements on π by the assumptions we make upon the local
per capita growth laws f1 and f2 in (1.1). These assumptions are
biologically reasonable and allow us to conclude point dissipativity for
π in the [C(Ω)]2 topology on Y as detailed in Section 4 of [14]. We
must require a self-regulatory mechanism for at least one of f1 and
f2. For specificity, let us say that f1(x, v1, v2) < 0 when v1 > M
independent of choice of x ∈ Ω and v2 ≥ 0. We then either require an
analogous self-regulatory mechanism for f2 or require that f2(x, v1, v2)
be bounded above for v1 bounded independent of choice of x ∈ Ω and
v2 ≥ 0 and that f1 and f2 satisfy a compatibility condition of the
form (4.9) in [14]. This last alternative permits us to treat certain
commonly arising predator-prey interactions that lack self-regulation
on the predator (e.g., f2(x, v1, v2) = −d+m(x)v1). (It is worth noting
at this point that in cases in which we hypothesize a self-regulation
condition on both u1 and u2, dissipativity in the [C(Ω)]2 topology
follows in much the same way as in a comparable system of ordinary
differential equations, whereas the dissipativity arguments for predator-
prey systems without self-limitation on the predator are considerably
more complicated.) Once the dissipativity in the [C(Ω)]2 topology
is established, the theory of reaction-diffusion equations allows us to
deduce the point dissipativity of π in the [C1

0 (Ω)]2 topology in the case
of zero Dirichlet boundary data as well as the compactness of π(·, t) for
t > 0 (in whatever topology is suitable for the boundary data). See [14,
Section 3]. In particular, we show there that if U is a [Cm(Ω)]2 bounded
set for m = 0 or m = 1 and t0 > 0, π(U, t) is bounded in [Cm+1(Ω)]2

for t > t0, with the bound in [Cm+1(Ω)]2 dependent only on t0 and the
[Cm(Ω)]2 bound on U . It follows immediately that π(U, t) is compact
in [Cm(Ω)]2 for t > 0 and that π is point dissipative in [C1

0 (Ω)]2 in
the Dirichlet case. (We note in passing that there is a bounded set B
in [C2(Ω)]2 such that if U ⊆ [C1(Ω)]2 is bounded, π(U, t) ⊆ B for all
t ≥ t0. Here t0 depends upon the [C1(Ω)]2 norm of U ; in particular, t0
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is not equal to 1 for all U , as incorrectly stated in Theorem 3.3 of [14].
We thank one of the referees for this paper for calling our attention to
this misstatement.)

Once the existence of the global attractor A is established, it is
possible to formulate the criterion for permanence that we will use,
as already noted, to explore the effect of spatial heterogeneity on the
predictions for coexistence of the species modeled by (1.1). Since
π((u0

1(x), u
0
2(x)), t) lies in the ε neighborhood B(A, ε) of A (relative

to Y ) for all t sufficiently large for any (u0
1(x), u

0
2(x)) ∈ Y , it suffices

to consider the compact forward invariant (with respect to π) set
X = π(B(A, ε), [1,∞)). Observe that X = (X ∩ intY )∪ (X ∩∂Y ) with
X∩intY andX∩∂Y forward invariant under π. Let S = X∩∂Y . Then
X ∩ intY = X−S, and we say that π is permanent provided there is a
set U ⊆ X − S (notice that U is automatically bounded in Y ) so that
infu∈Udist (u, ∂Y ) > 0 while limt→∞ dist (π((u0

1, u
0
2), t), U) = 0 for all

(u0
1, u

0
2) ∈ X − S. (Again, we remind the reader that this definition of

permanence is shown in [14] to imply the one we state in this paper for
permanence of (1.1).) S corresponds to the set of solutions to (1.1) in
which at least one component vanishes identically. The single equation
models which consequently arise, namely,

(1.2)

⎧⎨
⎩
ut = µ∆u+ f(x, u)u in Ω × (0,∞),
Bu = 0 on ∂Ω × (0,∞),
u(x, 0) = u0(x)

have been considered in the context of population dynamics since the
classical papers of Skellam [29] in 1951 and Kierstead and Slobodkin
[24] in 1953 and subsequently widely studied. In particular, we note
the advances of Aronson and Weinberger [3], in which several forms for
the nonlinearity f were considered in the case of one space dimension,
and Hess (see [19] and references therein), in which f(x, 0) is allowed to
change signs as x varies through Ω. A rather complete analysis of (1.2)
suitable to our present needs is given in [8] in the case of Dirichlet
boundary data. In particular, under mild and biological reasonable
assumptions on the growth law f (namely, that the intrinsic growth
rate for u at low densities f(x, 0) be positive for at least some x ∈ Ω
and that u be subject to the self-regulatory condition f(x, u) decreasing
in u with f(x, u) < 0 for u ≤ M) there will be a critical value µ0 > 0
so that for all µ ∈ (0, µ0) there is a unique globally attracting positive



ECOLOGICAL MODELS 7

equilibrium ū = ū(µ) for (1.2). If µ ≥ µ0, all solutions to (1.2) decay to
0 as t → ∞. The critical value µ0 = 1/λ1(f(x, 0)), where λ1(f(x, 0))
denotes the unique positive eigenvalue for

(1.3)
{−∆w = λf(x, 0)w in Ω,
w = 0 on ∂Ω,

admitting a positive eigenvector. (In the case of Neumann boundary
data, there are analogous results. However, their formulation in this
setting is more complicated and there is to our knowledge no treatment
of them in the literature quite suitable to our needs. Consequently, we
include a brief treatment in the appendix of this paper, not only to
facilitate our study of systems in which a ui is subject to zero Neumann
boundary conditions, but also because the results are of independent
mathematical and biological interest.)

Now consider (1.1) and suppose that µ1 > 0 and µ2 > 0 are such that

(1.4)

⎧⎨
⎩
u1t = µ1∆u1 + f1(x, u1, 0)u1 in Ω × (0,∞),
B1u1 = 0 on ∂Ω × (0,∞),
u1(x, 0) = u0

1(x) ≥ 0 in Ω

and

(1.5)

⎧⎨
⎩
u2t = µ2∆u2 + f2(x, 0, u2)u2 in Ω × (0,∞),
B2u2 = 0 on ∂Ω × (0,∞),
u2(x, 0) = u0

2(x) ≥ 0 in Ω,

admit globally attracting positive equilibria ū1 and ū2, respectively.
We now have the following, the main result of our previous article [14].

Theorem 1.1. Suppose that µ1 > 0 and µ2 > 0 are as above, and
suppose in addition that f1(x, 0, 0) ≥ f1(x, 0, ū2(x)) for all x ∈ Ω. Let
σ1 and σ2 denote the unique eigenvalues, respectively, of

(1.6)
{
µ1∆ψ1 + f1(x, 0, ū2)ψ1 = σψ in Ω,
B1ψ1 = 0 on ∂Ω

and

(1.7)
{
µ2∆ψ2 + f2(x, ū1, 0)ψ2 = σψ2 in Ω,
B2ψ2 = 0 on ∂Ω
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admitting positive eigenvectors. Then (1.1) is permanent if σ1 > 0 and
σ2 > 0.

