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ABSTRACT. A well-known conjecture states that linearly
independent logarithms of algebraic numbers are algebraically
independent over the field of rational numbers. So far, it is
not yet known that there exist two algebraically independent
logarithms of algebraic numbers. On the other hand, D. Roy
has shown that the above conjecture is equivalent to a con-
jectural description of the rank of matrices whose entries are
either algebraic numbers or else logarithms of algebraic num-
bers. From this point of view, half of the conjecture is known:
the actual rank of such a matrix is at least half the conjectural
rank.

We consider a similar question for commutative algebraic
groups. We show a connection with a density problem, and we
prove a partial result by means of the theorem of the algebraic
subgroup.

1. The multiplicative group: usual logarithms. Here is the
main conjecture for (usual) logarithms of algebraic numbers:

Conjecture 1. Letly,... ,l, be complex numbers which are linearly
independent over the field Q of rational numbers. Assume that the n
numbers €'i, 1 < i < n, are algebraic (over Q). Then ly,...,l, are

algebraically independent (over Q).

As a matter of notations, we shall denote by Q the algebraic closure
of Q in C, and by £ the Q-vector space

exp 1 (Q*) = {z € C;e* € Q*};
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the elements of £ are the logarithms of algebraic numbers. It will be
convenient to denote by log o the elements of £, but we insist that we
do not fix a determination of the complex logarithm.

Each nonzero element of £ is a transcendental number; this is the
Hermite-Lindemann theorem. On the other hand, it is not yet known
that there exist two elements in £ which are algebraically independent.

This failure in all attempts to get a result of algebraic independence
suggests that one should consider Conjecture 1 from a different point of
view. For instance, fix a polynomial P € Q[Xy,...,X,]; what can be
said of the set of A € £™ such that P(A) = 07 This question amounts
to asking, what is the intersection of £™ with a hypersurface P = 0 in
an affine space C™? In place of a hypersurface, one may consider any
affine variety. With this point of view, Conjecture 1 can be restated in
the following equivalent form (see [8, Conjecture 1]).

Conjecture 2. Let n be a positive integer, X an algebraic affine
subvariety of C™ defined over Q, P a point of X with coordinates in L
and 'V the smallest vector subspace of C™ defined over Q which contains
P. Then V is contained in X.

According to this conjecture the set X N L™ should be contained in
the union of all linear subspaces of C™ which are defined over Q and
contained in X.

All that is known concerning this question is contained in [8]. Partial
results are obtained there for the affine cone over the Grassmanian
which parameterizes the subspaces of dimension k£ of C™. For instance
the conjecture for this particular case of varieties X is reduced to the
case m = 4 and k = 2, which can be stated as follows.

Conjecture 3. Let M be a 4 x 4 skew-symmetric matrix, with
entries in L and with Q-linearly independent rows; assume that the
Q-vector space generated by the columns of M in C* does not contain
any nonzero element of Q*. Then the rank of M is > 3.

Here is a special case of Conjecture 3:
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Conjecture 4 (Four exponentials conjecture). Let

M _ 10g 11 log 12
log ag;  log ags

be a 2 X 2 matrix with entries in L, with Q-linearly independent rows
and also Q-linearly independent columns. Then the rank of M is 2.

This follows from Conjecture 3 applied to the matrix

0 logai; logage 0
—log 11 0 0 —log 921
— IOg 12 0 0 — log (65D

0 10g 21 log Qo2 0

The situation for 3 x 3 matrices is not as simple as for 2 x 2 matrices;
here is an example suggested by M. Langevin [10, p. 104]. The matrix

0 —logh log 3
log 5 0 —log?2
—log3 log 2 0

is of rank 2, and its rows are linearly independent, as well as its columns.
The fact that the determinant of this matrix vanishes has nothing to
do with the fact that the entries of M are in £: the rank of the matrix

0 —Z Y
Z 0 —-X
-Y X 0

in C(X,Y, Z) is also 2.

Conjecture 1 yields a description of the rank of matrices with entries
in £ as follows (cf. [8]). Let M = ();;) be a matrix with entries
in £; choose a basis logay, ... ,loga, of the Q-vector subspace of C

generated by the entries log o;;, and define matrices My, ... , M, with
rational entries by

M=M,;loga; +---+M,log ay,.
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Define the structural rank 7, (M) of M as the rank of the matrix
M X +---+M,X,

in the field C(X3,...,X,,) (this number rg, (M) clearly does not de-
pend on the choice of the basis log a1, ... ,loga,). From Conjecture 1
one deduces:

Conjecture 5. Let M be a matriz with entries in L; then the rank
of M is equal to rsg (M).

In fact, it is plain that the full force of Conjecture 1 is not needed;
only homogeneous polynomials come into the picture. Hence, it is
sufficient to invoke the homogeneous (weaker) version of Conjecture 1.
Let log oy, ... ,loga, be Q-linearly independent elements of L, and
let P € Q[X1,...,X,] be a nonzero homogeneous polynomial. Then
P(logay,...,loga,) # 0.

