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DECAYING SOLUTIONS OF ELLIPTIC SYSTEMS IN R"

W. ALLEGRETTO AND P.O. ODIOBALA

ABSTRACT. We consider nonlinear elliptic systems, with
prototype form: —A# = )\f(z,ﬂ) in R™ and show the ex-
istence of positive decaying (componentwise) solutions. Our
basic tools are classical estimates of Gidas, Ni, Nirenberg and
Egnell coupled with Leray-Schauder degree theory arguments
in weighted spaces. We do not assume, in general, that the
system is variational, although mountain pass arguments are
employed for one such case. This approach enables us to ob-
tain, in particular, the existence of positive solutions also for
reducible systems, and the extension of several recent results,
some even in the scalar case.

1. Introduction. This paper deals with elliptic nonlinear systems
formally given by the equation

AL
(1) CAd = f, @)
Am

in R", n > 3, and the related problem —A# = Af, i.e., A\; = «-- =
An = A Here @ = (uy,... ,upr), and we are interested in the evidence
of positive (componentwise) solutions @ to (1) such that @ — 0 at oo, in
the case that f (z, %) is superlinear and subcritical. We do not usually
require that (1) admit a variational structure, although some results

are obtained under this assumption.

The rough outline of this paper is as follows: We first give condi-
tions under which (1) has solutions for all X = (A, ..., Ays) > 0. Our
approach here is based on the observation that, under suitable condi-
tions, the fundamental scalar results of Gidas, Ni and Nirenberg [12],
Gidas and Spruck [13] and Egnell [10] can be employed to show that
all positive solutions of (1) have a norm which is bounded and bounded
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away from zero. An application of degree theory then shows the ex-
istence of a nontrivial nonnegative solution. If the system is assumed
quasi-irreducible in the sense of Cosner [9], the solution must then be
positive. These results are obtained under rather severe restrictions on
f, but since they are based on degree theory methods, they continue
to hold under perturbations. In Section 2 we employ this fact in order
to obtain existence results for (1) for small X > 0 under more general
conditions on f We mention, in particular, that we do not require
quasi-irreducibility in this section and indeed obtain the existence of
positive decaying solutions also in cases where there exist nonnegative
nontrivial solutions. We are not aware of any other results along these
lines. These approaches, however, do not deal with cases where all
components of f involve only cross terms in the components of @. For
completeness we obtain in Section 3 some results for this case under the
assumption that the problem is variational. In Section 4 we conclude
the paper with some examples and explicit comparisons with earlier re-
sults. We also include some results for the scalar case which we believe
to be new.

Unlike the case where R" is replaced by a bounded domain €2, there
appears to be little known for systems such as (1) or even for superlinear
scalar equations not in variational form. The system results in R™ with
which we are familiar involve variational arguments, radial conditions
and/or upper-lower solution methods. Furthermore, often it was not
required that @ decay at co. We refer in particular to the papers of
Gu [14], Furusho [11], Noussair and Swanson [22, 23], Kusano and
Swanson [19], Allegretto [1], Brezis and Lieb [4], Kawano [17], Kawano
and Kusano [18], Berestycki and Lions [4], P.L. Lions [21], and the
references therein. These results furnished the basic motivation for
this paper.

To avoid technical difficulties, we assume throughout the paper that
all functions introduced are smooth in their “arguments. Various explicit
growth and monotonicity assumptions on f will be given | below, but we
always assume at least that f(x §) > 0 for € > 0, f(z,0) =0, f
nondecreasing in 5 > 0, f € Cf.. Finally, vector inequalities will be
understood componentwise, and the various norms of « are defined in
terms of the component norms in the obvious way. In particular, we
define |7 = M wiif @ > 0, |@] = I, |uf| otherwise. By E, we
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denote the completion of C§°(R™) in the norm

ol = [ V0P,
R’n

We observe that, for @ > 0, the estimate
|d|||e < K||d]|e
holds.
2. Positive solutions for all X > 0. We consider here conditions

under which equation (1) has positive solutions for all x> 6, and for
notational convenience incorporate A into f, i.e., we consider

—

) ~Ad = fla,a).
Our assumptions on f are as follows:

2.1. There exists g > 0 such that if 4 > fi, then for any j €
{1,...,n},ie{l,... ,M} and £ > 0, we have

= =

Fiz,€) > (F)f(a,6) if z; < (aM);

and
Fl@,8 > @ @h,8 if z;> @ ")

Here z#i denotes the reflection of « about the plane z; = p [12].

