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THE ASYMPTOTIC BEHAVIOR OF
A REDUCIBLE SYSTEM
OF NONLINEAR INTEGRAL EQUATIONS

J. RADCLIFFE AND L. RASS

ABSTRACT. The methods developed in this paper are
motivated mainly by the study of models for rabies. Rabies
is a multispecies disease in which the virulence of the virus,
and its affect on different species, leads to models where the
infection matrix is reducible.

The asymptotic behavior of a reducible system of nonlinear
integral equations describing the spatio-temporal development
of such an epidemic is studied. When the system is nonre-
ducible, an approximate saddle point method can be used for
a restricted model with constant infection and removal rates.
This approximate method [17] indicated that the asymptotic
speed of propagation is ¢p, the minimum wave speed. A rig-
orous analytic proof of this result was given subsequently in
Radcliffe and Rass [18].

A reducible set of types may be considered as split into
nonreducible subsets of types, so that within each subset all
types may infect every other type, possibly through a series
of infections. For any two subsets, infection in at least one
subset cannot cause infection to occur in the other subset.
Consider an infection in the ¢th subset only, the density of
types in the other subsets being taken to be zero. Let c¢; be the
corresponding asymptotic speed of propagation. Then, for the
full system, the asymptotic speed of propagation differs for the
different subsets. Each subset infected will force the epidemic
in any subset it infects to propagate with at least its speed of
propagation. The approximate saddle point method was again
used for the restricted reducible model [20]. It indicated that,
for a particular subset, the asymptotic speed of propagation
is the maximum of the ¢; over all subsets 7 which can cause an
infection in the particular subset, and which can themselves
be infected by the initial infection in the system.

In this paper, with certain conditions imposed, a rigorous
proof of these results is obtained for the general reducible
model. It is remarkable that these conditions cover not only
all cases in which the saddle point method can be applied but

Received by the editors on August 31, 1993, and in revised form on August 31,
1994.

Key words and phrases. Rabies, reducible systems, n-type epidemics, spatial
spread, speed of propagation, pandemic theorem.

Copyright ©1996 Rocky Mountain Mathematics Consortium

731



732 J. RADCLIFFE AND L. RASS

also additional cases. A lower bound is also established for
the final size of the epidemic for each type, the lower bound
holding for all values of the spatial variable.

1. Introduction. Spatial models have been used to study the spread
of rabies [12, 5]. One method of attempting to control the spread of
the disease is to reduce the density of animals in a protective belt ahead
of the wave front. Spatial models have been used to estimate the width
of the belt and reduction in density necessary to stop the epidemic [24,
13].

Rabies is a multispecies disease which affects many animals, e.g.,
foxes, badgers, raccoons, opossums, mongooses, bats, skunks, and in
an epidemic up to 20 species may be involved [10, 6]. Certain species
act as reservoirs of infection with the disease spilling over into other
species and also domestic animals [6, 9, 14, 4].

Two species in which rabies is prevalent are foxes and striped skunks.
However, two-way transmission of the disease between species does not
usually occur. The reasons suggested, [22], are differences in amount
of the virus excreted in the saliva, and differences in the susceptibility
of the species. The amount of virus in the saliva of infected skunks is
much greater than that in infected foxes. Foxes are more susceptible
to the virus, especially in small quantities, than striped skunks, [21].
Thus, when the virulence of the virus is low, foxes excrete too little
virus to infect striped skunks, but can infect other foxes. However,
striped skunks can infect both skunks and foxes. With high virulence
striped skunks excrete a quantity of virus that kills foxes before they
become infectious, i.e., before they excrete virus in their saliva. The
transference of the virus from one species to the other will depend
therefore on the virulence of the virus [6]. Lower virulence leads to
a reducible model with transmission from skunks to foxes. Higher
virulence leads to a reducible model with transmission from foxes to
skunks. Differences between strains of rabies virus in the hosts are
discussed in Wiktor et al. [26]. The argument extends to include other
species.

The study of Friend [10] of the New York State rabies epizootic
involved at least 20 species. It was found that, when comparing the
distribution of cases in two species, those for some pairs of species were
correlated but those for other pairs were not. This is consistent with
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the spread of infection when the model is reducible, but not when it is
nonreducible.

In order to model the spatial spread of rabies and analyze methods of
attempting to control its spread, it is appropriate to develop a theory
of the spatial spread of n-type epidemics in which the infection matrix
is reducible. A first step is to consider the reducible model discussed
in the present paper.

Rabies is the disease which motivated the study of the effect of re-
ducibility. However, it is likely to be relevant to models for other dis-
eases. A rather specialized case, in which the spread in one population
is completely forced by the other population, occurs when infection is
spread by carriers. The case of ‘T'yphoid Mary’ is discussed in Turyn
[25]. A carrier epidemic, in which the individuals for whom the dis-
ease is apparent, are removed immediately and are therefore unable to
contribute to the spread of infection, is considered in Clancy [7].