An interesting fact is that this homogeneous version of Conjecture 1
is equivalent to Conjecture 5, thanks to part a) of the following result:

Lemma 6. Let A be a (commutative) ring.

a) Denote by R = A[X1,...,Xm] the ring of polynomials in m
variables with coefficients in A. Any element in R is the determinant
of a matriz with entries in the A-module A+ AX, + -+ AX,,.

b) Denote by S the ring A[Xl(l),... ,X,(Lm)] of polynomials in mn
unknowns Xi(j), 1<i<n,1<j<m. Forj=1,...,m, denote by L;
the sub-A-module of S generated by Xl(j), e ,X,(lj). Then any element
in S is the determinant of a matriz M of the form

Moo Moy

Mg My
M = . .

MmO Mml

where Mj; has coefficients in A if either i or j vanishes, while M;; has
coefficients in L; for j =1,... ,m.
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Proof. For the proof of part a), see D. Roy [5, Proposition 4] and
[8, Proposition 3.3]. The proof of part b) which follows is also due
to D. Roy (private communication). Let P € S. According to a),
P = det N, where N is a matrix with coefficients in

A®L & -+ D Ly,.
Hence N can be written
N:N0+N1++Nma

where NNy has coefficients in A and N; has coefficients in L; for

j=1,...,m. Denote by I the identity matrix having the same size as
N. We have
I I - I 0 0 0 0 —N
I 0 --- 0 Ny I 0 0 Ny
det o r --- 0 Nl = det 0 I 0 N1
0 0 --- I Np 0 0 I N,
= +det N.

The matrix on the lefthand side has the required property.

Notice that the previous identity can be seen as a consequence of the
relation:

N:(NO N1 Nm) . . O

Using Lemma 6, we deduce the homogeneous version of Conjecture 1
from Conjecture 5 as follows. Let P € Q[Xy,...,X,] be a nonzero
homogeneous polynomial of degree D, and let Ay, ..., A, be Q-linearly
independent elements of £. From Lemma 6 we deduce that there exists
a square d X d matrix with coefficients in Q + Q15 + - - - + Q1;, whose
determinant is P(1,T5,...,T},). It follows that there exist square d x d
matrices My, ..., M, with coefficients in Q such that

det (M X, + -+ M, X,,) = X{"PP(Xy,...,X,).
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From Conjecture 5 we deduce that the matrix MyA; +--- + My, has
the same rank as M1 X, + ---+ M, X,,, hence P(Aq,...,\,) # 0.

According to part b) of Lemma 6 with m = 1, under the hypotheses
of part a) in the same Lemma 6, any polynomial in R can be written

By B
det <B2 B, >
where the matrices By, B1, Bs have coefficients in A, while the matrix

B3 has coefficients in AX; + -+ + AX,,.

Hence, in order to study the vanishing of nonhomogeneous polyno-
mials in logarithms of algebraic numbers, it is sufficient to consider

matrices of the form
_(Bo B:
M- (5 7))

where By, B; and B, have rational (or algebraic) entries, while L has
entries in £. For such matrices also a structural rank can be defined.
Write

L=M;loga; +---+M,loga,

where log ay, ... ,log a,, are Q-linearly independent elements in £ and
M;,... ,M,, have rational entries. Then rg, (M) is the rank of the
matrix

By B,
B, M;X;+---+M,X, /)’

From Lemma 6, it follows that Conjecture 1 is equivalent to the
following fact: All such matrices M should have a rank equal to
Tstr (M)

With this new point of view, in spite of the fact that no result of
algebraic independence is known for elements of £, we shall see below
(Corollary 10 in Section 4) that half of the conjecture is already known.

Now we show how linear algebraic groups naturally occur.

Let dy,d1,lp and I3 be nonnegative integers such that d = dy + d;

and ! = Iy + [; are positive. Consider the linear algebraic group
G = G% x G%; we identify its tangent space at the origin T (C)

with C?. The exponential map of this algebraic group is then

eXpG(Clr" 7Cdo7zla"' 7zd1) = (Clv"' 7CdoveZ17"' 7€Zd1)'
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In this space C%, we take first a subspace W which is rational over Q,
of dimension [y > 0. This means tﬁat W is generated as a C-vector
space by [y elements 31,. .., B, of Q? which are linearly independent
over Q.

Next we take a finitely generated subgroup Y of L5(Q) = Q% x L%,
of rank [y over Z: there exist wi,...,u;, in C¢ such that Y =
Zuy + -+ + Zuy,. For 1 < j <1y, the coordinates of u; can be written

wj = (Brig+js-- - s Bdolot+si log g, ... s logay, ),

with algebraic Bp;, 1 < h < do, and a5, 1 <4 < d;. We assume that
YNW =0.

Denote by r(W,Y;G) the dimension of the smallest C-vector space
in C? which contains W and Y; plainly, this number is the rank of a
matrix M, of size d x [, whose [ columns are the components of the
given generators of W and Y in the canonical basis of C?¢. This matrix
M can be decomposed into four blocks:

v (BO B1> } do

B, L) ld
~
lo 1y
The matrices
Bir - Bug
By = : :
Baot ++ Bdolo
Biig+1 - Bu
B, = : ' :
Bagio+1 Byl
Bdo+1,1 e ﬂd0+1,l0
B; = : - :
Ba1 Bdo

have entries in Q, while

L = (log aij)lgigdl,lgjgll
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has entries in L.