2.2. There exists a function h(x) > 0 such that

()]

Elsoo €]

= h(z)

locally uniformly in z, if E > 0.

2.3. There exists a function C(z) € LP N L™ such that |f(z,£)] <
C(z)|€]" for € > 0 and C(z) < K|z|~? for some p, 3 with p < n/2 and
B+y(n—2)> (n+1).
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2.4. Problem (1') is quasi-irreducible, [9]; i.e., if @ > 0 solves (1'),

> R

then either @ =0 or @ > 0.

We recall that 1 < v < (n+2)/(n — 2). The above assumptions are
very restrictive on the type of system which can be considered. In the
next section we shall obtain solutions, for small X, for more general
systems. Examples of functions f, for which (2.1)—(2.4) hold, are easy
to construct, and we shall do so explicitly later. It is useful to observe
here that 2.1 is a condition at infinity. Specifically, if for |z| large, f >0
is radial in z and f’ < 0 or if f is the product of even R; functions
decaying monotonically at oo, then 2.1 holds, and if 2.1 holds for some
f then it also holds for f + § where G(z,€) > 0, § = 0 if |z| is large.
Finally, if y(n — 2) > (n + 1), then we choose § = 0 in 2.3.

First for positive solutions in F we have the following lemma whose
arguments will be useful in the sequel.

Lemma 0. Let @ > 0 solve (1). Then || |d|||n~ < a(||d]||r) for some
positive continuous function a.

Proof. We can reduce the situation to an analogue of scalar results

as follows. We set ik (z) = (uk (2),u%(z),... ,u}(z)) where ui (z) =
min{u’(z),K},i=1,...,M and K = 1,2,... . For any real number
m > 1, let

[k (@)™ = ([ug (@)™, .., [ui (@)]™).

Taking J(x) = [dk (x)]™, and denoting by ( , ) the E inner product,
we have

@ ae(@)™) < [ 317wl da

M
< | (,@)| - [w]™ da.
But

(@ @]") > 3 a2

M
> Cn,m)l | |m1yny (n-z) )™
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Thus,

O x| [T S i

(m+1)n/(n—2) C(” m)[||ujf<||(m+1 n/(n-2)l

IN

HM: nMs

/|f7mu W)™ de

<K / z) @™+,

and the proof then follows the arguments of the scalar case, [3], applied
to |- o

We begin with the following lemma which is a combination of scalar
results of Gidas, Ni, Nirenberg [12, Lemma 2.1] and Egnell [10,
Theorem 2] (see also Li and Ni [20]).

Lemma 1. Let @ > 0 solve (1'). Then there exists a i > 0,
independent of @, such that for any j =1,... ,n, 4(x) is a decreasing,
respectively increasing, function of x; if x; > [i, respectively x; < —[.

Proof. Observe first that —A(|@]) = |f(z,@)|, and our assumptions
on f immediately yield |@| ~ |z|2~™ at co by [10, Theorem 2]. It follows
that | f(z,@(z))| = O(|z|~9) for some ¢ > n+ 1 and Lemma 2.1 of [12]
applies to each component of . Since our conditions on f are uniform
in j, it thus suffices to prove the result for j =1 and z; > fi; for some
i1 independent of 4. Set

f1 =inf{y | if & > p then @(z) > u(z**) if 21 < a}.

Observe that the same arguments as in [12] show that fi; exists and,
furthermore, 1 < fi with i as defined in 2.1. We do not require
any system arguments for this result, as found, e.g., in [25], since
the monotonicity properties of f applied to each component equation
suffice. u]

Combining Lemma 1 with the well-known estimates of Gidas and
Spruck [13], gives
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Lemma 2. There exists a ball B and constant K, independent of i,
such that |U] for any positive solution 4 of (1') takes on its mazimum
in B and |u| < K.