This paper addresses the problem of the effect of reducibility on the
spread of infection in an n type epidemic in a closed homogeneous
population. The velocity of propagation has been studied for a one-type
epidemic with radially symmetric contact distributions by Aronson [1]
and Diekmann [8]. Thieme [23] also looks at the speed of spread
of populations. An approximate saddle point method was used by
Radcliffe and Rass [17] to treat the n-type nonreducible model. This
was for a restricted model having constant infectivity and removal rates
for each population. This method suggested that the asymptotic speed
of propagation is cp, the minimum wave speed. A rigorous proof of
these results for the general n-type nonreducible model was given in
Radcliffe and Rass [18].

Wave solutions for a reducible epidemic have been considered by Rad-
cliffe and Rass [19]. Some interesting results were obtained regarding
the existence of waves at different speeds. In particular cases, a multi-
plicity of waves is possible at certain speeds, in contrast to the nonre-
ducible case [15] where waves (if they exist at a specific speed) are
unique modulo translation. Results on wave solutions have been estab-
lished in all but an exceptional case.

In this paper, attention is focused on the speed of propagation and
the pandemic theorem. In order to avoid unnecessary complexity, we
prove the results for a simple form of reducible epidemic. In such an
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epidemic, the types can be split into two groups. No cross infection can
occur from infectious individuals in the second group of types to any
susceptible individuals amongst the first group of types. However, cross
infection occurs in the reverse direction, namely, there exists at least
one type in group 1 which can cause an infection of at least one type of
susceptible in group 2. Within groups the epidemic is nonreducible, so
that any type can infect any other type, possibly through a sequence
of infections. Again, we only consider contact distributions which are
radially symmetric.

We regard an infection for a certain type as having asymptotic speed
of propagation ¢, when radiating out from an initial focus of infection,
if both the following results hold. Firstly, if an individual sets out at
a speed grater than c from the focus of infection, he will eventually
leave the epidemic behind. Secondly, if he travels out from the focus
of infection at a speed less than ¢, he will be eventually surrounded by
the epidemic.

Consider an infection that occurs amongst types in group 2 only. The
epidemic will not affect group 1 types. The speed of propagation of the
epidemic amongst group 2 types is then the minimal wave speed for
waves amongst group 2 types only.

If the initial infection involves at least one type in group 1, then
infection will occur amongst all types. The asymptotic speed of
propagation of infection in a type will depend on the group that it
is in. For a type in group 1, this speed will be ¢;, and for a type in
group 2, the speed will be max(cy,c2). Here ¢; denotes the speed of
propagation that would occur for types in group ¢ if the density of types
in the other group were taken to be zero. There are restrictions under
which these results are obtained. These conditions are in fact more
general than those for which the saddle point method can be applied.

Results are also obtained for the final size of an epidemic initiated
amongst types, at least one of which is in group 1. A lower bound is
obtained for the eventual proportion of the population of each type in
both groups eventually suffering the infection. This is the pandemic
theorem.

Once results are proved for this simple form of reducible epidemic,
with careful thought the extension to a general reducible form can be
seen. Formal proofs for the general case do not present any extra
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difficulty.

It is interesting to note that the use of saddle point methods suggests
that the assumption of radial symmetry of the contact distributions is
not necessary. For precise details of the saddle point results, we refer
the reader to Radcliffe and Rass [17, 20].

2. The model and specification of the problem. Consider
n populations of types each of uniform density in RY. In a similar
manner to our paper [18] we are led to consider the equations
(2.1)

wils,t) = > /R ) /0 (1 — exp{—w;(s — 1, t — 7)})pa (£)ys; (7) dr

+ H;(s, 1), 1=1,...,n.

Here w;(s,t) = —logx;(s,t), where z;(s,t) is the proportion of indi-
viduals of type i at position s who are susceptible at time ¢. Also
7 (1) = 0jXij(T) where o; is the density of type j individuals and
Ai;j(T) is the rate of infection of susceptible individuals of type ¢ from
infected individuals of type j who were infected time 7 ago. The p;;(r)
denote the contact distributions representing the distance r over which
infection occurs.