Choose a basis logag,...,loga, of the Q-vector space which is
spanned by the numbers log o;; in £, and write

n
log oz = Z cijvlogay,
v=1
with rational numbers c;;, so that

B, B,
str M) = k n .
rar (M) = ran (Bz D=1 Xu(ciju)1§i§d1,1§j§l1>

Therefore, Conjecture 1 can be stated as follows.

Conjecture 7.
r(W,Y; G) = rgee (M).

This is the situation which will be generalized in the next section to
arbitrary commutative algebraic groups in place of G% x G,

As a matter of conclusion for this first section, we recall the connec-
tions between the previous conjectures:

1) = @2) = ()= 06)= B3) = @)

2. Commutative algebraic groups. Our goal is to study algebraic
independence of logarithms in commutative algebraic groups in such a
way that, for linear algebraic groups, we are reduced to Conjecture 7.

a) The number r(W,Y; G). Let G be a commutative algebraic group
of dimension d which is defined over a subfield K of C; denote by
T¢(C) the tangent space at the origin of G. Let W be a vector
subspace of T (C) and Y be a finitely generated subgroup of T (C).
We define the rank of the pair (W,Y) as (lo, 1) where Iy = dim ¢W and
l; = rank z(Y/Y NW); we shall also use the notation I = ly+!;. Denote
by r(W,Y; G) the dimension of the C-vector subspace of Te:(C) which
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is generated by W UY . In the special case W = 0, we write 7(Y; G) in
place of r(0,Y; G).

Plainly we have r(W,Y;G) < min{d,l}. More precisely, if G* is an
algebraic subgroup of G, then

r(W,Y;G) < dim G* + dim o(W/W N Tg-(C))
+rank z(Y/Y N (W + Te-(C))).

Since G is defined over K, the space T¢(C) has a K-structure; there
are two ways for a point in T (C) to be defined over K: either it
is rational over K for this K-structure, or else its image under the
exponential map

expg : Ta(C) — G(C)

is in G(K). When G is not a power of G,, these two properties are
fundamentally different (see, for instance, Lang’s early results in [3,
Chapter 2.4]); this is the very heart of the subject. Given a vector
subspace W of T (C) and a finitely generated subgroup Y of T¢(C),
we shall say that (W,Y) is a K-arithmetic pair related to G if W is
rational over K, and Y is contained in Lg(K) = exp,' (G(K)).

If (W,Y) is a K-arithmetic pair related to G, if G* is an algebraic
subgroup of G which is defined over K, and if we put
W* =W nNTg(C), Y* =Y NTg(C),
and
W' =W/W*, Y =Y/Y",

then (W*,Y™*) is a K-arithmetic pair related to G*, and (W',Y”) is a
K-arithmetic pair related to G' = G/G*. If (W*,Y™*) is of rank (I3,17)
and (W',Y") of rank (Ij,1]), then the rank of (W,Y) is (lo, 1) with

Using these notations, the previous upper bound for (W, Y’; G) can be
written

rW,Y;G) <d* +1,
where d* = dim G* and I' = {{ + [}.
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When Y N W = 0 we have [; = rankzY; however, the property
Y N'W =0 is not stable under quotient; this is why we do not restrict
the discussion to this case.

Our goal is to study the number 7(W,Y’; G) when G is a commutative
algebraic group which is defined over Q and (W, Y) a Q-arithmetic pair.
We define

Le =La(Q) = expg' (G(Q)).

In the case where Y is of rank < 1, we have
r(W,Y;G) = I%i*n(d* +1,
where G* runs over the algebraic subgroups of G defined over Q, d* is

the dimension of G* and I = [, 4+ {1, where (I{,[]) is the rank of the
pair (W', Y"):

W' =W/W NTg-(C), Y'=Y/Y NTg+(C).
This follows from Wiistholz’s theorem [12, 13]:
_ Let G be a commutative algebraic group which is defined over the field
Q. Let W be a subspace of T(C) which is rational over Q, and let

u € L NW. There exists an algebraic subgroup G* of G, which is
defined over Q, such that u € Tg+(C) C W.

Here is another consequence of Wiistholz’s result. Let Tg«(C) be
the largest tangent space of an algebraic subgroup G* of G with the
property that Tg-(C) C W. Define

G'=G/G*, W' =W/Ts(C)

and
Y'=Y/Y NTg-(C).

Then we have Y/ N W' =0 and

r(W,Y;G) =dim G* +r(W',Y'"; G").

There is one example of an algebraic group of dimension 2 over Q
with a subgroup Y of Tz(C) which is Q-arithmetic of rank 2 and such



COMMUTATIVE ALGEBRAIC GROUPS 1209

that 7(Y;G) = 1, while Y is not contained in the tangent space of an
algebraic subgroup of G of dimension 1; namely, take G = G, X E
where F is an elliptic curve over Q with a nontrivial endomorphism
represented by 7 € C, 7 ¢ Q; choose v € Lg with expy v not torsion
in £(Q), and define u; = (1,v), uz = (7,70).