Proof. That the maximum of |@ must occur in a fixed ball B
independent of @ is immediate from Lemma 1. Suppose there exist
sequences {uUs}, {xs} such that |||Us|||r= = |ds(xs)| = c0. Without
loss of generality, x5 — z for some z € B. We set U5(y) = us(A\sy +
x5)/Ms with Ms = |||ds|||p~ and )\3/771 -Ms = 1. In view of
assumption 2.2, we may then apply directly the procedures of [13] to
the scalar equation satisfied by |¥s| and obtain a contradiction. O

We also observe the following elementary estimate indicating the
equivalence of the || ||g and L* norms for positive solutions.

Lemma 3. Let @ > 0 solve (1'). Then
lallz ~ (114! ] Lo,

in the sense that a bound on one norm implies a bound on the other.

Proof. We recall that Lemma 0 gives || |@] ||z~ < a(]|@]|g) for some
positive continuous function a. On the other hand, we observe

|2l < K /R C(a)af><|ap 1+

L Y=14e] = 12—
< K@l |[Z=" @l |5 ji2e(n-2)/2)
Ly —1te (2=
< K@ |[7="N1@llENIC In/2+em—2)/21-
Whence, if ¢ is sufficiently small, we obtain ||i||p < K]|||] ||(LL,_1+E)/E
and the result.

We observe for future convenience that the same result holds with
obvious changes for the more general equation
—AG = vf(z,@) + tJ(z)

with 0 < »,t bounded and J smooth, nonnegative with compact
support. Furthermore, if t = 0, then a(0) = 0 and a(§) > 0if & > 0
where a(€) denotes the function given in the above proof. |
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As an immediate consequence, we have

Theorem 1. Let F(@) = (—A)~Y(f*(z, @) with f*(z, @) = f(z,a"t).
Then F : E — FE is continuous and compact. Furthermore, there exist
0 < ry < ry such that deg (I — F, B,, — B,,,0) # 0 where B,, denotes
the ball of radius r; in E.

Proof. The fact that F : E — E is continuous and compact is shown
in exactly the same way as for the scalar case [3]. As for the rest, we
recall that it suffices to show that for some rq,r5, we have

(i) €«# vF(@) for 0<v<1,u€dB,,,

(i) F(@) # @ — t(-A)"Y2) for t > 0, &« € OB,, for some
0< (#)ZeE.

—

immediate, since if —A#@ = vf*(z,u) = vf(z,d") then

is
0 whence @ > 0 by irreducibility. We have

~A(ja]) < vC(e)(la)” < vl||al|]3=C(e)l.

We observe that there exists an eigenfunction J > 0, J € E such that
—AJ = oC(x)J [2], and conclude

o [ c@aa < vl [ ey

whence, by Lemma 3, [a(]|@]|g)]"* > |||2||[]=' > Ko/v > Ko. As
for (ii), we note that it suffices to consider

-

(4) —Aii = f*(z, i) + tJ1,

where J here denotes the eigenfunction corresponding to the first
eigenvalue for the Dirichlet problem for —A in a ball B, extended by
J = 0 outside B, and [ is the identity matrix.

We first note that ¢ must be bounded for a solution to exist. Indeed,
if @ solves (4) with ¢ > 0, then @ > 0 and

—A(jdl) = filw, @) + MtJ = |f(x, @) + MtJ.
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— =

Since | f(z,€)|/|€]” — h(x) uniformly in B, we conclude that |f(z, £)| >
(h(z)/2)|€]" —|€] in B. Tt follows that
—~A(|d)) + |i] > ) @” + MtJ in B

-2
with |@| > d > 0 in B for some d. On the other hand, let w solve

—A(w)+w=¢eJ inB
w=0 ondB

for € > 0 small. Then 0 < w < d in B, and
h
—A(w) +w < %w”’ + MtJ.

We conclude that w, |@| form an ordered lower-upper solution pair, and
thus obtain the existence of a solution v > 0 for

—Av+v = (h(z)/2)v" + MtJ in B
v=0 on0B.

Following exactly the arguments in [7], we conclude that Mt is
bounded. Since J has compact support, the remarks following con-
dition 2.4 imply that Lemma 1 and Lemma 2 hold, and we thus have
||lg||g < K for some K, by Lemma 3. O

Corollary 1. Problem (1') has a positive solution.