H;(s,t) is a term representing the effect of the infection from outside
which initiates the epidemic. If H;(s,¢) = 0 for all 7 in group 1, then
wi(s,t) = 0 for all 7 in group 1, i.e., the epidemic occurs in group 2
only. In this case the results for the asymptotic speed of propagation
and the pandemic theorem follow immediately from our paper [18]. If
H;(s,t) # 0 for some 7 in group 1, some s, and some ¢ > 0, the epidemic
occurs in both groups. We only therefore consider this case. We refer
the reader to our paper [18] for a complete specification of the model.
Note that, as the infection is initiated from outside the n populations of
types z;(s,0) = 1, so that w;(s,0) = 0. Certain conditions are imposed.
Each p;;(r) is restricted to be a bounded continuous radial function in
RY such that P;;(A) = [g~ exp(A{r}1)pi;(r) dr exists for some positive
real A. Here {r}; denotes the first entry of the vector r. Also ~;;(7) is
taken to be bounded with continuous bounded derivative. Conditions
are imposed on the infection from outside which are essentially the
same as in our paper [18]. The infection from outside is in a bounded
region. The infectious influence decreases sufficiently quickly so that
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the integrals of the infection rates are finite. The Laplace transform of
the contact distribution for infection by an infectious individual from
outside of a susceptible individual of type ¢ exists for all real positive
A for which the P;;(\) exist for j =1,... ,n. Thus, the infection from
outside does not spread the infection faster than it is spread by infection
within the n populations of types. We refer the reader to our paper [18]
for precise details. In this paper, we specify the conditions in terms of
H;(s,t), this specification being given in Section 3.

Let vi; = [, 7ij(7) dr. This paper differs from [18] in that I’ = (;)
is no longer nonreducible. For simplicity we only consider the case
where «;; is finite for all < and j. The population of n types is taken to
consist of two groups of n; and ng types, respectively. Within a group,
infection can occur between any types, possibly through a sequence of
infections. No type in group 2 can infect a type in group 1; but at
least one type in group 1 can infect some type in group 2. Hence, by
re-ordering the types so that I' is in normal form, (see [11]), I' may be

partitioned so that
r'; 0
T = ,
(F21 T2 >

where I'y; and I'ss are nonnegative, nonreducible square matrices of
sizes n1 and ns, respectively, where n; +ns = n: and I's; is nonnegative
and is not identically zero.

We are concerned with nonnegative solutions w;(s,t) of equations
(2.1), which are monotone increasing in ¢ with w;(s,0) = 0; and it
is easily shown that such solutions have the property that w;(s,t) is
continuous in ¢ uniformly with respect to s for ¢ € [0, c0).

The asymptotic speed of propagation, as defined by Aronson and
Weinberger [2, 3] is ¢ if for any ¢; and ¢ with 0 < ¢; < ¢ < c¢q,

. (i) the solution w;(s,t) tends uniformly to zero in the region
S Z Cgt,

(ii) the solution w;(s,t) is bounded away from zero uniformly in the
region |s| < ¢;t for ¢ sufficiently large.

Section 3 establishes results concerning part (i) of the definition for
the different groups. Section 4 obtains results relating to part (ii).
These results are then amalgamated and summarized in Section 5, and
the results are linked to those of the saddle point method and the
wave solutions. In Section 6 we consider what happens if a certain
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condition does not hold. The results are then extended to the general
reducible case. Section 7 establishes the pandemic theorem for the
simple reducible epidemic with two groups and gives the extension of
the results to the general reducible case.

3. Obtaining an upper bound for the asymptotic speed of
propagation. Let A;j(A) = [ e *v;(r)dr. Define V;(c,\) =
Pi ()\)A”(C)\) and {V(C, )\)}ij = V;j(c, )\)

For a matrix A of finite elements, p(A) is the maximum of the moduli
of the eigenvalues of A. Let V (¢, A) be partitioned by groups so that

Vie ) = <¥ligil N Vale A)) !

and Ki(c,A\) = p(Vii(c,A)) and Ka(c,\) = p(Vaa(c,A)). Let Ay,
be the abscissa of convergence of P;;(A) in the positive half of the
complex plane. For simplicity, we restrict each P;;(\) to be infinite at
its abscissa of convergence. Let Ay; = min{Ay;; for i,j = 1,... ,n1},
Az = min{Ay,; for i,j =ny +1,...,n}, and Ay; = min{Ay,; for i =
1,...,n1,5 =n1+1,...,n}. We restrict the p;;(r) so that Ay > Ay
where AV = min{An, Agg}.

If p(Ty;) > 1, ¢; =inf{c > 0: K;(c,\) = 1 for some A € (0,A;)}.
Then for ¢ > ¢; we define A = a;(c) to be the smallest positive root of
K;(c,\) = 1. This is the only root if ¢ = ¢; > 0. Define o (¢;) = a;(c;).
If ¢ > ¢; there is a second positive root which we define to be of(c).
There is no positive root of K;(¢,\) =1if 0 < ¢ < ¢;.

If p(T;) <1, ¢; =0, and for each ¢ > 0 there is a single positive root
of K;(c,\) = 1. We define this root as o (c).

If p(Ta2) > 1, then we impose the condition that af(max(cy,c2)) >
as(max(cq, c2)).