We expect that such a phenomenon will not occur for the algebraic
group G = G2 : this is related to the four exponentials Conjecture 4
as follows. We identify, as usual, Tg(C) with C? with expg(21,22) =
(e*',e*?). Assume that a matrix

logai; logais
logas;  log e

with entries in £ has Q-linearly independent columns and rank 1; define

ul_(loga11> and u2_<loga12>‘

10g 21 log 922

Then u; and uy belong to Lg and are Q-linearly independent; hence
Y = Zu; + Zusy is a subgroup of T(C) of rank 2 over Z, which is Q-
arithmetic, with 7(Y; G) = 1. The four exponentials conjecture claims
that the rows of the previous matrix are linearly dependent over Q,
which means that u; and ug belong to a subspace of T (C) = C2 which
is rational over Q; this subspace is the tangent space at the origin of
an algebraic subgroup G* of G of dimension 1 and Tg-(C) D Y.

On the other hand, Langevin’s above-mentioned antisymmetric ma-
trix provides an example with G = G3,, where

r(Y;G) < néip{dim G" +rank z(Y/Y N1+ (C))};

choose three Q-linearly independent elements in £, say log «, log 8 and
log vy, and consider the subgroup Y of C3 = T¢(C) of rank 3 spanned
by the three-column vectors in C? of the matrix

0 —logy log 8
logy 0 —log o
—logp log 0

Then for any subspace of Tg«(C) of C* which is rational over Q,

rankz(Y NTg-(C)) =0 if dimG* =1,
rankz(Y NTg-(C)) =1 if dimG* = 2.



1210 M. WALDSCHMIDT

b) Definition of the structural rank re, (W,Y;G). Conjecture 5
involves the structural rank rg, (M) of a d x I matrix M = ();;) with
coefficients in £. This number 7y, (M) is also the maximal rank of
matrices in the smallest subspace of C# which is rational over Q and
contains the point ()\;;) € C%. Hence, instead of looking at the [
column vectors uy, ... ,u; of M as [ points in the tangent space of G¢,,
we consider the single point (uy,...,u;) in the tangent space of G
(compare with the argument in [9, Section 3e]). We perform a similar
treatment in the general case.

Let G be a commutative algebraic group of dimension d which is
defined over a subfield K of Q. We choose a basis of Tg(C) which
is rational over Q, and we identify Tg(C) with C?. Let (W,Y) be a
K-arithmetic pair of rank (lo,l1); put I = lp +13. We first choose a
basis (B1,--.,8,) of W over C, with 8, € K¢ 1 < h <. Next we
select wu1,...,u;, in Y which are Z-linearly independent modulo W.
We define the algebraic group G as the product Gd° x G!, and we
identify its tangent space at the origin Tg(C) with (C?)!. Define

v = (’Ula'-' ,’Ul) = (517"' 7ﬁlovu17"' 7ul1) € Tg(c)

Denote by T3/(C) the smallest tangent space of an algebraic subgroup
‘H of G, which is defined over K, such that v belongs to T (C). We
define the structural rank rs,, (W,Y;G) of (W,Y) by

rstr (W, Y; G) = max{dim ¢(Cz; + - -- + Cz); (21,... ,21) € Ty (C)}.
In the special case W = 0, we write rg, (Y; G) in place of rg, (0,Y; G).

It is easily checked that this number rg, (W,Y;G) does not depend
on the choices of 81, ... ,8;, and uy, ... ,u;, in Wand Y/YNW, respec-
tively. Obviously, we have r(W,Y; G) < 7y, (W,Y; G) < min{l,d}. For
the algebraic group G% x Gd1, this extends the definitions in Section 1
of the structural rank of certain matrices.

Definition. (Property of algebraic independence). An algebraic
group G which is defined over a subfield K of Q satisfies property
(A.L) if, for any K-arithmetic pair (W,Y), equality »(W,Y;G) =
rstr (W, Y; G) holds.

From the definition of K-arithmetic pairs, it follows immediately that
any unipotent group G¢ satisfies property (A.L). On the other hand,
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we have shown at the end of Section 1 that all linear group G% x G4
satisfy property (A.L) if and only if Conjecture 1 is true.

Remark. An example of an algebraic group (namely a nontrivial
extension of an abelian variety by the multiplicative group) which does
not satisfy property (A.lL) follows from D. Bertrand’s construction in [2]
together with the fact that property (A.L) implies the density property
(see Proposition 8 below).

c) Simple Abelian varieties. We show how to compute the structural
rank when the algebraic group G has no nontrivial subgroups and
lp =0.

Let K be a subfield of C and A be a simple abelian variety over K,
of dimension d. Let vi,...,v; be Z-linearly independent elements of
T4(C); define Y = Zvy + --- + Zv;. Consider the smallest algebraic
subgroup H of A’ such that Tg(C) > (vi,...,v); since A is simple,
the dimension of H is dr for some integer » with 1 < r <[, and there
exist endomorphisms 6;; of A, 1 < j <1, 1 < i <r, such that Ty (C)
is the image of the C-linear map

Tar(C) — Tyi(C)
(21, 20) - — (;ajz>

Define, for z = (z1,...,2;) € Ty»(C) and 1 < j <1,

1<5<

Ajz = Z&jzi S TA(C),

i=1
in such a way that

TH(C) = {(Alza v 7Alz); z € TAT(C)}
We deduce that re, (Y, A) is the dimension of the C-vector space
spanned by Ay, ... ,A; in Homg(Tar(C),Ta(C)).