Now that the main result of [14] has been recalled, some clarification
and amplification are in order. First of all, for µ1 and µ2 to be as
in the statement of Theorem 1.1 requires µi < 1/λ1(fi(x, 0, 0)). The
conditions on fi for such to be the case when zero Neumann data is
imposed in the ith equation of (1.1) are detailed in Theorem A.1 of
the Appendix. Second, the extra condition f1(x, 0, 0) ≥ f1(x, 0, ū2) is a
weak formulation of a requirement that the u2 species have a detrimen-
tal effect upon the u1 species, as for example, would a competitor or a
predator. Third, the omega limit set ω(S) of S in this case consists of
the three equilibria {(ū1, 0), (0, ū2), (0, 0)}. Saying that σ1 > 0, for ex-
ample, gives an instability condition on the u1 component of a solution
pair at the equilibrium (0, ū2). It indicates growth in the u1 component,
forcing (u1, u2) away from S and into X −S when (u1(x, t), u2(x, t)) is
near (0, u2(x)) in Y for some value of t. Such a phenomenon is called
invasibility in the biological literature. It is widely believed that suc-
cess of invasion is a necessary and sufficient condition for persistence.
A case for this position is made in the context of systems such as (1.1)
in a nonrigorous way in [27]. Our theorem asserts that invasibility of
both species is sufficient to guarantee permanence in (1.1). Fourth, the
statement of the theorem presupposes fi(x, 0, 0) > 0 for some x ∈ Ω
and, as well, a self-regulatory mechanism on ui, i = 1, 2. We may al-
ter these requirements on u2 and maintain the validity of the result.
To do so, we assume f2(x, 0, v) ≤ 0 for any x ∈ Ω and v ≥ 0. In
this case, for any µ2 > 0, all positive solutions to (1.5) decay to 0 as
t→ ∞, and hence ω(S) = {(ū1, 0), (0, 0)}. Theorem 1.1 will still hold,
provided we understand ū2 ≡ 0 and that requiring σ2 > 0 in (1.7)
to be positive is the only constraint being placed upon µ2 > 0 (i.e.,
λ1(f2(x, 0, 0)) fails to exist in this situation and we make a convention
that 1/λ1(f2(x, 0, 0, 0)) = +∞). Finally, in the case of competition, an
alternate approach to uniform persistence or permanence, called com-
pressibility by Hess, is available. It is based upon monotone methods
which are not applicable for (1.1) in general. See, for example, [19] and
[13].
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2. Interpreting permanence in terms of the system param-
eters. Theorem 1.1 provides a means for establishing permanence in
(1.1) which is expressed in terms of the positivity of the eigenvalues σ
of (1.6) (1.7). Since positivity is the inequality “greater than zero,” the
criterion for permanence given in Theorem 1.1 is quantifiable and hence
theoretically measurable. The eigenvalues σ are not themselves original
parameters in the system (1.1). However, the coefficients in (1.6) (1.7)
are, and it is very useful to reformulate the requirement that the σ be
positive in such a way that the underlying relationships among the pa-
rameters of (1.1) that we require to assert permanence for (1.1) become
apparent. Consequently, we are then able to consider the impact of
spatial heterogeneity and/or habitat geometry upon permanence. We
illustrate with a reasonably simple Lotka-Volterra competition model
having spatial variation in some but not all of its coefficients. Models
of this type were recently employed by the first two co-authors in a
study [13] (based on the work of D.H. Janzen [22, 23]) of the effects of
diffusive interference from the outside upon a refuge. Our reformula-
tion of the criteria that σ1 > 0 and σ2 > 0 in (1.6) and (1.7) rests upon
the following result about inhomogeneous linear elliptic equations.

Lemma 2.1 (Positivity Lemma). Suppose m ∈ L∞(Ω) and
{x ∈ Ω : m(x) > 0} has positive measure. Consider the inhomogeneous
boundary value problem

(2.1)
{−∆u = λm(x)u+ h in Ω,
Bu = 0 on ∂Ω,

where h ∈ C(Ω) and Bu = u or Bu = ∂u/∂ν. Let λ1(m) be as in
(1.3). (In case Bu = ∂u/∂ν, assume in addition that

∫
Ω
m < 0, so that

λ1(m) exists.) Then the following hold:

(i) If λ ∈ (0, λ1(m)), (2.1) has a unique solution for all h ∈ C(Ω).
Moreover, if h ≥ 0 and h �≡ 0, u(x) > 0 on Ω when Bu = u and
u(x) > 0 on Ω when Bu = ∂u/∂ν.

(ii) If λ ≥ λ1(m) and h ≥ 0, (2.1) can have a positive solution u only
when λ = λ1(m) and h ≡ 0. In this case u is a positive eigenfunction
for {−∆z = λ1(m)mz in Ω,

Bz = 0 on ∂Ω.
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Remark. When m is continuous, Lemma 2.1 is a special case of the
results given in Propositions 2 and 3 of [20] in the case of homogeneous
Dirichlet boundary data. In the Neumann case, it is a special case of the
results given in Proposition 5 and 6 of [28]. If m ∈ L∞(Ω)\C(Ω),the
existence of λ1(m) follows from [25] in the Dirichlet case and from [7] in
the Neumann case. Once the existence of λ1(m) > 0 is guaranteed, the
arguments employed in [20] and [28] can be adapted to the situation
m ∈ L∞(Ω)\C(Ω) to obtain Lemma 2.1.

Consider

(2.2)

⎧⎪⎪⎨
⎪⎪⎩

ut = µ1∆u+ (m1(x) − u− cv)u
in Ω × (0,∞),

vt = µ2∆v + (m2(x) − eu− v)v
Bu = 0 = Bv on ∂Ω × (0,∞),

where Bφ = φ or Bφ = ∂φ/∂ν and c and e are positive constants.
Assume that mi ∈ C2(Ω) and mi(x0) > 0 for some x0 ∈ Ω for i = 1, 2.
If Bφ = ∂φ/∂ν, assume for the moment also that

∫
Ω
mi < 0 for i = 1, 2.

Suppose µi < 1/λ1(mi) for i = 1, 2, and let u∗, v∗ denote the unique
positive functions such that

(2.3)
{−µ1∆u∗ = (m1(x) − u∗)u∗ in Ω,
Bu∗ = 0 on ∂Ω

and

(2.4)
{−µ2∆v∗ = (m2(x) − v∗)v∗ in Ω,
Bv∗ = 0 on ∂Ω.

To achieve permanence for (2.2) via Theorem 1.1, we require that σ > 0
and γ > 0 in

(2.5)

⎧⎨
⎩
µ1∆p+ (m1(x) − cv∗)p = σp in Ω,
p > 0 in Ω,
Bp = 0 on ∂Ω

and

(2.6)

⎧⎨
⎩
µ2∆q + (m2(x) − eu∗)q = γq in Ω,
q > 0 in Ω,
Bq = 0 on ∂Ω.
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Observe that if c is such that m1(x) − cv∗ ≤ 0 on Ω, the maximum
principle implies that σ < 0 for any µ1 > 0. Likewise, ifm2(x)−eu∗ ≤ 0
on Ω, γ < 0 for any µ2 > 0. So we assume that the sets {x ∈
Ω : (m1 − cv∗)(x) > 0} and {x ∈ Ω : (m2 − eu∗)(x) > 0} have
positive Lebesgue measure. We know in this case that λ1(m1−cv∗) and
λ1(m2 − eu∗) exist as positive numbers. (If Bφ = ∂φ/∂ν,

∫
Ω
m1 < 0

and
∫
Ω
m2 < 0 guarantee that

∫
Ω
(m1 − cv∗) < 0 and

∫
Ω
(m2 − eu∗) < 0

since c, e > 0.) Moreover, m1 − cv∗ < m1 and m2 − eu∗ < m2 imply
that λ1(m1) < λ1(m1−cv∗) and λ1(m2) < λ1(m2−eu∗). We may now
establish the following.

Theorem 2.2. Consider (2.2). Assume mi ∈ C2(Ω) and mi(x0) > 0
for some x0 ∈ Ω for some i = 1, 2. (If Bφ = ∂φ/∂ν, assume in addition
that

∫
Ω
mi < 0 for i = 1, 2.) Suppose that µi < 1/λ1(mi) for i = 1, 2,

and let u∗(µ1), v∗(µ2) denote the unique positive solutions of (2.3) and
(2.4), respectively. Then permanence obtains in (2.2) provided that the
sets {x ∈ Ω : (m1−cv∗(µ2))(x) > 0} and {x ∈ Ω : (m2−eu∗(µ1))(x) >
0} have positive measure and provided that

(2.7) µ1 <
1

λ1(m1 − cv∗(µ2))

and

(2.8) µ2 <
1

λ1(m2 − eu∗(µ1))
.

Proof. The equation (2.5) can be written as

−∆p =
1
µ1

(m1 − cv∗(µ2))p− σ

µ1
p.

Letting 1/µ1 = λ, m = m1 − cv∗(µ2) and h = −(σ/µ1)p, (2.5) is now
of the form (2.1). It follows from Lemma 2.1 that σ > 0 if and only
if 1/µ1 > λ1(m1 − cv∗(µ2)) or, equivalently, µ1 < 1/λ1(m1 − cv∗(µ2)).
The argument may be duplicated for equation (2.6), and the result
follows from Theorem 1.1.