H; (s, t) is assumed to be monotone increasing in ¢, continuous in s and
t, and uniformly bounded. Also H;(s,t) > 0 for somes € RY, ¢ > 0 and
some ¢ = 1,...,n;. In order for the infection from outside to trigger,
but not dominate the infection in the populations under consideration,
we impose the condition that H;(s,t)exp(A({s}1 — ct)) < D;(a), for
0 < XA < afor any a such that o < Ay; ifi =1,... ,ny, and for any «
such that o < Agg if i =ny; +1,...,n.
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Theorem 1. (i) There exists a nonnegative, monotone increasing
(in t) solution w;(s,t) to equation (2.1) with w;(s,0)=0,i=1,...,n,
which is unique.

(ii) For any c* > 0 such that K1(c*, \*) < 1 for some \* € (0,A11),

lim sup{w;(s,t):|s| >c"t} =0 fori=1,...,n:.
t—o0

(i) For any c¢* > 0 such that K1(c*,\*) < 1 and Ky(c*,\) < 1 for
some A and \* where 0 < A < A* < Ay,

tlim sup{w;(s,t) : |s| > c"t} =0 fori=ni+1,...,n
—00

Proof. (i) For any p(T'), there exists a ¢ > 0 and a A and \* where 0 <
A < X* < Ay such that Kq(c,A*) < 1 and Ka(c,\) < 1 and Vg1 (A*)
and H;(s,t) exp(A({s}1 —ct)) are finite for all ¢, j. Take such a ¢, A and
A* and define y;(s,t) = w;(s,t) exp(A*({s}1 —ct)) fori = 1,... ,n; and
yi(s,t) = wi(s,t)exp(A({s}y —ct)) for i=ny +1,... ,n.

To construct and prove the uniqueness of a solution to equations
(2.1) for i =1,...,ny, i.e., for group 1 types, we proceed exactly as in
Theorem 1 part (i) of our paper [18]. Note that in the proof of part (ii)
of Theorem 1 of that paper, it was shown that y;(s,t) < D} and hence
w;i(s,t) < Df exp(=A*({s}1 —ct)) fors e RV, ¢t >0andi=1,...,n;.

Now consider the construction of a solution to equations (2.1) for
it =mny+1,...,n. Define

v (s,) —Z_j /. 11— exp{-w;(s —r,t = 1)}

x exp(A({s —r}1 —c(t — 7))
X [ij (T)e 2] [pij (r) exp(A{r}1)] dr dr
+ Hi(s,t) exp(A({s}1 — ct)),
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and recursively for m =0,1,...

n t

(m+1) _ (m)
Y; s,t) = E / / 1—exp{—y: '(s—r,t—7
( ) ~Jo [ { 7 ( )

Jj=ni+1

x exp(A({s —r} —c(t — 7))}

x [exp(A({s —r}1 —c(t — 7)))]

X [ (7)€ T [pi; (r) exp(Mr})] dr dr
+ 3% (s, 1)

forsec RN, t>0andi=ni+1,...,n.

Now H;(s,t)exp(A({s}1 —ct)) < D;(A) fori=mny +1,... ,n.

Also for {u}; < ¢f, [1 — exp{—w;(u,0)]exp(A({u}y —cf)) < 1 for
j = 1, .- ,N7.

When {u}; > ¢f, then for j =1,... ,n1, [1 — exp{—w,(u,8)}] exp(A
({u}r — b)) < w;(u,0) exp(A({u}y — cb)) < Dj exp(—(A" — A)({u}s —
cd)) < Dj.

Thus g (s,t) < Di(\) + 7%, max(1, D}) P;j(\Ty(cA) = B; say,
forsc RN, t>0andi=n; +1,...,n.
If we let ugm) = sup |y§m+1)(s, t) — ygm)(s, t)|, where the sup is taken
over s € RV and t > 0, for m > 0 and i = ny +1,...,n, we can
proceed exactly as in the proof of Theorem 1 part (i) of our paper [18]

to show that y;(s,t) = limy, 00 ygm)(s,t) exists for i =ny +1,...,n,
and satisfies the equations

we) =3 [ [1-esn(pe—r=n

x exp(A({s —r}1 —c(t —7)))}]
X [exp(A({s —r}1 — c(t — 7))]
x [vi(r)e T [pij(r) exp(AMr}1)] dr dr
+ H;(s,t) exp(A({s}1 — ct)).
Also, y;(s,t) is uniformly bounded, i.e., for some D}, y;(s,t) < D} for

i=mn;+1,...,n. It follows that w;(s,t) exists and satisfies equations
(2.1). The uniqueness and monotonicity follow in the same way as in
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Theorem 1 part (i) of our paper [18], by first proving uniqueness and
monotonicity for i =1,... ,nq, then for i =n; +1,... ,n.

(ii) The proof is identical to the proof of part (ii) of our paper [18].
Note that we only need to consider equations (2.1) for i =1,... ,n;.