Ezamples. 1) We consider the special case r = 1: if §y,...,d (with
I > 2) are elements of End A which are linearly dependent over C in
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End ¢(T4(C)), and if v; = ;v for some v € T4(C) and 1 < j <, then
Tstr (Yr, A) <.

2) Here is an example with » = [ — 1: assume that vy,... ,v;_1 are
linearly independent over End A; this means that Z(vq,...,v;—1) is
not contained in a subspace Ty (C) for H algebraic subgroup of A!~1
different from A'~'. Assume also that [ < d; in this case we show
Tstr (Yr, A) =1.

Indeed, this is true for [ = 1; hence, we may assume 2 < [ < d.
As before, denote by H the smallest algebraic subgroup of A! over K
such that T (C) contains (vy,...,v;). If H = Al then the result is
clear. Otherwise, dimH = d(l — 1), and there exist positive integers
my,...,my_1 as well as endomorphisms d;,...,6;_1 of A such that

T#(C) = {(miz1,... ,mi a1z 1,6121 + -+ &121-1);
(21, ,21-1) € Ta-1(C)}
Define Ay,... ,A;, which are C-linear maps T4i-1(C) — T4 (C), by
Ai(z1y...2101) =mizg, 1<i<T—1
and
Ay(z1,. -, 2-1) = 0121+ -+ 12121
We claim that these elements of Homg(T4i-1(C),T4(C)) are C-
linearly independent: if ¢1,... ,¢;—1 were complex numbers such that

A=t A1+ -+ 1A,

then we would deduce §; = t;m; for 1 < i <[ — 1; hence, t1,...,t;_1
would be rational numbers (recall that A is not an elliptic curve), and
the relation v; = tymyvy + -+ + t;_1my_1v;_1, would contradict the
linear independence of vy,...,v;. Hence, Ay,...,A; are C-linearly
independent in Homeg (T 4:-1(C), T4(C)), and therefore 7y, (Y, A) = L.

d) Product of algebraic groups of dimension 1. Let E be an elliptic
curve which is defined over the field Q. The algebraic groups E¢, d > 1,
satisfy property (A.L) if and only if the following statement is true:

Let uy, ... ,uy, in Tg(C) be linearly independent over End E and
satisfy expg(u;) € E(Q), 1 < j < n. IfP € Q[Xy,...,X,] is
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a monzero homogeneous polynomial with algebraic coefficients, then

P(uy,... ,up) #0.

The algebraic independence of u, ... ,u, over Q (i.e., the nonvanish-
ing of P(uy,...,u,) for any nonzero polynomial P € Q[X,...,X,])
means that the algebraic groups G% x E9 dy > 0, do > 1, sat-
isfy property (A.L). Similarly, property (A.IL) for the algebraic groups
Ggo X GZ; x E% dy > 0,d; >0,dy >0, is equivalent to the alge-
braic independence of the numbers log aq, ... ,log o, Uy, ... ,u, when
log ay, ... ,loga,, are Q-linearly independent in £ and ug,... ,u, are
End E-linearly independent in Lg. The proof of this fact uses the fol-
lowing special case of Lemma 6:

any polynomial in A[X1,...,X,,Y1,...,Ys] can be written
M, M;
det M1 M4
M: M;

where the matrices Mg, M1, Ma, M3 have coefficients in A, the matriz
My has coefficients in AX1 + --- 4+ AX,, and My has coefficients in
AY; + -+ AY.

It is easy to extend this discussion to the situation where E% is
replaced by a product of several elliptic curves.

3. The density property. In this section we work with a
commutative algebraic group G which is defined over a subfield K of
R; we denote by expg g : To(R) — G(R) the exponential map of the
real Lie group G(R) (this is nothing else than the restriction of expq
to Tg(R)) and by kerexpg g its kernel, which is a discrete subgroup
of TG (R)

Our aim in this section is to show a connection between property
(A.L) (restricted to the case [y = 0) and the following one, which is
introduced in [11]:

Definition. Let K be a number field which is embedded in R
and G a commutative algebraic group which is defined over K. The
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algebraic group G is said to satisfy the density property if, for any
finitely generated subgroup I' of G(K), and for any (vi,...,v) € I'!
such that Z~; +- - -+ Zr; is a subgroup of finite index of I', if { denotes
the Zariski closure in G' over K of the subgroup Z(vy, ... ,7), and if
there exists (n1,...,m) € H(R) such that Zn; + --- + Zn; is a dense
subgroup of G(R)?, then I' N G(R)? is dense in G(R)".

The condition which is stated is obviously necessary: if [ N G(R)? is
dense in G(R)", we just take n; = ;.