Remark. In the case of Dirichlet boundary conditions, if for i = 1, 2,
there are x0(i) ∈ ∂Ω and ε(i) > 0 so that for any δ > 0 the
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set {x ∈ Ω ∩ B(x0(i); δ) : mi(x) ≥ ε(i)} has positive measure,
then the sets {x ∈ Ω : (m1 − cv∗(µ2))(x) > 0} and {x ∈ Ω :
(m2 − eu∗(µ1))(x) > 0} have positive measure for any c, e > 0. In
the case of Neumann boundary conditions, u∗ and v∗ are positive on
Ω by the strong maximum principle, so there are c, ε > 0 so that
{x ∈ Ω : (m1 − cv∗(µ2))(x) > 0} and {x ∈ Ω : (m2 − eu∗(µ1))(x) > 0}
are of measure zero. But in either case, since v∗ ≤ supΩ(m2)+ and
u∗ ≤ supΩ(m1)+ by the maximum principle, the sets will have positive
measure for any µi < 1/λ1(mi) if c < supΩ(m1)+/ supΩ(m2)+ and
e < supΩ(m2)+/ supΩ(m1)+.

Now suppose that we consider (2.2) with Bφ = ∂φ/∂ν and with∫
Ω
mi > 0, i = 1, 2. Theorem A.1 guarantees that for any µ1 > 0 and

µ2 > 0 there are unique positive u∗ and v∗ satisfying (2.3) and (2.4),
respectively. Suppose now that c > 0 is such that

∫
Ω
(m1−cv∗(µ2)) > 0.

Let w > 0 satisfy

{
µ1∆w + (m1(x) − cv∗(µ2)(x) − w)w = 0 in Ω,
∂w/∂ν = 0 on ∂Ω

(w is guaranteed to exist by Theorem A.1). From (2.5), we have

µ1

(∫
Ω

p∆w −w∆p
)

+
∫

Ω

[(m1 − cv∗(µ2)−w)− (m1 − cv∗(µ2))]pw

= −σ
∫

Ω

pw

which implies ∫
Ω

pw2 = σ

∫
Ω

pw,

whence σ > 0. We may now give the following result.

Theorem 2.3. Consider (2.2) with Bφ = ∂φ/∂ν. Assume mi ∈
C2(Ω) and that

∫
Ω
mi > 0 for i = 1, 2. Suppose µi > 0 for i = 1, 2,

and let u∗(µ1), v∗(µ2) denote the unique positive solutions of (2.3) and
(2.4), respectively.

(i)
∫
Ω
(m1 − cv∗(µ2)) > 0 and

∫
Ω
(m2 − eu∗(µ1)) > 0 permanence

obtains in (2.2).
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(ii) If
∫
Ω
(m1 − cv∗(µ2)) < 0 and

∫
Ω
(m2 − eu∗(µ1)) < 0 permanence

obtains in (2.2) provided the sets {x ∈ Ω : (m1 − cv∗(µ2))(x) > 0} and
{x ∈ Ω : (m2 − eu∗(µ1))(x) > 0} have positive measure and provided
the inequalities (2.7) and (2.8) are simultaneously satisfied.

Remarks. (a) Theorem 2.3 (i) holds for any µ1 > 0, µ2 > 0 provided
for instance c <

∫
Ω
m1/(|Ω| supm2) and e <

∫
Ω
m2/(|Ω| supm1). (In

a spatially constant case, this is the same condition for persistence as
in the case of ordinary differential equations.) In this case permanence
holds in (2.2) for any µ1 > 0, µ2 > 0.

(b) The inequalities in Theorem 2.3 (i) can be nonstrict provided the
sets {x ∈ Ω : (m1−cv∗(µ2))(x) > 0} and {x ∈ Ω : (m2−eu∗(µ1))(x) >
0} have positive measure.

(c) Theorem 2.3 (ii) still obtains with
∫
Ω
mi = 0 provided {x ∈ Ω :

mi(x) > 0} has positive measure.

(d) There are natural modifications of Theorems 2.2 and 2.3 when∫
Ω
m1 ≥ 0 and

∫
Ω
m2 < 0 or when

∫
Ω
m1 < 0 and

∫
Ω
m2 ≥ 0. We shall

leave these to the reader.

(e) For both Theorem 2.2 and Theorem 2.3, it is apparent from
(2.7) and (2.8) that the spatial heterogeneity in (2.2) is a factor in
determining permanence. The reader should note also that λ1(m),
a quantity which occurs naturally and frequently in applications to
mathematical biology, see, for example, [6, 11, 12, 16], depends not
only on m but also on the geometry of Ω, so that habitat geometry is
being taken into account as well.

Observe now that if the coefficients m1(x), m2(x) and c, e are held
unchanged, it follows from the continuity of u∗ upon µ1, v∗ upon µ2

and λ1(m) upon m that the collection of ordered pairs (µ1, µ2) for
which (2.7) and (2.8) are simultaneously satisfied is an open subset of
the (µ1, µ2) plane R2. In applications, it frequently is of interest to
know or at least to approximate the locus in R2 of {(µ1, µ2): (2.7)
and (2.8) hold} and to track how the locus changes as some or all of
the remaining coefficients in (2.2), i.e., m1(x), m2(x), c or e, are varied.
For instance, consider our study [13] of the effect of outside interference
upon a refuge. Our approach was to consider the population dynamics
of two species that compete for resources. We assumed that inside a
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refuge each species had a growth rate that was spatially independent.
We assumed also that the refuge was buffered from a completely hostile
exterior by a surrounding region. We compared two situations: first,
the case in which neither species could increase in numbers in the buffer
zone, and second, the case in which one of the species could not increase
in numbers in the buffer zone while the other had a growth rate in the
buffer zone equal to its growth rate inside the refuge. The two situations
appear at least reasonable biologically when both species can thrive in
a pristine habitat but only one of them can increase in numbers in a
secondary habitat. Then the first case corresponds to a management
scheme of systematic clearing of the buffer zone surrounding the refuge,
while in the second, secondary habitat (such as say brush surrounding
a forest island) is essentially left alone. We employed (2.2) to model
the population dynamics of the two competing species on the region
Ω consisting of the refuge Ω1 and surrounding buffer zone Ω − Ω1,
subject to zero Dirichlet boundary data to reflect the hostile exterior
environment. In the case of a cleared buffer zone, we assumed that
m1(x) = r1χΩ1(x) and m2(x) = r2χΩ1(x), where ri is the growth rate
of the ith species in the refuge and χΩ1 is the characteristic function
of Ω1, i.e., χΩ1(x) = 1 if x ∈ Ω1 and 0 if x ∈ Ω − Ω1, whereas, if the
buffer zone is “left natural,” we assumed that m1 was as before but that
m2(x) ≡ r2 on Ω. (Notice that since χΩ1 is discontinuous along the
boundary of Ω1, the hypotheses of Theorem 2.2 are not met. However,
the result of Theorem 2.2 still obtains, as we demonstrated in [13]).
Indeed, in [13] we were able to estimate {(µ1, µ2) ∈ R2: (2.7) and
(2.8) hold} in both cases closely enough to conclude (by comparing the
estimates) that for all competition rates c, e below a computable value
there are open ranges in R2 of pairs of diffusion coefficients (µ1, µ2)
for which an analysis of the model in the first case predicts long-term
coexistence for both species; but for which the same analysis in the
second case predicts the extinction of the first species. Since the change
in the growth rate m2 in the buffer zone is the only difference in the
model from the first case to the second, the change in prediction can be
attributed to the second species gaining a competitive advantage in the
buffer zone which becomes a competitive advantage inside the refuge
due to diffusion from the buffer zone into the refuge. Of course, these
are only theoretical models, but they do support Janzen’s assertion [22,
23] that the first management scheme, i.e., clearing the buffer zone, can
sometimes be the more desirable.
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The preceding discussion provides evidence of the utility of mathe-
matical analysis of the relationships among the coefficients of (1.1) that
are employed to assert permanence and also of the utility of allowing
spatial heterogeneity in such models. It should also indicate that the
more specific information available about the coefficients, the better
the estimates of parameter ranges guaranteeing permanence and the
more applicable the results. But, on the other hand, what kind of
observations can be made in general? Consider (2.7) and (2.8) again.
Suppose, for instance, that the competition coefficient c is increased.
Notice that v∗(µ2) arises from equation (2.4) which is independent of c.
So increasing c increases cv∗(µ2) and hence decreases m1(x)− cv∗(µ2).
Decreasing m1(x)− cv∗(µ2) in turn increases λ1(m1(x)− cv∗(µ2)) and
hence decreases 1/λ1(m1(x)− cv∗(µ2)). Consequently, (2.7) becomes a
more stringent requirement upon the diffusion coefficient µ1, and the
collection of ordered pairs (µ1, µ2) so that permanence is guaranteed
by Theorem 2.2 is reduced, which of course agrees with one’s natural
intuition.