(iii) Take ¢* > 0 and A and A* such that 0 < A < A* < Ay,
Ki(c*,\*) < 1 and Kjy(c*,\) < 1. Since Kj(c,\*) and Ka(c,\) are
continuous functions of ¢, there exists a ¢, with 0 < ¢ < ¢* such
that Kj(c,\*) < 1 and Ks(c,A) < 1. For this ¢ there exist D} for
i = n1 +1,...,n, such that w;(s,t) < DFexp(—A({s}1 — ct)) for
sc RV, t>0andi=mn; +1,...,n The constants are not affected
by rotating the axes, so we obtain w;(s,t) < D} exp(—A(|s| — ct)). If
|s| > c*t, then w;(s,t) < Dfexp(—A(c* — ¢)t). Hence sup{w;(s,t) :
|s| > c¢*t} < Dfexp(—A(c* —c)t), for i = ny +1,...,n. But ¢* > ¢,
hence lim;_,o, sup{w;(s,t) : [s| > ¢*t} =0fori=n;+1,...,n. O

Corollary 1. If p(T') < 1, then the asymptotic speed of propagation
for each type is zero.

Proof. Observe that for each ¢ > 0, there exist positive reals A; and
A2 such that K;(c,\) < 1for 0 < A < A; for i = 1,2. We need only
take 0 < A = A* < min(\y, A2), and the result follows from parts (ii)
and (iii) of Theorem 1. O

Corollary 2. If p(T11) > 1 and p(Ta2) < 1, then the asymptotic
speed of propagation for each type is at most c;.

Proof. For ¢ > ci, there exists A* > 0 such that K;(c,A\*) < 1.
Also K3(e,\) < 1 for 0 < A < A for some Az. Choose A so that
0 < XA < min(A*,A2). The result follows from parts (ii) and (iii) of
Theorem 1. O

Corollary 3. If p(T'11) <1 and p(Ta2) > 1, then
(i) the asymptotic speed of propagation for types in group 1 is zero.

(ii) The asymptotic speed of propagation of group 2 types is at most
Co-
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Proof. (i) If p(T'11) < 1, for each ¢ > 0 there exists a A; such that
Ki(c,A\) < 1for 0 < A < A;. The result follows from part (ii) of
Theorem 1.

(ii) Observe that aj(c) is an increasing function of ¢, and as(c) is a
decreasing function of c¢. Also aj(c2) > aa(cg) since ¢z = max(cy, c2).
Hence for ¢ > c2, Ki(c,A) < 1 for A such that 0 < A < aj(c2).
Take A\* € (aa(c2),aj(c2)). Also, there exists a positive A such that
as(c) < A < asz(eg) with Ka(e,\) < 1. Choose such a A. The result
then follows by part (iii) of Theorem 1. o

Corollary 4. If p(T'11) > 1 and p(T22) > 1, then

(i) the asymptotic speed of propagation for types in group 1 is at
most cy.

(ii) If co = max(cy, c2), then the asymptotic speed of propagation of
group 2 types is at most cg.

Proof. (i) If p(T11) > 1 for each ¢ > ¢y there exists a A such that
Ki(c, M) < 1. The result follows by part (ii) of Theorem 1.

(ii) Again we observe that aj(c) is an increasing function of ¢, and
as(c) is a decreasing function of c. Also, af(cy) > az(cp). Hence, for
each ¢ > ¢y there exist A and A* where aj(c) > A* > aj(co) > as(cp) >
A > as(c) and Ki(c,\*) < 1 and K3(c,\) < 1. The result follows by
part (iii) of Theorem 1. i

4. A lower bound for the asymptotic speed of propagation.

Theorem 2. If p(T'11) > 1, then the asymptotic speed of propagation
of every type is at least ¢y, i.e., fori =1,... ,n and c < c1, there exist
b; and T; such that min{w;(s,t) : |s| < ct} > b; fort > T;.

Proof. For typesi = 1,...,n; the proof follows exactly as in Theorem
2 of our paper [18].

Since an infection in group 1 can cause an infection in group 2 types,
there exists an ¢ > n; and j < n; with v;; # 0. Take such an ¢ and

j. There exist R > 0 and T* > 0 such that [; 7:;(6)df =a > 0 and
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ﬁu\SRpij(u) du=1b>0.

Consider any ¢ < c¢; and take c¢* such that ¢ < ¢* < ¢;. From
Theorem 2 of our paper [18], we can then find the corresponding b;
and T} so that w;(r,7) > b; for all [r| < ¢*7 and 7 > Tj.