In the density property, the condition is on the algebraic subgroup
‘H, while in property (A.L), the condition is on the tangent space T;
the difference is significant; for an algebraic subgroup H of an algebraic
group G over R,

expa,lR(H(R)) =Ty (R) + ker expg R -

As noticed in [1, p. 48], given an algebraic group G over a subfield K
of C and a point v € G(K), the choice of a logarithm of v, that is the
choice of a point u € T¢(C) with expg(u) = v determines an action of
Q on v by

p

) = ovapu/a), pleeQ;

the Zariski closure of the orbit of 4 under this action is the smallest
algebraic subgroup of G whose tangent space at the origin contains u.

Proposition 8. If a commutative algebraic group G which is defined
over Q N R satisfies property (A.L), then it also satisfies the density
property.

Proof. Let G be an algebraic group over a real number field K
which satisfies property (A.L), I' a finitely generated subgroup of G(K),
Y,.-- 3 in TNG(R)? span a subgroup of finite index of I', and # the
Zariski closure over K of Z(vy,... ,v) in G'.

We choose a basis (w1, ... ,w,) over Z of the kernel of the exponential
map of the Lie group G(R); we also choose (y1,...,y) in T (R) such
that expgi (Y1, -+ »u) = (91,-- ., V). What we will say will not depend
on these choices, in the same way as the density property does not
depend on the choice of v1,...,7v. Notice that Zw; + -+ + Zw, +
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Zy, +- - -+ Zy; is a subgroup of finite index in exp(_;}R(F) and that #H is
the smallest algebraic subgroup of G! over K such that T3 (R) contains
(Y1,--- Y1)

We denote by H the smallest algebraic subgroup of G**!, which is de-

fined over K, such that T (R) contains the point (w1, ... ,wWs, Y1,--- , Y1)
€ TEM(R). We claim

(0)*xHCHCG" xH.

The first inclusion is proved as follows: since (wy,... , Wk, Y1,--- , Y1) €
T (R), we have

0,...,0,71,...,m) € HR) N ({0}* x G'(R)).

If p: G**' — G' denotes the projection with kernel G* x {0}, then
p(HN({0}" x G')) is an algebraic subgroup of G' over K which contains
(71, .- ,7); we deduce from the definition of H:

p(HN({0}* xGY) DA,
and the first inclusion follows.

For the second one, we notice that G* x H is an algebraic sub-
group of G**! over K whose tangent space at the origin contains
(Wiye- ,Wk,yY1,--- ,Y1); hence, this algebraic subgroup contains H.
This completes the proof of the claim.

It immediately follows that if p’ : G**! — G* denotes the projection
with kernel {0}* x G!, then H = H' x H, where H' = p'(H). Therefore,
(Wiy... ,wy) € T (R) and (wy, ... ,wg,0,...,0) € Tg(R).

Assume that I' N G(R)? is not dense in G(R)°. Then the subgroup
Zwi+- -+ Zw,+Zyy +- - -+Zy; is not dense in T (R); hence, there exist
k+1—1 elements uj,... ,uxt;—1 in this subgroup, which are Q-linearly
independent and belong to a real hyperplane of T(R). Therefore, the
subgroup Y = Zuy + -+ - + Zuy4;1 of Tg(R) satisfies

r(Y;G) < dimG.
For 1 < ¢ < Kk + 1 — 1, write u; as a linear combination of
Wiy--- sWky Y1, -- -,y With rational integer coeflicients; this gives a ma-

trix of size (k + 1 — 1) x (k + 1) with rational integer coefficients and
rank K 4+ [ — 1. Hence, a surjective linear map

m: Ta(R)™ — Te(R)"H!
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with 7(w1,... Wi, Y15+ 91) = (u1,...,uxti—1). We also denote
by 7 the corresponding morphism G**' — G*t'=1. It is easy to
check that H” = n(H) is the smallest algebraic subgroup of G¥*+!~1
defined over K such that (u1,...,uxt+1-1) € Ty (R), and hence also
the smallest algebraic subgroup of G**!~1 defined over K such that
(ut,...  ugti-1) € Tar(C).

Assume now that I' does not satisfy the density property: there
exists (My,...,m) in H(R) such that Zn; + --- + Zn is a dense
subgroup of G(R)°. We choose an element (v, ... ,v;) in Ty (R) with
expgt (v1, ... ,v) = (N1,... ,m), so that Zwi+- - -+ Zw,+Zvy+- - -+ 2y,
is a dense subgroup of T¢(R). Hence, any family of k +1 — 1 elements
in this subgroup which are linearly independent over Z contains a basis
of T¢(R) over R.

Define
(215 s Zrpi—1) = T(W1, e e s Wiy Uty v, VL)

we have (wy,...,ws,v1,...,v) € Tg(R). Hence, (21,...,2k4+1-1) €
Trv(R). Since Rzy + -+ -+ Rzeqi—1 = Tg(R) we also have Czy +-- -+
Cz,41-1 = T(C), and this implies

retr (Y3;G) = dim G.
We deduce r(Y;G) < rer (Y;G); hence, G does not satisfy property
(A.L). o
4. A partial result. When G is a commutative algebraic group,
we define ¢ = o (G) by

- { 1 if G is a linear algebraic group,
2 otherwise.