In addition to observations regarding the change in size of the set
{(µ1, µ2) : (2.7) and (2.8) hold} due to monotonic changes in the
coefficients of (2.2), we may also give in general information regarding
the spatial location of the set. To illustrate, assume additionally when
Bu = u that for i = 1, 2 {x ∈ Ω : mi(x) ≤ 0} has positive measure.
The maximum principle guarantees that for any µi < (1/λ1(mi)),
u∗(µ1) ≤ ||(m1)+||∞ and v∗(µ2) ≤ ||(m2)+||∞. Consequently, if
c < (

∫
Ω
(m1)+/|Ω|)(1/||(m2)+||∞), m1(x) − cv∗(µ2)(x) ≥ m1(x) −∫

Ω
(m1)+/|Ω| > 0 for x in a set of positive measure since

∫
Ω
(m1)+/|Ω| ≤

||(m1)+||∞|Ω′|/|Ω| < ||(m1)+||∞ where Ω′ = {x ∈ Ω : m1(x) > 0}.
Hence, λ1(m1 − cv∗(µ2)) ≤ λ1(m1 −

∫
Ω
(m1)+/|Ω|), or equivalently,

1
λ1(m1 −

∫
Ω
(m1)+/|Ω|) ≤ 1

λ1(m1 − cv∗(µ2))
.

It follows that if c < (
∫
Ω
(m1)+/|Ω|)(1/||(m2)+||∞) and

µ2 <
λ1(m1)
λ1(m2)

1
λ1(m1 −

∫
Ω
(m1)+/|Ω|)

(< (1/λ1(m2)) since m1 −
∫
Ω
(m1)+/|Ω| < m1), (λ1(m2)/λ1(m1))µ2 <

1/(λ1(m1−cv∗(µ2))). Consequently, if c < (
∫
Ω
(m1)+/|Ω|)(1/||(m2)+||∞)
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and

µ2 <
λ1(m1)
λ1(m2)

1
λ1(m1 −

∫
Ω
(m1)+/|Ω|)

and µ1 ≤ (λ1(m2)/λ1(m1))µ2, then (µ1, µ2) satisfies (2.7), or put an-
other way, the boundary curve of the region in (µ1, µ2)-space described
by (2.7), namely,

(2.9) µ1 =
1

λ− 1(m1 − cv∗(µ2))
,

lies to the right of the line µ2 = (λ1(m1)/λ1(m2))µ1. Similarly, if
e < (

∫
Ω
(m2)+/|Ω|)(1/||(m1)+||∞) and

µ1 <
λ1(m2)
λ1(m1)

1
λ1(m2 −

∫
Ω
(m2)+/|Ω|) ,

(
again

λ(m2)
λ1(m1)

1
λ1(m2 −

∫
Ω
(m2)+/|Ω|) <

1
λ1(m1)

)
,

then (λ1(m1)/λ1(m2))µ1 < 1/(λ1(m2 − eu∗(µ1)). Hence, if e <
(
∫
Ω
(m2)+/|Ω|)(1/||(m1)+||∞) and

µ1 <
λ1(m2)
λ1(m1)

1
λ1(m2 −

∫
Ω
(m2)+/|Ω|) ,

the boundary curve to the region described by (2.8),

(2.10) µ2 =
1

λ1(m2 − eu∗(µ1))

lies above the line µ2 = (λ1(m1)/λ1(m2))µ1. Thus the line µ2 =
(λ1(m1)/λ1(m2))µ1 connecting the origin in (µ1, µ2) parameter space
to the “critical” point (1/λ1(m1), 1/λ1(m2)) separates (2.9) and (2.10)
when

c<

∫
Ω
(m1)+
|Ω|

1
||(m2)+||∞ , e<

∫
Ω
(m2)+
|Ω|

1
||(m1)+||∞ ,

µ1 <
λ1(m2)
λ1(m1)

1
λ1(m2 −

∫
Ω
(m2)+/|Ω|) ,
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1

µ2 =
_____________
λ1(m2-eu*(µ1))

1

_____________
λ1(m1-cv*(µ2))

µ2 =
1

                    
λ1(m2)____________________________ ______

λ1(m1)                        ____λ1(m1)λ1(m2-  
 | Ω |                  )∫Ω (m2)+

1

                        ____λ1(m2)λ1(m1-  
 | Ω |                  )∫Ω (m1)+

____________________________

1

                    
λ1(m1)

______
λ1(m2)

1

µ1

µ2

FIGURE 2.1. Permanence in (2.2) is guaranteed in the shaded region under

the hypotheses of Theorem 2.1 when c <
∫
Ω

(m1)+/(|Ω| ||(m2)+||∞) and

e <
∫
Ω

(m2)+/(|Ω| ||(m1)+||∞).

µ2 <
λ1(m1)
λ1(m2)

1
λ1(m1 −

∫
Ω
(m1)+/|Ω| .

Permanence for (2.2) obtains for (µ1, µ2) lying between these two
curves, as indicated in Figure 2.1.

3. Examples: explicit and approximate criteria for per-
manence. In the previous section we noted how conditions such as
(2.7) (2.8) show the interplay among diffusion, spatial heterogeneity,
species interaction and habitat geometry that will guarantee perma-
nence in (1.1). We described in detail the significance in a problem of
genuine applied interest of analyzing mathematically such conditions,
and also observed how to think of (2.7) (2.8) as relations between dif-
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fusion coefficients which depend on the remaining parameters in the
problem. We made some observations in general regarding the locus of
the set of pairs of diffusion coefficients satisfying (2.7) (2.8) and its de-
pendence on the remaining coefficients. Of course, condition (2.7) (2.8)
is in general quite difficult to analyze mathematically. There are cer-
tain rather significant reasons why. First of all, understanding how the
quantity λ1(m) (which appears in both (2.7) and (2.8)) varies as m(x)
varies in a nonmonotonic fashion is a challenging mathematical problem
of current research interest. There are some results on the problem in
[8, 10], but nothing approaching a complete understanding. Moreover,
expressions such as λ1(m1−cv∗), even when m1 is known, have as part
of their arguments solutions to nonlinear differential equations which
are usually not known explicitly. Consequently, one is led to numerical
approximation in order to study conditions such as (2.7) (2.8). Fortu-
nately, the numerical approximations are of a rather standard nature
involving a linear problem for which fairly straightforward techniques
are available. Nevertheless, there are some examples which can be re-
solved explicitly. Such examples serve to aid biological intuition and
perhaps suggest approaches toward the analysis of conditions such as
(2.7) (2.8) in general. For instance, consider a predator-prey problem
of Lotka-Volterra type, the governing equations being of the form

∂u/∂t = µ∆u+ u[a− bu− cv] in Ω × (0,∞)(3.1)

∂v/∂t = β∆v + v[−d+ eu− fv] in Ω × (0,∞)(3.2)

with boundary conditions

(3.3) ∂u/∂ν = 0, v = 0 on ∂Ω × (0,∞).

Consequently, there is no prey migration across the boundary, but the
predator can “leak” since the boundary is assumed lethal to it. Notice
that if a and b are constants, the prey has positive equilibrium u∗ ≡ a/b
in the absence of the predator.

Example 3.1. Suppose that the coefficients a, b, c, d, e are strictly
positive constants and that f ≥ 0. Since u satisfies a zero Neumann
condition, in the absence of its predator all solutions (not identically
zero) approach u∗ = a/b, the carrying capacity of the prey. However,
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the zero Dirichlet condition on v means that it is to be expected from
a biological point of view that, for a given area A of Ω, permanence
is more likely for small values of the perimeter l of Ω, since then the
predator leakage is reduced. We can test the actual strength of this
effect by taking Ω to be a rectangle with sides r, s. (Strictly speaking,
the boundary should be smooth, but clearly by “rounding” its corners
our results hold to a very good approximation).