Now for ¢t > Tj,
t
w;(s,t) > / / wj(r,7)vi;(t — T)psj(s —r)drdr
0 JRN
t
Z bl/ / ’Yij(t—T)pij(S—I‘) dr dr
Tj Jr|<e*r
(t—1j)
= bj / / ’Yij (G)p” (11) d'l.l d0
0 Jlu—s|<c*(t—0)
(t=13)
v 747 (0)pi; () du df
0 lu|<c*(t—0)—|s|

(t=13)
o[ 767(6)pij () du do.
0 [ul< (c* —e) (t=6)+(ct—|s|)—ct

Now for all s such that |s| < ct and t > T; + T*

v

w;(s,t) > bj/ / 7ij (0)pi; () dude.
0 lul<(c*—c)t—c*0

Thus, w;(s,t) > bjab = b; say, for |s| < ct and ¢t > T; + T*, provided
((¢* —e)t — c*T™*) > R, ie.,

R+ c*T™

(¢ —¢)

tzmax< ,Tj—+—T*>.

This proves the result for a single i > n;. The result can now be
extended to all ¢ > ny by using the nonreducibility within the group 2
types and using a sequence argument with the specific ¢ above playing
the role of j to start the sequential argument. O

Theorem 3. If p(T'a2) > 1, then the asymptotic speed of propagation
of group 2 types is at least cy.



ASYMPTOTIC BEHAVIOR 743

Proof. The proof is essentially the same as Theorem 2 of our paper
[18]. O

5. The asymptotic speed of propagation. The results of
Sections 3 and 4 may be put together and summarized as follows:

(1) If p(T') < 1, then the asymptotic speed of propagation for each
type is zero.

(2) If p(T11) > 1 and p(T22) < 1, then the asymptotic speed of
propagation for each type is c;.

(3) If p(I'11) <1 and p(Taz) > 1, then

(i) the asymptotic speed of propagation for types in group 1 is zero;
(ii) the asymptotic speed of propagation of group 2 types is cs.
(4) If p(T11) > 1 and p(T'22) > 1, then

(i) the asymptotic speed of propagation for types in group 1 is ¢y;
(ii) the asymptotic speed of propagation of group 2 types is ¢g =

max(cy, ¢2).

It is of interest to see how these results tie in with the wave solutions

[19] and the approximate results using the saddle point methods
obtained in Radcliffe and Rass [20].

The results for the wave solutions, under the conditions imposed in
this paper (see [19, Theorems 8-11]) are as follows:

(1) If p(T') < 1, then there are no wave solutions at any speed.

(2) If p(T'11) > 1 and p(T'22) < 1, then there is a unique wave solution
modulo translation for each speed ¢ > ¢; for all types in both groups 1
and 2. No wave solution is possible for any speed ¢ < ¢;.

(3) If p(T'11) < 1 and p(T'y2) > 1, then wave solutions are only
possible in group 2 alone. There is a unique wave solution for all types
in group 2 at each speed ¢ > ¢;. No wave solutions are possible at any
speed ¢ < ca.

(4) If p(T'y1) > 1 and p(Ta2) > 1, then it is possible to have a wave
solution amongst group 2 types only. Such solutions can only occur at
speeds ¢ > ¢z, the solution at each such speed being unique modulo
translation. When c2 > ¢1, so that ¢y = ¢z, the wave solution at speed
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co amongst group 2 types only is the one of major interest. If ¢; > ¢,
so that ¢y = c1, then our main concern lies with the existence of a wave
solution amongst both groups of type at speed c¢;. Wave solutions do
exist at speed c;, but there is a multiplicity of such solutions. We refer
the reader to Sections 7 and 8 of Radcliffe and Rass [19] for a statement
of the results and an interpretation of this multiplicity. In the unusual
case when ¢; = ¢y = ¢y, although wave solutions exist in both groups
at speeds ¢, with ¢y < ¢ < A for some A, it was not established whether
a wave solution exists at speed ¢ = cg.

Hence, for group 1 types, if p(T';;) < 1 the speed of propagation
is zero, and if p(I';;) > 1 it is the minimum speed for which wave
solutions exist in group 1 alone.

For group 2 types, if p(T') < 1, the speed of propagation is zero, and if
p(T'11) <1 and p(T22) > 1 it is co, the minimum speed for which wave
solutions exist in group 2 alone. Finally, if p(T'11) > 1, then the speed
of propagation is ¢p = max(cy, ¢o). This is the infimum of the speeds at
which wave solutions exist in both groups when ¢; > ¢3. When ¢3 > ¢;
it is the minimum speed at which waves exist in group 2 only.

We now consider the link with the saddle point results. These were
obtained for a model which is a special case of the model considered
in this paper. Note, however, that the contact distributions were not
restricted to be radially symmetric.

For the radially symmetric case of the simpler model, all the approx-
imate results obtained using the saddle point method are confirmed by
the rigorous results obtained in this paper. (Note how the conditions of
cases 2, 3, 6, 8 and the special situation of case 4 of Section 5 of Radcliffe
and Rass [20] relate to the condition af(max(cy, ca)) > as(max(cy, c2))
used in the present paper.) In fact, the rigorous results also cover cases
where the saddle point method could not be applied because of the lack
of analyticity of a certain function, f()), at its minimum.