Proof. By the properties of the Leray-Schauder degree we conclude
that there exists a @, nontrivial, such that —A(@) = f(z,4"). The
maximum principle then implies @ > 0 and thus @ > 0 by irreducibility.

O

3. Positive solutions for small X. Our problem here consists
in establishing the existence for small X > 0 of positive solutions for
(1) without some of the assumptions made in Section 2. In particular,
we no longer require quasi-irreducibility and the systems may also have
nonnegative nontrivial solutions. We shall also relax condition 2.2. Our
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approach consists in using the product and homotopy properties of the
Leray-Schauder degree and applying these properties to systems which
are perturbations of compositions of simpler subsystems which satisfy
the conditions of Section 2. More precisely, we consider explicitly the
case where the subsystems are scalar equations.

We remark that results for such scalar equations could also be
established by variational methods [3], but it was essential for us to
use degree theory directly since we could not show that the variational
solutions were isolated [15].

Our new assumption is as follows:

3.1. There exist nonnegative functions hj,q;,7; such that for each
j=1,...,M

(1) hy (x)f;-’j satisfies 2.1-2.4 in the scalar case with 1 < ~v; <
(n+2)/(n—2).

(2) ¢; € LP*NL*>®, 7; € LP2 N L with p; = 2n/[(n+2) —v;(n—2)];
p2 €2n/[(n—2) —6(n—2)] and 1 < 0; < ;.

(3) for all € > 0 there exists a constant K () such that
(4) £ (2,€) — hy(2)€)"| < eq;(2) ] + K ()7 (2)|€]%
for any 52 0.

Lemma 4. (a) For each j = 1,...,M, there exists an annulus
A; C E such that

deg (uj — (=A) 71 (h;(u])), A;,0) # 0.

(b) Let S(@) = (=A)"(hi(ui)", ...  har(ul,)™)T] and A =

Ay X --- X Apr. We then have
deg (@ — S(@), A, 0) # 0.

Proof. Part (a) is immediate from the results in Section 2 specialized
to the scalar case. Part (b) follows from the product properties of the
Leray-Schauder degree, [25, p. 573]. o
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Theorem 2. If 3.1 holds, then (1) has a positive solution for some
X >0, |X| small.

Proof. Let T denote the set of solutions to @ = S(@) in A. We observe
immediately that T is a compact set in E, and let N C A denote an
open neighborhood of T' chosen as follows. Set J(u;) = [5 [uj']Z”/(”_Z)
for j =1,...,M, and some fixed ball B C R™. Since T is compact,
we observe that, for each j, J(u;) assumes its (positive) infimum on 7.
We choose N small enough so that if @ € N then J(u;) > a > 0 for
some constant o and any j =1,... , M. Now deg (¢ — S(@), N, 6) #0,
and equation (4) may be rewritten as
Qi fi <m é) — hj(x)€r

’ a ] ¥

(5) < eq;(@)[€]7 + K (e)a?i %7 (x) €]

for any a > 0.

We set P(@)) = (~A)"Y(A - f(z,@* /o) — Diag (hj(m)ujw)], where
A = Diag ("), and observe that (4) and (5) imply that P : E — E
is continuous, compact, and, for any given small > 0, by choosing
first € > 0 small enough and then « small, we conclude from (5)
that ||P(@)||g < n for i € N by assumption 3.1. Next observe that
||d — S(w)||g is bounded away from zero on ON by the properties of
S and the definition of N. In particular, if € and «a are chosen small
enough, then for u € ON and 0 < t < 1, || — S(4) — tP(d)|lp >
[l — S(@)||g — ||P(@)||g > 0 and deg (¢ — S(@) — tP(w), N,0) is well
defined. Since deg (@ — S(@), N,0) # 0, then also

deg (Z — S(@) — P(@),N,0) # 0

i.e., there exists a solution 4 to

Observe that @ > 0 and 4 is clearly nontrivial. Indeed, since @ € N,
then J(u;) > 0 and hence u; # 0 and, consequently, u; > 0 by the
(scalar) maximum principle. Finally, setting v = (/) gives the result.
O
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Note that since @ € E, then @ — 0 at co as shown in the proof of
Lemma 1.