It is easy to see that the principal eigenvalue λ1 of −∆ on Ω subject
to zero Dirichlet conditions is given by

λ1 = π2

(
1
r2

+
1
s2

)
=

π2

4A2
(l2 − 8A).

Of course, the eigenvalues of the Laplacian on various domains have
been studied extensively, see [4, 28] for example, and these are known
in several cases, and in many other examples good approximate meth-
ods are available for finding them. From Theorem 1.1, permanence
holds if (−d + u∗e)/β > λ1. (The principle eigenvalue for (3.1) lin-
earized at (0,0) is clearly a > 0.) This condition is thus

(3.4) u∗e > d+ βπ2(l2 − 8A)/4A2.

Such confirms the argument above, and shows that the perimeter is
indeed a strong factor, appearing quadratically in (3.4) in determining
permanence.

Notice also that, as the diffusion rate β in (3.2) tends to 0, the
condition for permanence in (3.1) (3.3) tends to

(3.5) u∗e > d,

which is the criterion for permanence in the constant coefficient system
of ordinary differential equations

(3.6)
du

dt
= u[a− bu− cv],

dv

dt
= v[−d+ eu− fv].

In general it is a very difficult problem to assert that dynamics of a
system such as (3.1) (3.3), which necessarily take place in an infinite
dimensional space, approximate the dynamics of the corresponding
system (3.6) of ordinary differential equations as µ → 0 and β → 0,
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since the perturbation is singular. However, permanence techniques
do allow us to assert that the relationship (3.4) among the parameters
a, b, d and e that guarantees coexistence in (3.1) (3.3) does approximate
the relationship among the parameters that guarantees coexistence in
the limiting system (3.6). This phenomenon is yet a further indication
of the benefits of the permanence concept. We ask for less than a
complete analysis of the dynamics of (3.1) (3.3) but derive enough
information nevertheless to make biologically meaningful comparisons
with (3.6) as µ→ 0 and β → 0.

Example 3.2. The object of this example is to show that in some
cases, even with coefficients varying with position, the permanence
question is tractable in terms of well-known special functions. Consider
(3.1) (3.3), but now with Ω = (−1, 1). The assumptions on the
coefficients are as in Example 3.1 except that e, which governs the
utilization of prey by the predator, is allowed to vary spatially, with

e(x) = γ − δx2

with γ, δ constants satisfying γ > δ > 0.

The equation for the prey in the absence of the predator still has
u∗ = a/b as its stable positive equilibrium. To apply Theorem 1.1
again, we must examine the value of σ such that the equation

(3.7) βv′′ + [−d+ (γ − δx2)u∗]v = σv

has a solution which is a positive on (−1, 1) and satisfies v(−1) = 0 =
v(1). Permanence will hold if σ > 0. The change of variable x = αy
with α4 = β/4δu∗ reduces (3.7) to the form

(3.8)
d2v

dy2
−

[
g +

1
4
y2

]
v = 0

where g = −α2(γu∗−d−σ)/β = −(γu∗−d−σ)/(4γδu∗)1/2. Now (3.8)
is the equation for parabolic cylinder functions, and from [1, Section
19], the even solution of (3.7) is

e−x2/4α2
M

(
1
2
g +

1
4
,
1
2
,
x2

2α2

)
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where M is a confluent hypergeometric function. There are tables
available [1, Table 13.1] which enable us to determine the parameters g
and α so that M((1/2)g + 1/4, 1/2, x2/(2α2)) will be zero for the first
time at x = 1. Then the definitions of g and α may be employed to
express the condition σ > 0 in terms of the original parameters of the
system a, b, β, d, γ, and δ. Consequently, the permanence question can
be completely resolved in this case.

There are other possibilities of this nature. For example, if e(x) =
γ − δ cosx, the eigenvalue problem will involve Mathieu functions, a
well-known class with documented properties. See [1, Section 20] for
further details.

A rather different line of inquiry is suggested by again taking zero
Neumann conditions on the prey but now assuming that a = a(x) is
spatially dependent, and assuming that µ is very large (which is possible
whenever a(x) in (3.1) is such that

∫
Ω
a ≥ 0). It is reasonable to expect

in the case of µ large that u∗(µ) is approximately a constant (even
though the prey equation is spatially dependent), and hence examples
akin to those above are possible. We will not pursue this line of inquiry
further, other than to verify that u∗(µ) is approximately constant as
µ→ +∞. Since this result is largely technical, we present it as Theorem
A.2 in the Appendix.

4. Conditions for permanence when diffusion rates are
small. As a final example, we observe some approximate conditions for
permanence in the case of diffusive competitive Lotka-Volterra systems
with small diffusion rates. First notice that our results for (2.2) can
readily be extended to systems of the form

(4.1){
u1t = µ1∆u1 + (m1(x) − b11(x)u1 − b12(x)u2)u1 in Ω × (0,∞)
u2t = µ2∆u2 + (m2(x) − b21(x)u1 − b22(x)u2)u2 in Ω × (0,∞)

(4.2) Bui = 0 on ∂Ω × (0,∞),

i = 1, 2, where Bφ = φ or Bφ = ∂φ/∂ν and bij is smooth and of one
sign on Ω. For the sake of specificity, we shall assume mi and bij are
positive and smooth on Ω, i = 1, 2, so that we consider a competitive
system, and also that Bφ = φ.
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When µi < 1/λ1(mi), there are steady-state solutions (ū1, 0) and
(0, ū2), where ūi is the positive, globally attracting equilibrium for

(4.3)
{
uit = µi∆ui + (mi(x) − bii(x)ui)ui in Ω × (0,∞)
ui = 0 on ∂Ω × (0,∞).

The conditions (1.6) (1.7) for permanence become that σi > 0 in

(4.4)

⎧⎨
⎩
µi∆ψi + [mi(x) − bij(x)ūj ]ψi = σiψi in Ω,
ψi = 0 on ∂Ω,
ψi > 0 in Ω,

where i, j = 1, 2 and i �= j. Since

µi∆ūi + [mi(x) − bii(x)ūi]ūi = 0,

an integration by parts argument shows that

(4.5)
∫

Ω

(biiūi − bij ūj)ūiψi = σi

∫
Ω

ūiψi.

It is evident that the condition

(4.6) biiūi − bij ūj > 0 in Ω

guarantees that σi > 0 and that permanence obtains in (4.1) (4.2).
Since there is a positive number kij (depending on µi and µj) so that
ūi > kij ūj , the condition biikij − bij > 0 is sufficient to guarantee
permanence. Qualitatively, the condition is that the interaction terms
bij not be too large compared to the self-regulation terms bii. Such
is similar to the analysis at the end of Section 2. Moreover, since kij

depends on µi and µj , the condition is also somewhat implicit if we
only require that µi < 1/λ1(mi).

A slightly weaker condition than (4.6) for permanence is that

(4.7)
∫

Ω

(biiūi − bij ūj)ū2
i > 0,
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i = 1, 2, i �= j. To see that such is the case, we note that an implicit
function theorem argument along the lines of the one used in [11]
guarantees that the solution ψi(s) and eigenvalue αi(s) for

(4.8)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

µi∆ψi(s) + [mi − (1 − s)biiūi − sbij ūj ]ψi(s) = αi(s)ψi(s) in Ω,
ψi > 0 in Ω,
ψi = 0 on ∂Ω,∫
Ω
ψ2

i (s) = 1,

depend differentiably on s ∈ [0, 1]. Note that ψi(0) = ūi/||ūi||L2(Ω) and
αi(0) = 0. If we differentiate (4.8) with respect to s, it is not difficult
to see that ψ′

i = ψ′
i(s) and α′

i = α′
i(s) satisfy

(4.9)⎧⎨
⎩
µi∆ψ′

i + [mi − (1 − s)biiūi − sbij ūj ]ψ′
i + (biiūi − bij ūj)ψi

= αiψ
′
i + α′

iψi in Ω,
ψ′

i = 0 on ∂Ω.

Multiplying (4.9) by ψi and integrating by parts yields

(4.10) α′
i = α′

i

∫
Ω

ψ2
i =

∫
Ω

(biiūi − bij ūj)ψ2
i .