6. Some further results and the extension to the general
reducible case. The results obtained so far are subject to the
restriction that of(max(cy,c2)) > az(max(c1,c2)). We now turn our
attention to the case where af (max(cq,c2)) < ag(max(cy,cg)). This
can only occur if p(Ta2) > 1.

The results for types in group 1 are unaltered.
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The saddle point method cannot be used for group 2 types since it
is easy to establish from the results of Section 5 of Radcliffe and Rass
[20] that the function f()) used in that paper is not analytic at its
minimum if of (max(cy, c2)) < az(max(eq,cz)). In fact, this minimum
occurs where f(A) = ¢* with ¢* > max(cy, ¢c2) satisfying the condition
that af(c*) = as(c*). Note that ¢* is uniquely defined, and the value
of A at which this minimum occurs is A = af(c*) = az(c*).

If ¢; > c1, then there exists a wave solution amongst group 2 types
only at each speed ¢ > ¢y = c¢o which is unique modulo translation; the
wave solution at speed c; being the one of major interest. If ¢; > co,
then we are concerned with wave solutions amongst both groups of
types. No such solution exists at any speed unless there exists a ¢ > 0
such that aj(c) = as(c). If such a c exists, then the infimum of the
speeds at which wave solutions exist amongst both groups of types is
necessarily greater than c*.

For types in group 2, the methods of this paper now only give
bounds on the possible speed of propagation. We say that the speed of
propagation lies between ¢, and cg, where ¢, < cg, if

(i) for any ¢ > cg, the solution w;(s,t) tends uniformly to zero in
the region [s| > ct,

(ii) for any ¢ < cq, the solution w;(s,t) is bounded away from zero
uniformly in the region |s| < ¢t for ¢ sufficiently large.

The results are summarized in the following theorem.

Theorem 4. If p(Ta2) > 1 with of (max(cy,c2)) < az(max(e, c2)),
then

(i) The asymptotic speed of propagation of group 1 types is c1, where
C1 = 0 zfp(l‘n) S 1.

(ii) The asymptotic speed of propagation of group 2 types is at least
max(cy, c2); and at most c*, where ¢* is such that o (c*) = az(c*).

Proof. (i) This follows from Radcliffe and Rass [18].

(ii) The result that the speed of propagation is at least max(cy, cg)
follows from Theorems 2 and 3. If p(T'y;) < 1, it follows in an identical
manner to Corollary 3 part (ii) of Theorem 1 that the asymptotic speed
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of propagation is at most ¢*. If p(T';1) > 1, we use a similar argument
to Corollary 4 part (ii) to obtain the result. o

The results of this and the previous sections may be extended to cover
a general reducible epidemic. No additional mathematics is required.
The results are therefore merely stated.

Consider only those groups of types in which an infection can be
caused by the initial infection, perhaps through a series of infections.
This will give a submatrix I'* of the infection matrix I'. By reordering
the types, we can ensure that the sub-matrix I'* is expressed in normal
form, (see [11, p. 75])

| Y 0 s 0 0 .. 0
0 Lap oo 0 0 e 0
"= 0 0 . r,, 0 . 0 .
Tjri1 Tgra2 - Tgrig Tgriger -+ 0
I‘s,l I‘572 Fs,g Fs,g+1 I‘S,S
where I';; is a nonreducible, n; X n; matrix for ¢ = 1,...,s; and for

each ¢ = g+ 1,...,s, there exists a 7 < ¢ such that I'; ; # 0. A
corresponding partition is made for V(c, A).

For k,t such that T'y; # 0, we define

k—1

k
Akt:min{Aij fori:Zn,«+1,... ,an
r=1

! t—1 t
andj:an—i—l,... ,ZnT}.

r=1 r=1

We restrict p;;(r) so that, for such k,t, Ag; > min{Agk, An}. We

impose equivalent conditions on the contact distributions and the
infection from outside to those imposed for the simple reducible case.

If p(F”) > 1, define

¢; =inf{c > 0: p(Vii(c,\)} =1 for some X € (0,A;)}.
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Then for ¢ > ¢;, we define A = «a;(c) to be the smallest positive root
of p(Vii(e,\)) = 1. This is the only root if ¢ = ¢; > 0. In this case
we define o (¢;) = a;(¢;). When ¢ > ¢; there is a second positive root,
which is defined to be a}(c). There is no root if ¢ < ¢;.

When p(T';;) < 1, we define ¢; = 0. For each ¢ > 0, there is a single
positive root of p(V;;(c,A)) = 1 which is defined to be o (c). In this
case a;(c) is defined to be zero.