Corollary 2. If y1 =+ =y =1, then (1) has a positive solution
with A1 = --+ = Ay = X for A > 0 small. That is, there exists a
function @ > 0 such that — A€ = \f(z, d).

4. Some variational cases. We consider here a class of systems
which do not satisfy the assumptions made in the earlier sections. We
are in particular interested in the case where each f; involves precisely
cross products of the various components of 4. We no longer require
the various monotonicity assumptions made earlier but now do ask
that the problem have a variational structure, i.e., that there exists a
function F such that VgF(z,€) = f(z,£). This is also a somewhat
severe condition. In compense, we can deal in exactly the same way
with a more general case where — A is replaced by — > D;(a;;(z) D),
but will not do this for consistency. The added variational assumption
implies that the problem may be treated by mountain pass arguments.
Since most of the steps are very similar to the ones in the scalar case,
e.g., [3], our presentation will be brief.

We now make the following assumptions on f

< g(z)|f]" with geLPonL>®

(4.1) \Zﬂ'(w, 3

and

po=2n/2n—(y+1)(n—-2)], £>0.

4.2. There exists a function F such that VzF(z,£) = f(z,£). For
notational simplicity we write f(z,%) in place of f(z,#") henceforth.
Since we seek positive solutions, this will not cause difficulty.

4.3. There exists a constant § > 0 such that fu; f;(z, @) > F(z,u)
for u > 6, T € %" and j = 1,...,M, where F' denotes the potential
associated with f normalized by F(z,0) = 0 and /M < 1/2.
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4.4. There exists 0 < w € C§° such that, for all large 3,

F(z,fwl)de > 9 C(w) — K (w).
Rn

Here C'(w) and K (w) represent constants dependent on w, 6; > 2 and
1=(1,...,1).

We first _'remark that 4.3 implies irreducibility. Indeed, assume that
— At = \f(x, @) with @ > 0, nontrivial. If, for some i, we have u® # 0,
then for some zy we have f¢(zg,@(xo)) # 0 and u’(zp) > 0. It follows
that

0u? (o) f (w0, (o)) > F(z0, (o))

:/0 S° ¥ (@o, tii(wo)) - u* (w0) dt > 0

since f/ > 0. It follows that uw/ > 0, Z 0 and hence u/ > 0 by the
(scalar) maximum principle. Condition (4.3) could thus be replaced
by the assumption that the problem is irreducible and F(z,4) <
6> fi(z,u)u!, with & < 1/2. Note that this condition will hold, for
example, in cases where the components of f consist of cross products of
various components of #. In such cases M and n are, however, related.
For example, if F(z,@) = p(z)(u")* - - - (uM)*™ for @ > 0, F(z,@) =0
otherwise; then, to ensure smooth differentiability and irreducibility,
we choose a; > 1 for each 4, while a1 +-- -+ ay < 2n/(n —2) in order
to establish suitable maps on FE, and it follows that M < 2n/(n — 2).
For further discussion of this argument, we refer to [23]. Observe that
no such restriction was present in our earlier results, and that, even
here, we can consider the case M = 2 for any n.

We let
G(u) = F(z,u)dz
Rn
and
(6) J() = (1/2)\|1I||§3 —AG(u) foru€E.

We recall that the arguments in [24] show how to treat the scalar case
in bounded domains, while those of [3] extend some of the results of
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[24] to scalar problems in unbounded domains. Based on these results
we observe the following analogies for the system case.

Lemma 5. G’ is continuous and compact from E to E, with
G'(a) (@)= | [flz,0) Fda.
Rn

We now present our existence result.

Theorem 3. If (4.1) and 4.2-4.4 hold, then for any parameter
A > 0, system (1) has at least one positive decaying solution with
AM=--=Ay=A

Proof. The proof of the theorem is a verification of the conditions
of the mountain pass theorem of Ambrosetti and Rabinowitz (see, for
example, [24]). The fact that F(z,0) = 0 implies that J(0) = 0. Next
we observe that

1@ =/l -A [ Faads

> (1/2) [l - AC /R glaP™ da

" Lyl
> (1/2)||@|% — ACllgl|weo ||2I%"
T T
= (1/2 = XCllgl| oo Il )1l |-
Choosing p > 0 sufficiently small, we can find o > 0 such that ||d||g = p
implies J(%) > a.