Notice now that (4.8) can be written

(4.11) µi∆ψi + (mi − biiūi)ψi + s(biiūi − bij ūj)ψi = αiψi

in Ω. Since ūi > 0 and µi∆ūi + (mi − biiui)ūi ≡ 0, the variational
characterization of eigenvalues implies that

(4.12) inf
φ∈W 1,2

0 (Ω)
φ �≡0

{∫
Ω
µi|∇φ|2 − (mi − biiūi)φ2∫

Ω
φ2

}
= 0.

Multiplying (4.11) by −ψi, integrating by parts and applying (4.12),
we find that

−s
∫

Ω

(biiūi − bij ūj)ψ2
i ≤ −αi

∫
Ω

ψ2
i = −αi.
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Hence, from (4.10), we have

(4.13) α′
i(s) ≥

αi(s)
s

for s ∈ (0, 1]. From (4.10), α′
i(0) =

∫
Ω
(biiūi − bij ūj)ū2

i /||ūi||2L2(Ω) and
α′

i(0) > 0 if
∫
Ω
(biiūi − bij ūj)ū2

i > 0. Since αi(0) = 0, αi(s) is positive
for s > 0 and sufficiently small. From (4.13), it follows that αi(s)
remains positive as s increases. In particular, αi = αi(1) > 0, and
the condition

∫
Ω
(biiūi − bij ūj)ū2

i > 0, i = 1, 2, j �= i, guarantees
permanence in (4.1) (4.2), as asserted.

Let us now examine (4.7) under the assumption µi � 1. To this end,
consider

(4.14) ε2µ̄i∆ūi(ε) + [mi(x) − bii(x)ūi(ε)]ūi(ε) = 0

and

(4.15) ε2µ̄i∆ψi(ε) + [mi(x) − bij ūj(ε)]ψi(ε) = σi(ε)ψi(ε)

with the same conditions on ūi and ψi as before and µ̄i > 0 fixed.
Suppose that ū1(ε) and ū2(ε) converge to ū1(0) and ū2(0), respectively,
in Lp(Ω) for any p < ∞ as ε → 0. Since σi(ε) > 0 if

∫
Ω
(biiūi(ε) −

bij ūj(ε))ū2
i (ε) > 0, we obtain permanence for ε > 0 small provided

(4.16)
∫

Ω

(biiūi(0) − bij ūj(0))ū2
i (0) > 0,

i = 1, 2, i �= j. We establish that ūi(ε) converges in Lp for any p < ∞
via an analysis based on the following singular perturbation result, due
to DeSanti [17].

Theorem 4.1 [17, p. 313]. Suppose that Ω ⊆ Rm is a bounded
domain so that ∂Ω = F−1({0}), where F ∈ C2(Rm) and ∇F �= 0 on
∂Ω. Let h(x,w) ∈ C2(Ω × R), and suppose that

V (x,w) =
∫ w

0

h(x, s) ds

satisfies the following.
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(i) There exists g(x) ∈ C2(Ω) such that Vw(x, g(x)) ≡ h(x, g(x)) = 0
for x ∈ Ω.

(ii) Vww(x, g(x)) = hw(x, g(x)) > K for some K > 0 and all x ∈ Ω.

(iii) [V (x,w) − V (x, g(x))][f(x) − g(x)] > 0 for x ∈ ∂Ω and
w ∈ (g(x), f(x)] or [f(x), g(x)).

Then for ε > 0 and sufficiently small
{
ε2∆w = h(x,w) in Ω,
w = f(x) on ∂Ω,

admits a solution w which converges uniformly to g(x) as ε → 0 on
each closed subset of Ω.

To apply Theorem 4.1, consider the problem

(4.17)
{
ε2∆w = (−mi(x)w − biiw

2)/µ̄i on Ω,
w = 0 on ∂Ω.

We know that −ūi(ε) is the unique negative solution to (4.17) for ε suffi-
ciently small. As a consequence, we may choose V = (−(mi(x)w2/2)−
(bii(x)w3/3))/µ̄i, f(x) = 0 and g(x) = −mi(x)/bii(x) to conclude that
ūi(ε) converges to mi(x)/bii(x) uniformly on compact subsets of Ω as
ε→ 0. For details, see [8, Section 4]. We note here only that the argu-
ments employed there are local in that they focus on arbitrarily small
subdomains Ω′ of Ω having the property that Ω

′ ⊂ Ω. For this reason,
the proofs in [8, Section 4] can be adapted to the case of homogeneous
Neumann boundary data on Ω, and we could have just as easily chosen
Bφ = ∂φ/∂ν in (4.2). Consequently, since ūi(ε) ≤ supx∈Ω(mi/bii)(x)
for all ε > 0, ūi(ε) → mi/bii in Lp(Ω) for any p <∞ as ε→ 0, and we
obtain permanence for ε > 0 sufficiently small if (4.16) obtains. Since
now (4.16) becomes

(4.18)
∫

Ω

(
mi − bijmj

bjj

)(
mi

bii

)2

> 0

for i, j = 1, 2, i �= j, we have the following result.

Theorem 4.2. Consider (4.1) (4.2), assume that all coefficients are
smooth and positive and that Bφ = φ. Then for any fixed (µ̄1, µ̄2)
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m1
m2

Ω Ω

FIGURE 4.1. Profiles of growth rates for which permanence obtains in
(4.1) (4.2) for small diffusion rates under the assumption that bij ≡ 1 (strong

competition).

with µ̄1 > 0, µ̄2 > 0, permanence obtains in (4.1) (4.2) for (µ1, µ2) =
(ε2µ̄1, ε

2µ̄2) for ε sufficiently small provided (4.18) holds.

It is clear that (4.18) holds whenever bij , i �= j, is relatively small.
It will also obtain even if bij , i �= j, is large provided that mi is large
where mj is small, and vice versa. For instance, suppose that bij ≡ 1
for i, j = 1, 2. (Under these assumptions in a spatially homogeneous
case, ui will exclude uj if mi > mj ; if mi = mj , coexistence is possible.)
Then (4.18) reduces to

(4.19)
∫

Ω

(m1 −m2)m2
1 > 0

and

(4.20)
∫

Ω

(m2 −m1)m2
2 > 0.

Suppose m1 and m2 are as in Figure 4.1. Then m2
1 is large when

m1 − m2 > 0 and small when m1 − m2 < 0, and similarly, m2
2 is

large when m2 − m1 > 0 and small when m2 − m1 < 0. Thus, we
can expect (4.18) to hold even under severe competition, provided it
occurs only in small geographical regions attractive to each species in
the absence of the other. Such a condition complements the usual one
that competition is weak but may be universal.
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Appendix

Theorem A.1. Suppose that f(x, u) is Lipschitz in x on Ω and
continuously differentiable in u with ∂f/∂u < 0 for u > 0, f(x, u) ≤ 0
for all x ∈ Ω and u ≥ l, where l is a positive constant, and f(x0, 0) > 0
for some x0 ∈ Ω. Consider the eigenvalue problem

(∗)
{−∆φ = λf(x, 0)φ in Ω,
∂φ/∂ν = 0 on ∂Ω.

If
∫
Ω
f(x, 0) dx < 0, let λ1(f(x, 0)) be the principal positive eigenvalue

of (∗), and if
∫
Ω
f(x, 0) dx ≥ 0, set λ1(f(x, 0)) = 0. Then the problem

(∗∗)
{
ut = µ∆u+ f(x, u)u in Ω × (0,∞),
∂u/∂ν = 0 on ∂Ω × (0,∞)

has a unique positive steady-state ū which is a global attractor for
nonnegative nontrivial solutions when 0 < µ < 1/λ1(f(x, 0)). When
µ ≥ 1/λ1(f(x, 0)), there is no positive steady-state for (∗∗), and all
nonnegative solutions to (∗∗) decay to 0 as t→ ∞.

Remarks. (i) When
∫
Ω
f(x, 0) dx ≥ 0 and λ1(f(x, 0))=0, 1/λ1(f(x, 0))

is to be interpreted as +∞.

(ii) The self-regulation hypotheses of Theorem A.1 make it essential
that f(x, 0) be positive somewhere in Ω. If not, f(x, u) < 0 for u ≥ 0
and all x ∈ Ω, and hence all solutions to (∗∗) decay to 0 as t→ ∞.