Now define

& = max{c; over all j such that there exists a sequence

Jj=t1 <ig: <tp=1t and Fikit#o for k=1,... ,T‘—l}.
Note that ¢) =¢; fori=1,...,g.
Fori=1,...,g, define ¢ = ¢;. For ¢ > g, define

ci =inf{c:c> ¢! and for every sequence 1 <i; < --- < i, =1i:
Fijij+1 #UfOI']: l, ,’I"*].,
i, (c) < af, (c) for all k,t such that 1 <t <k <r}.

Then the speed c of propagation of group i types is such that ¢ < ¢ <
c;. Note that for i =1,..., g, the speed of propagation is c;.

7. The final size. We now prove the pandemic theorem. This
gives a lower bound for v;(s) = 1 — lim;_, o, 2;(s, t), the proportion of
individuals of type i at position s who eventually suffer the epidemic.
Note that v;(s) exists since z;(s,t) is monotone decreasing in ¢ and
bounded below.

Since H;(s, t) is monotone increasing in ¢ and bounded above, a;(s) =
lim; oo H;(s,t) exists. If a;(s) = 0 for all s € RY, then the infectives
from outside do not directly infect type i susceptibles. Note that
a;(s) > 0 for s in some open set in R" and for some i = 1,... ,n;.

Theorem 3 (The Pandemic Theorem). (i) If p(T11) < 1 and
p(Ta2) > 1, then vi(s) > n; for alls € RN and i = ny +1,... ,n,
where y; =n; fori=mny +1,... ,n, is the unique positive solution to

n
—log(1—yi) = Z YiiYj t=n1+1,...,n.
j=ni1+l
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(i) If p(T11) > 1, then vi(s) > n; for alls € RN andi=1,... ,n,
where y; =n; fori=1,...,n is the unique positive solution to

—log(1 —y;) Z’y”yj, t=1,...,n.

Proof. (i) This follows in an identical manner to Corollary 4 to
Theorem 5 of our paper [18].

(ii) The result that v;(s) > n; for all s € RY and i = 1,... ,ny
also follows in an identical manner to Corollary 4 to Theorem 5 of our
paper [18]. It remains only to show that v;(s) > ; for all s € RY and
t=n1+1,...,n

Consider equation (2.1) with w;(s,t) = —log(1 — v;(s, t)), i.e

—log(1 — vi(s, 1))
:Z/RN/O' 'Uj(s_r,t—T)pij(r)fyij(q-)der_i_Hi(s’t)_

Taking the limit as ¢ — oo and using monotone convergence (for details
see Theorem 5 of our paper [16])

—log(1 — v;(s Z'y”/ vj(s — r)p;;(r) dr + a;(s)

forsc RN andi=1,...,n
Now a;(s) > 0fors € RN and i =1,... ,n;. Also, v;(s) > n; > 0 for
scRYandi=1,...,n;. Hence, fori =n; +1,...,n
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Let v; = infv;(s). Then for i =ny +1,...,n, we obtain
—log(1 — v;(s Z VijVj + Z’y”nj
j=n1+1

for s € RY. Hence,

—log(1 —v;) > Z %Jv]JrZ%mJ

j=ni+1

Now Z ,7;m; > 0 for some 4 from ny +1,...,n. Also I'sp is
nonredumble

From Theorem 1 of our paper [16], the equations

—log(l —v;) = Z Vijv; + by, i=ny+1,...,n,
j=ni+1

where at least one b; > 0, have a unique solution which is positive and
is continuous and monotone increasing in each b;.

Thus, v; > 1, it =n1+1,... ,n, where y; =n;, ¢t =n1+1,... ,n,is
the unique positive solution to

IOgl_yl = Z ’Y”y]-l-Z%mJ, t=n1+1,...,n
j=ni+l1

Since v; = infsv;(s), we obtain v;(s) > n; for s € RY and i =

n+1,...,n

Thus v;(s) > n;, i = 1,...,n, where y; = n;, i = 1,...,n, is the
unique positive solution to

—log(1 —y;) Z’y”yj, t=1,...,n.

This completes the proof of the theorem. o



750 J. RADCLIFFE AND L. RASS

Consider the general reducible epidemic as described in Section 6, so
that there are exactly s groups in which infection occurs. The extension
of Theorem 3 to such an epidemic is now recorded. Let v;(s) be the
vector of final sizes of the epidemic at position s for types in group i
where I'* corresponding to the s groups is written in normal form as
in Section 6.

Then v;(s) > n; where y; =n;, i =1,...,s, is a particular solution
of

ux ¥
= I‘*

Us Ys

with —log(l — {lll}j) = {y1}j-
This particular solution is the unique solution [16, Theorem 1]
satisfying the following conditions:

(i) For each i = 1,...,9, ;4 > 0if p(Ty) > 1 and np; = O if
p(Ty) < 1;

(ii) Successively, for each i = g+1,...,s,m; > 0if p(T;;) > 1 and/or
there exists j < ¢ such that I';; # 0 and 7; > 0; otherwise, n; = 0.
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