Let w denote the function in condition 4.4, and observe that for some
constant K,

J(Bwl) < KB? — A\C(w)B% + MK (w).

From this inequality, we conclude that J(8w) < 0 for 3 large enough.
Finally, Lemma 5 shows that J € C1(E,R), and J satisfies the (P.S.)
condition as a result of the compactness of G'(+), [24], and the fact that

J'(@)(@) = (@ @)p—A | fla,@) Fde for GEE.
Rn
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Indeed, it suffices to show that if |J(@y,)| < C and |J' (@) — 0 as
m — oo then {u,,} is a bounded sequence, but this is immediate since,
for m large,

C+fanllz
> i) = 77 () i)

0 0 i ;
_ (% _ M>|gm|2E — /Rn [F(w,ﬁm) i ;f’(m,ﬁm)ufn}

1 0\, .
> > M |t |-

We conclude that J(-) has a critical point, say 4. From our as-
sumptions, it is seen that @ > 0 almost everywhere, @ # 0, since
f(x,ﬁ') = _’(m,ﬁ"‘). To finally show that u* > 0 fori =1,... , M, we
observe that our problem is irreducible by the remark following 4.3.
O

5. Remarks and examples. We first observe that somewhat
similar results hold for the equation
(7) —AG+ @ = Mf(z, @).
Indeed, as is well known, the linear term is of help in the considerations
and exponential decay of # is obtained. In this case the space F is
replaced by H'2 and conditions 2.1, 2.2, and 2.4 are kept, while in
conditions 2.3 and 3.1, the estimates on which the various compactness
and continuity arguments are made can be replaced by the results of
Berger and Schechter [5]. We recall that a solution in H%? must decay
exponentially by another result of Egnell [10, Theorem 5] (see also
[12]). Analogous remarks apply for the variational situation considered
in Section 4.

To be specific, we illustrate the above remarks by considering the
analogue of Theorem 1 for this case. We first recall the following
definitions, [5].

zeR™
My (w, Q) = My 1(w]a)

Moy (w) = sup / o — )| [y dy
ly|<1
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with w|q(z) = w(z) if x € Q and equals zero otherwise. We have

Theorem 1'. Assume conditions 2.1, 2.2 and 2.4 hold, but assume
that C(z) in 2.3 is in L™ and

M,,1(C,R"—Bgr) -0 asR— o0

for some 0 < o <n — ((7+1)/2)(n — 2) where Br denotes the ball of
radius R. Then (7) has a positive solution U decaying exponentially at
00.

Proof. Monotonicity and boundedness in L* of any positive solution
4 follow exactly as in Theorem 1 by means of the results in [12]. Since
M,1(C,R") < co and 0 < o < 2, then Lemma 3 also holds by the
results of Berger and Schechter [5]. Finally, M, 1(C,R™ — Bg) — 0
implies continuity and compactness in Theorem 1 (see, e.g., [3]) and
the result follows by degree theory.

Note that
/ Cla — y)lyl*™ < K|IC||1ro (5, )
lyl<1

for some constant K if po > n/a. It thus suffices to assume that
[|Cl|Lro (B, (2)) — 0 as |z| — oo for some py > 2n/[2n — ((y+1)/2)(n —
2)]|. O

We observe that this theorem extends results of Chaljub-Simon and
Volkmann [8], even in the scalar case since we do not require exponen-
tial decay of C'(x).

We conclude with the following illustrative examples.
Ezample 1. Assume that (1) is

—Auy = p(z)(u1 + u2)”
—Aug = q(z)(uy + uz)?

with 0 < p,q radial near infinity and p’,q’ < 0 there. If 1 < v <
(n+2)/(n—2), then 2.1 and 2.2 hold, and since irreducibility is obvious,
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2.4 follows. Finally, if we assume that p,q € L™/?7¢, p,q < K|z|? with
B+ ~(n—2) > (n+1), then 2.3 holds and we conclude the existence
of positive decaying solutions.