(iii) It is reasonable to view
∫
Ω
f(x, 0) dx/|Ω| as a measure of average

environmental quality, where |Ω| denotes the Lebesgue measure of Ω.
Theorem A.1 can be understood to say that when the boundary of the
habitat acts as a barrier, the average environmental quality needs to be
negative in order for the diffusion rate of the population to affect long-
term survival of the population. This contrasts with the Dirichlet case,
where the diffusion rate always plays a role in the long-term survival
of the population.

(iv) Theorem A.1 is an analogue for the case of zero Neumann
boundary data to the results of Section 2 of [8]. Our proof of Theorem
A.1 is divided into two cases, depending on whether

∫
Ω
f(x, 0) dx < 0 or∫

Ω
f(x, 0) dx ≥ 0. We treat the former case first and make an argument
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based on the implicit function theorem and the well-known result of
Crandall and Rabinowitz on bifurcation from simple eigenvalues [15,
Theorem 1.7], which was employed in a similar context in [9]. When∫
Ω
f(x, 0) dx ≥ 0, we use the results for the case where

∫
Ω
f(x, 0) dx < 0

along with the method of upper and lower solutions. In the former
case, the proof that all nonnegative solutions to (∗∗) decay to 0 when
µ ≥ 1/λ1(f(x, 0)) is the same as that of [8, Theorem 4.9], so we do not
repeat the argument here.

Proof. Consider

(A1)
{
∂u/∂t = µ∆u+ f(x, 0)u+ f̃(x, u)u in Ω × (0,∞),
∂u/∂ν = 0 on ∂Ω × (0,∞),

where f̃(x, u) = f(x, u) − f(x, 0), and the corresponding elliptic prob-
lem

(A2)
{−µ∆u = [f(x, 0) + f̃(x, u)]u in Ω,
∂u/∂ν = 0 on ∂Ω.

Suppose first that
∫
Ω
f(x, 0) dx < 0. Then the linear problem

(A3)
{−∆z = λf(x, 0)z in Ω,
∂z/∂ν = 0 on ∂Ω,

has a unique positive eigenvalue λ1 = λ1(f(x, 0)) admitting a positive
eigenfunction [7]. Let p > N , where Ω ⊆ RN , and let V = {w ∈
W 2,p(Ω) : ∂w/∂ν = 0 on ∂Ω}, where W 2,p(Ω) is the Sobolev space of
twice weakly differentiable functions on Ω having the property that the
function and its weak derivatives lie in Lp(Ω). W 2,p(Ω) is a Banach
algebra (see [2]) and V is a closed subspace. Define F : V ×R → Lp(Ω)
by

F (u, λ) = −∆u− λ(f(x, 0) + f̃(x, u))u.

Then F (u, λ) = 0 for λ > 0 is equivalent to u being a solution to (A2)
for µ = 1/λ. DuF (u, λ)w = −∆w − λ(f(x, 0)w + (∂f̃/∂u)(x, u)uw +
f̃(x, u)w). In particular, DuF (0, λ)w = −∆w− λf(x, 0)w, a Fredholm
operator of index 0 from V to Lp(Ω). Since F (0, λ) = 0 for all λ and
λ1 is a simple eigenvalue of (A3), the Crandall-Rabinowitz bifurcation
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theorem [15] implies that there will be a branch of positive solutions to
(A2) emanating from (0, 1/λ1) provided DλuF (0, λ1)z0 /∈ R(Fu(0, λ1))
where z0 solves (A3) with ||z0||W 2,p(Ω) = 1. Moreover, in this case,
the limit of u/||u||W 2,p(Ω) along such a branch as ||u||W 2,p(Ω) → 0
is z0. To verify that DλuF (0, λ1)z0 /∈ R(Fu(0, λ1)), observe that
DλuF (0, λ)φ = −f(x, 0)φ. If −∆w − λ1f(x, 0)w = −f(x, 0)z0 in Ω
with ∂w/∂ν = 0 on ∂Ω, an application of integration by parts via
the divergence theorem yields that

∫
Ω
f(x, 0)z2

0 = 0. However, in the
proof of the existence of λ1 [7] it is shown that

∫
Ω
f(x, 0)z2

0 > 0. As
a consequence, DλuF (0, λ1)z0 /∈ R(Fu(0, λ1)), and there is a branch of
positive solutions to (A2) emanating from (0, 1/λ1), as asserted.

Next observe that if u > 0 solves (A2) for some µ > 0, then
F (u, 1/µ) = 0 and 1/µ = λ1(f(x, 0) + f̃(x, u)). But since u >
0, f̃(x, u) < 0. We know from [28] that λ1(m) decreases as m
increases. Hence, λ1(f(x, 0) + f̃(x, u)) > λ1(f(x, 0)). Therefore,
µ < 1/λ1(f(x, 0)), and we conclude that there can be no positive
steady-state for (A1) when µ ≥ 1/λ1(f(x, 0)).

Consider now the eigenvalue problem obtained from the linearization
about a positive solution u of F (u, λ̄) = 0 for some λ̄ > 0:

{−∆z − λ̄(f(x, 0)z + (∂f̃/∂u)(x, u)uz + f̃(x, u)z) = αz in Ω,
∂z/∂ν = 0 on ∂Ω.

Since F (u, λ̄) = 0, y = u and γ = 0 are eigenfunction and eigenvalue,
respectively, for

{−∆y − λ̄(f(x, 0)y + f̃(x, u)y) = γy in Ω
∂y/∂ν = 0 on ∂Ω;

since −λ̄(∂f̃/∂u)(x, u)u > 0, it follows from a comparison argument
that α > 0. Consequently, u is locally asymptotically stable as a
solution to (A1) for µ = 1/λ̄, and moreover, the implicit function
theorem guarantees the continuability of positive solutions to F (u, λ) =
0 in a neighborhood (λ̄ − δ, λ̄ + δ) for some δ > 0. Since ||u||∞ ≤ l
for any positive solution of F (u, λ) = 0 corresponding to a λ > 0, and
since for such a solution

u = (−∆ + 1)−1(λf(x, u) + 1)u,
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the positive solutions to F (u, λ) = 0 are uniformly bounded in W 2,p(Ω)
(hence precompact in Lp(Ω)) for λ contained in bounded intervals.
It follows that there are nonnegative solutions to F (u, λ) = 0 when
λ = λ̄ − δ and λ = λ̄ + δ. So the branch of solutions to (A2) which
emanates from (0, 1/λ1) is an arc (in terms of µ) and must continue for
all µ < 1/λ1. Moreover, since the Crandall-Rabinowitz theorem [15]
guarantees the uniqueness of the branch in a neighborhood of (0, 1/λ1),
the uniqueness argument employed in [9] is applicable here, and there
is in fact a unique arc of positive solutions to (A2) for 0 < µ < 1/λ1.
Finally, that each of these solutions is a global attractor for nonnegative
nontrivial solutions of (A1) follows from dynamical system principles.

Suppose now that
∫
Ω
f(x, 0) dx ≥ 0. Then there is no positive

eigenvalue for (A3) admitting a positive eigenfunction. Consequently,
the bifurcation theoretic arguments employed to establish existence and
uniqueness of the positive solutions to (A2) when

∫
Ω
f(x, 0) dx < 0 are

no longer available. We replace these arguments with ones based on the
method of upper and lower solutions. Once we obtain existence and
uniqueness of the positive solutions to (A2), the stability properties
asserted for these solutions follow as in the case

∫
Ω
f(x, 0) dx < 0.

So now let λ̄ > 0 be fixed. Let Ω′ ⊂⊂ Ω be an open ball in Ω so that
the Lebesgue measures of {x ∈ Ω′ : f(x, 0) > 0} and Ω−Ω′ are positive.
As ε increases beyond

∫
Ω
f(x, 0) dx/|Ω−Ω′|, ∫

Ω
(f(x, 0)−εχΩ−Ω′(x)) dx

becomes negative while f(x, 0) − εχΩ−Ω′(x) > 0 in Ω′. Hence,

{−∆z = λ(f(x, 0) − εχΩ−Ω′(x))z in Ω,
∂z/∂ν = 0 on ∂Ω

admits a positive principal eigenvalue λ1 = λ1(ε), and consequently,

(A4)
{−∆w = λ(f(x, 0) − εχΩ−Ω′(x) + f̃(x,w))w in Ω,
∂w/∂ν = 0 on ∂Ω

admits a unique positive solution for λ > λ1(ε). (The argument in
the preceding case remains valid even though f(x, 0) − εχΩ−Ω′(x) is
discontinuous.) Moreover, as ε → ∫

Ω
f(x, 0) dx/|Ω − Ω′|, λ1(ε) → 0,

so that we can choose ε >
∫
Ω
f(x, 0) dx/|Ω − Ω′| with λ1(ε) < λ̄. So

(A4) admits a unique positive solution wλ̄ when λ = λ̄. Notice that if
α ∈ (0, 1), αwλ̄ < wλ̄, and thus f̃(x, αwλ̄) > f̃(x,wλ̄). Hence αwλ̄ is a
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lower solution for

(A5)
{−∆u = λ̄(f(x, 0) + f̃(x, u))u in Ω,
∂u/∂ν = 0 on ∂Ω.