Theorem 9. Let G be a commutative algebraic group which is defined
over a number field K, and let (W,Y) be a K -arithmetic pair. Then

1
wW.Y: > W.Y: .
'I‘( 5 ,G) = 0 17'str( 5 ,G)

The case 0 = 1, ie., G = G% x G& over Q, can be stated as follows:



COMMUTATIVE ALGEBRAIC GROUPS 1217

Corollary 10. For a matrix M of the form
_(Bo B:
e (m )
where By, By and By have algebraic entries while L has entries in L,

the lower bound 1
rank (M) > 57'3“ (M)

holds.

This Corollary 10 has been generalized by D. Roy [4, 7] to matrices
whose entries are linear forms with algebraic coeflicients in logarithms
of algebraic numbers.

The main tool in the proof of Theorem 9 is the theorem of the algebraic
subgroup. There are several (equivalent) statements; a thorough study
of this question has been done by D. Roy. Here, we shall apply
Théoréme 6.7 of [6] which we state now. We deal with commutative
algebraic groups G which are defined over C. When s : G — G’ is a
surjective morphism of algebraic groups, we denote by ds the associated
linear map T (C) — T/ (C) on the tangent spaces at the origin.

Theorem 11 (Theorem of the algebraic subgroup). Let G be
a commutative algebraic group which is defined over the field Q of
complezx algebraic numbers and V' a subspace of Tg(C) which is not
T (C). Among the surjective morphisms of algebraic groups s : G —
G', defined over Q, for which ds(V) # Tg(C), and for which the
quotient

dim ¢(ds(V))/dim G’
is minimal, we select one for which Aim G’ is minimal. Then, if we set
V' =ds(V), and if we denote by VW the mazimal subspace of V' which
s rational over Q, we have
dlmc(V//W)
dim C (Tgl (C)/V’) )

dimq(V' NLg) < pdim G’

Notice that Théoréme 6.7 of [6] involves a function a(G) which we
have replaced, for simplicity, by odim G (the arguments of [6] imply
this result, as explained in [6, p. 266]).
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We state this result in a slightly different way which is closer to our
own notations.

Corollary 12. Let G be a commutative algebraic group of dimension
d which is defined over a number field K C C, and let (W,Y) be a K-
arithmetic pair of rank (lg,l1) with lo+1; = 1. Assume that the number
r=r(W,Y;G) satisfies r < d. Then there exists an algebraic subgroup
G* of G, defined over K, of dimension d —d' with 1 < d' < d, such
that, if we set

and
ly = rank z W', I} =rankz(Y'/Y' nW'), r=r(W.Y"; &),
then

r! S I+ ol

> — .
=d =l +od

r
d

We deduce Corollary 12 from Theorem 11 as follows. Let V be
the subspace of T (C) which is generated by W and Y; Theorem 11
provides the existence of some morphism s : G — G’. Define

G* =kers, W' =ds(W), Y' =ds(Y), V' =ds(V);

the dimension of V' is 7/ = r(W',Y’; G'). Hence, r/d > 7' /d’. Since the
maximal subspace W of V’ which is rational over Q contains ds(W),
we have dim cW > [j. Further, V' N L&/ contains ds(Y’) which is of
rank > l{; it follows that we have dim (V' N Lg/) > I}. Therefore,
Theorem 11 yields

r' =1
h<odo—7,
which provides the conclusion of Corollary 12. u]

The proof of Theorem 9 involves three further lemmas.
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Lemma 13. Let G be a commutative algebraic group which is defined
over a subfield K of C, and let (W,Y) be a K-arithmetic pair related
to G. Then there exists a subspace W* of W and a subgroup Y* of
Y such that W* N Y* = 0, and such that the rank (I§,1}) of the pair
(W*,Y™) satisfies

lS + lr = Tstr (W*a Y*; G) = Tstr (VV’ Y’ G)

Proof. We choose a basis {1, ...0;,} of the C-vector space W, and
we choose uy,...,u;, in Y which are Z-linearly independent modulo
W. We define I* = ry, (W,Y;G), and we denote by H the smallest
algebraic subgroup of G = G0 x G!1 defined over K, such that the
point

(vla"' ,’Ul) = (/817"' ’Blo’u:l’"' 7ul1) € Tg(C)

belongs to T (C). According to the definition of 7y, there exists
(21,...,2) in Ty (C) such that

dimc(Cz +---+ Cz) ="

We choose I* elements among {z,..., 2}, linearly independent over
C. For simplicity of notation, say that z1,..., 21z, 2l5+1, - - - ; 2i,+1; are
linearly independent over C, with [§ + 7 = [*. We define W* =
CBr+ -+ CPz and Y* = Zuy + -+ + Zu;. Plainly, we have
W*NY* =0, and the pair (W*,Y™*) has rank ({§,]).