Observe that p, ¢ need not be radial at co for this result to hold. For
a simple example, let 0 < Ky < h(t) < K; be a smooth function with
bounded derivative. Then the result holds if p(z) = exp(—|z|?)h(x1)
in the above system.

Ezample 2. To illustrate the perturbation arguments, let p(z), ¢(z)
be as above. We have existence for

—Auy = p(@)[u] + eu) ug’]

—Auy = q(z)u3 + e ug’]
if € is small enough and 1 < 1 + 2 < 7. Setting @ = a# then gives

—Avy = Ap()[v] + v v3’]
—Avy = Aq(x)[v] + v]*v3?]

if we choose aY~("1+72) = ¢ and X\ = a”~!. Note that this system also
has the nonnegative nontrivial solution (v}, 0) with —Av} = Ap(z)(v})".
We are not aware of other results for such systems. For another
example, assume that p(z) is as above but that now 0 < ¢(z), z(z) €
LPo N L, with pg = 2n/[(n + 2) — (71 + 72)(n — 2)]. We then have
existence, by the same method, of a positive solution for small A > 0
of

—Avy = Ap(z)v) + g(x)vi vy*]

—Avy = A[p(z)v] + z(z)v]*v3?].

Notice that we do not require monotonicity nor decay of g, z at co.

Ezample 3. Consider the system

—Au = Noagh(z)u® v + Bak(x)uPrvP?]

in R™.

—Av = Nagh(z)u™v™ + Bok(z)u’?vP4]
Assume that a; > 0 for i = 1,...,4, oy +1 = s, a1 + 1 = ag,
l1<ar+az<(n+2)/(n—2)and 0 < h(z) = O(Jz|~%), a > 0 with
max{(n + 2 — 2a)/(n — 2),1} < a3 + a2, and k, 5; satisfy the same
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conditions. Observe that this system is variational and h € LP°(R"),
po = 2n/(2n — (o1 + a2 + 1)(n — 2)) since apy > n, and that a similar
remark holds for k. By Theorem 3, this system has a positive decaying
solution (u(z),v(z))y for any parameter A > 0. Systems of this type
have been considered in [23] under a variety of technical conditions.
The authors obtained the existence of positive decaying solution only
for some A = X and not for any A, and for n < 5.

Ezample 4. Consider the scalar equation
—Au+ 2\ Z bj(z)Dju = p(z)u”

with -, p as in the earlier examples. Observe that, while this problem is
scalar, it is not variational if A # 0 and the usual approaches based on
mountain pass arguments fail. OQur methods, however, can be used to
show the existence of a solution for small A > 0. Indeed, we may rewrite
the equation as u — S(u) + AT (u) = 0 with S(u) = (—A) (p(z)(u™)"),
T(u) = (~A)7'(3b;D;u). The procedures of Section 2, in particular
Lemma 4 applied to the scalar case, show that there exists A C E such
that deg (v — S(u), A,0) # 0. Observe that T is linear, and, thus, if we
show it is compact E — F, then it will also be continuous. Assume
that this is done for the moment, and let T, NV be exactly as in Theorem
2. If X is small enough, then u—S(u) —tA\T'(u) # 0on ON for 0 <t <1,
and we conclude that deg (u — S(u) — AT'(u), N,0) # 0. To conclude,
we need to give sufficient conditions for 7" to be compact and, for this,
let u,, — u weakly in E' and assume first that b has compact support.
Setting —Awv,, = Y b;jDju, and integrating by parts gives

o0 =l == | 3203300 = o)t = )
= [ div @0 = 0) ).

Since we assume that b € C1(R"), then that T is compact in this
case follows from the observation that, given any ball B C R"™, then
E is continuously embedded in H'(B) [3] and H!(B) is compactly
embedded in L(B) for ¢ < 2n/(n — 2). In the more general case,
let gJR =bjp(xz/R) where ¢ is a smooth, nonnegative radial function,
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e(t)=1if t<1, =0if t>2. Setting Tr(u)=(-A)"1(> g]RDju) gives

I Tr(w) — T(u)|lp < KI|b(1 — ¢(z/R)||n - [[u]| -
Since Tr is compact, the result follows if we assume that be Ln.
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