Any sufficiently large constant is an upper solution. Since (−∆+C)−1

is realized as integration against a positive kernel (the Green’s function)
for any C > 0 and f(x, 0) ∈ L∞(Ω), the method of upper and lower
solutions guarantees the existence of u > 0 so that F (u, λ̄) = 0.
Moreover, since there is no bifurcation from the zero solution at λ̄
and αwλ̄ is a lower solution to (A5) for any α ∈ (0, 1), there is a
minimal positive solution u1 to (A5). If u2 > u1 is another solution of
F (u, λ̄) = 0,

−∆(u2 − u1) = λ̄{f(x, u2)u2 − f(x, u1)u1}
= λ̄{(∂f/∂u)(x, θ)θ + f(x, θ)}(u2 − u1)

in Ω, with ∂(u2 − u1)/∂ν = 0 and θ > u1. So y = u2 − u1 > 0 and
γ = 0 satisfy

−∆y − λ̄f(x, u1)y − λ̄{(∂f/∂u)(x, θ)θ + f(x, θ) − f(x, u1)}y = γy

in Ω. Since θ > u1 > 0, (∂f/αu)(x, θ) < 0 and f(x, θ) − f(x, u1) < 0.
Consequently, the principal eigenvalue of

(A6)
{−∆z − λ̄f(x, u1)z = αz in Ω,
∂z/∂ν = 0 on ∂Ω

must be negative. But since z = u1 is an eigenfunction for (A6)
corresponding to α = 0, we have a contradiction which establishes
the uniqueness of u1 and hence completes the proof.

Theorem A.2. Consider (A1) in the special case f(x, u) = m(x)−u,
where

∫
Ω
m(x) ≥ 0. For µ > 0, let u∗(µ) denote the unique positive

steady state to (A1). Then limµ→∞ u∗(µ) =
∫
Ω
m/|Ω|, where the limit

is in the topology of C1+α(Ω).

Proof. Let V = {w ∈W 2,p(Ω) : ∂w/∂ν = 0 on ∂Ω} as in the proof of
Theorem A.1, and let W = {w ∈ V :

∫
Ω
w = 0}. Define H : R ×W ×
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R → Lp(Ω) by H(c, w, λ) = −∆w − λ(m(x)(c+ w) − (c+ w)2) where
c is now an arbitrary parameter. Notice that H(c, w, λ) = F (c+w, λ),
where

F (u, λ) = −∆u− λ(m(x)u− u2).

Notice that if λ = 0, F (u, 0) = 0 implies that u = c. Since V = R⊗W ,
we can examine the solution set to F (u, λ) = 0 for λ near 0 by
examining H(c, w, λ) = 0 for λ near 0.

Letting DH(c, w, λ) denote the Fréchet derivative of H with respect
to (w, λ), we find that

DH(c, w, λ)(v, σ) = −∆v − λm(x)v + 2λ(c+ w)v
− σ{m(x)(c+ w) − (c+ w)2}.

In particular, DH(c, 0, 0)(v, σ) = −∆v−σ{m(x)c− c2}. If DH(c, 0, 0)
(v, σ) = 0, σ = 0 or c

∫
Ω
m = c2|Ω|. As a consequence, if c̄ �= 0 and

c̄ �= ∫
Ω
m/|Ω|, DH(c̄, 0, 0) is a linear homeomorphism from W ×R onto

Lp(Ω), and the line of constants {(c, 0, 0) : c ∈ R} is the only branch
of solutions to H(c, w, λ) = 0 in a neighborhood of (c̄, 0, 0).

Suppose now that
∫
Ω
m > 0 and that c̄ =

∫
Ω
m/|Ω|. Then

DH

( ∫
m/|Ω|, 0, 0

)
(v, σ)=−∆v−σ

{
m

( ∫
Ω

m/|Ω|
)
−

( ∫
Ω

m

)2

/|Ω|2
}
.

As
∫
Ω
[m(

∫
Ω
m/|Ω|) − (

∫
Ω
m)2/|Ω|2] = 0, there is a unique v∗ ∈ W so

that −∆v∗ = ((
∫
Ω
m)/|Ω|)m− (

∫
Ω
m)2/|Ω|2 and hence kerDH(

∫
Ω
m/

|Ω|, 0, 0) = {(sv∗, s) : s ∈ R}. The Crandall-Rabinowitz constructive
bifurcation theorem [15] can be applied to obtain a unique curve
of solutions to H(c, w, λ) bifurcating from the constant solutions at
(
∫
Ω
m/|Ω|, 0, 0) if

(A7) DcDH

(( ∫
Ω

m/|Ω|
)
, 0, 0

)
(v∗, 1)

/∈ R

(
DH

(( ∫
Ω

m/|Ω|
)
, 0, 0

))
as H is C2

and DH(
∫
Ω
m/|Ω|, 0, 0) is Fredholm of index 0. Notice that

DcDH

(( ∫
Ω

m/|Ω|
)
, 0, 0

)
(v, σ) = −σ

(
m(x) − 2

( ∫
Ω

m/|Ω|
))

.
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So if (A7) fails, there is a (y, γ) ∈W × R, so that

−∆y−γ
{( ∫

Ω

m/|Ω|
)
m−

(∫
Ω

m

)2

/|Ω|2
}

= −
(
m(x)−

(
2

∫
Ω

m/|Ω|
))

.

But since
∫
Ω
[γ{((∫

Ω
m)/|Ω|)m−(

∫
Ω
m)2/|Ω|2}−(m(x)−2(

∫
Ω
m/|Ω|))]=∫

Ω
m > 0, there can be no such (y, γ) and (A7) holds.

If now
∫
Ω
m > 0 and c̄ = 0, DH(0, 0, 0)(v, σ) = −∆v. Consequently,

kerDH(0, 0, 0) = {(0, s) : s ∈ R}. As DcDH(0, 0, 0)(v, σ) = −σm(x),
the condition

DcDH(0, 0, 0)(0, 1) /∈ R(DH(0, 0, 0))

becomes the insolvability of the linear problem
{−∆y = −m(x) in Ω
∂y/∂ν = 0 on ∂Ω.

Since
∫
Ω
m > 0, the problem has no solution, and the Crandall-

Rabinowitz theorem [15] may be invoked to obtain a unique curve of
solutions to H(c, w, λ) = 0 bifurcating from the line of solutions (c, 0, 0)
at (0, 0, 0). Clearly, this curve can only be the line of trivial solutions
(0, 0, λ). We may conclude that if u∗(µ) denotes the unique positive
equilibrium for (A1), then limµ→∞ u∗(µ) in W 2,p(Ω) (and hence in
C1+α(Ω)) is the constant

∫
Ω
m/|Ω| if

∫
Ω
m > 0.

Finally, suppose
∫
Ω
m = 0. Then for any c̄ �= 0, we know that the line

of constants (c, 0, 0) is the only branch of solutions to H(c, w, λ) = 0 in
a neighborhood of (c̄, 0, 0). But for λ = 1/µ, u = u∗(µ) satisfies

(A8) u = (−∆ + 1)−1[u+ λ(mu− u2)]

with ||u||∞ ≤ ess supΩm+. Then, for any sequence λn → 0+, there is
a subsequence λnk

such that the corresponding solution unk
of (A8)

converges in W 2,p(Ω) to a solution ũ of
{−∆u = 0 in Ω,
∂u/∂ν = 0 on ∂Ω.

ũ is necessarily a constant, and from the above the only possible
constant is 0. So unk

→ 0 in W 2,p(Ω) (and hence in C1+α(Ω)).
Consequently, if

∫
Ω
m = 0, limµ→∞ u∗(µ) = 0.
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