We denote by #* the smallest algebraic subgroup of G = G% x G
which is defined over K and such that (51,..., B, u1,- .. ,w;) belongs
to Ty~ (C). We also put

d(lo—1§ 1y —1*
g**:Ga(O O)XGl 1

in such a way that (vi,...,v;) belongs to Ty« (C) x Tg+~(C). Hence,
H C H*xG**, which implies that (z1,... , 21, 21g+1, - - - » 21,+17) Delongs
to T3+ (C), and consequently

ree (W5, Y% G)=1*. O

Lemma 14. Let G be a commutative algebraic group which is defined
over a subfield K of C, and let (W,Y) be a K -arithmetic pair of rank
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(lo,11). Define l =lg + 1y and assume rg, (W,Y;G) = 1. If G* is an

algebraic subgroup of G defined over K, W* is a subspace of W and

Y* a subgroup of Y such that W* C T+ (C) and Y* C T+ (C), then
Tstr (W*a Y*7 G*) = 13 + lT

where (I§,1}) is the rank of the pair (W*,Y™*).

Proof. Assume rg, (W*,Y*;G*) < I* where I* = [§ +1f. Choose
first a basis (B1,...,0,) of W so that (81,...,8) is a basis of
W*, and next elements wuj,...,u; in Y which are linearly inde-
pendent over Z modulo W, while uy,...,w; belong to Y*. Fur-
ther*7 let H* be an algebraic subgroup of minimal dimension of
G¥o {G*)1 such that (By,... s Big,u1, - - ,w;) belongs to Ty« (C).
From the assumption rg, (W*,Y*;G*) < [* we deduce that any
(Zl, e ,le,zlo_,_l, e 7zlo+li‘) in T'H* (C) satisfies

dimc(021 +-- 4+ Czl(*) + Czlo+1 + e+ Czl0+li‘) < 1*.

On the other hand, if we introduce the algebraic group

d(lo—lg) Iy —1*
G =Gu T x G,

then we have
(Br,- -, Biosut, - yury) € Ta (C) x Tg=+(C),
and for each (z1,...,2;1) € Ty~ (C) x Tg««(C), we have
(215 -+« 52135 Zlg+ 15+ -+ 5 210+13) € T (C),

hence
dim¢c(Cz +---+ Cz) <,

which proves rg,, (W, Y; G) < L. O

Lemma 15. Let G be a commutative algebraic group which is defined
over C, G* an algebraic subgroup of G, W a subspace of T¢(C) and Y
a finitely generated subgroup of T (C). Define

W*=WnNTg(C), Y*=YnNTg(C)
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and

Y
C T (C).

G =— W' = W CTgl(C), Y' = v

G’ W

r(W,)Y;G) >r(W Y, G') +r(W*,Y*;G*).

Proof. We choose a basis of Tz« (C) which we complete into a basis of
T (C). We denote by (o, 1) the rank of the pair (W,Y) and by (I§,17)
the rank of the pair (W*,Y™*). Next we choose a basis (31,...,08,) of
W such that (B1,—z+1,--.,8,) is a basis of W*. Finally, we choose

U1, ... ,u;, in Y which are linearly independent over Z modulo W, and
such that w;, —sz41,... ,u, belong to Y*. The matrix of the components
of B1,..., B, U1,...,u, in the given basis of Tz(C) can be written

M’ 0
M:(M// M*>’

where M is of the rank r(W,Y; G), M’ is of rank r(W',Y’; G') and M*
is of rank r(W*,Y*; G*). O

Proof of Theorem 9. According to Lemma 13, there is no loss of
generality to assume Y NW =0 and rg, (W,Y;G) =1 =y + l; where
lp = dim ¢cW and Iy = rank zY. Therefore, [ < d. Also, we may (and
will) assume that there is no algebraic subgroup G* other than G which
is defined over K and such that W+ CY C TG« (C); otherwise, we just
replace G by the smallest G* with this property. Finally, thanks to the
assumption rg, (W,Y; G) = [, we may assume that the vector space W
does not contain any nonzero Tz(C) for G an algebraic subgroup of G
over K of positive dimension (otherwise we replace G by the quotient
G/G).

We prove the lower bound r > 1/(p+1) for the number r = (W, Y; G)
by induction on [. For | = ly, we plainly have r = [, and the estimate
holds true. We assume now that I; > 1 and that the result has already
been proved for the K-arithmetic pairs (W*,Y*) of T¢(C) of rank
(1§,13) for which I§ + 1] < I. We use the theorem of the algebraic
subgroup above: there exists an algebraic subgroup G* of G, defined



1222 M. WALDSCHMIDT

over K, of dimension d — d’ with 1 < d' < d, such that, with the
notations of Corollary 12,

r_’> Iy +olg
d =l +od’

,
- >
72

We now define I’ = [{; + [}, and we consider two cases:

a) Assume that d’ <'. In this case, d’' < (o + 1)Ij + 1} and

I+ ol o1
li+eod = o+1’

which implies

This completes the proof in case a).

b) Assume that d' > I’. Then we have
2+ olp) = 11

hence,
(e+1)d'(ly + olp) > U'(ly + od'),

which implies
ll
r’ > )

o+1
We define W* = WNTg<(C), Y* =Y NTg-(C), and I* = I[§ + I3
where (I§,1]) is the rank of the pair (W*,Y*). Since W + CY is not
contained in Tg+(C), we have I* < [. Using Lemma 14 we deduce
retr (W*,Y*; G*) = I*, hence the induction hypothesis implies

rt=r(WY5G) 217/ (e + 1)
finally we conclude with Lemma 15:

I* * l
> ! * > = .
U e P FE Sl
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