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Dedicated to Wolfgang Schmidt on the occasion of his 60th birthday

1. Introduction. The purpose of this paper is to study the
transcendence degrees of fields of definition of certain points on one-
dimensional analytic subgroups of products of nonisogenous Drinfeld
modules. Such a product is endowed with an analytic structure through
its canonically associated exponential function. A one-dimensional
analytic subgroup is the image under the exponential mapping of a
one-dimensional vector subspace of the tangent space. We will expand
on this below.

We begin with notation which we retain throughout this paper:
F, is a finite field with ¢ = p°® elements, C' is a smooth projective
geometrically irreducible curve over Fg, oo is a fixed closed point of C
of degree denoted by deg (c0), k is the function field of C over F, and
A is the ring of functions in k& which are regular on C\{co}.

In the above circumstances a valuation may be defined on the ele-
ments of k£ by v(a) = —dw(a) where d, : k — Z is defined by

do (a) = (order of pole of a at o) - deg (c0).

We then make the following choices of notation: k is the algebraic
closure of k, ko is the completion of k with respect to the valuation v
above, and k., is the algebraic closure of k.

A Drinfeld elliptic A-module of rank d may then be defined by taking
an A-module A of k., which is discrete with respect to the valuation v
and which has rank 4A = d < co (i.e., A is a lattice). There is then a
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1166 R. TUBBS

corresponding exponential function

e(z):zH<1—§>

AEA
220

which is entire with lattice of periods A. The A-action is then given by
a homomorphism

0: A= ko{F},

where ko {F} denotes the twisted polynomial ring in the Frobenius
F : X — X9 which satisfies

(1) e(az) = p(a) o e(2)

for all a € A. (For details see, e.g., [2]).
In this setting ¢ must satisfy

p(a) = a+ oM ()F + -+ o™ (a)F*

where ¢(F)(a) # 0 and k = d - doo(a). We say that ¢ is defined over
a subfield L of ko, if ¢(a) € L{F} for all a € A. Moreover, given a
discrete A-module A and an associated homomorphism ¢ : A — L{F},
which satisfies (1) when e(z) is the exponential mapping associated
with A, we say that the Drinfeld module (G4 (koo ), ¢) has rank d and is
defined over L. If we take ¢ to be the identity mapping, then we obtain
the “trivial Drinfeld module” whose exponential mapping is given by
e(z) = z. We denote this by G.

Let G1 = (Ga,01),---,Gp = (G, ) be Drinfeld modules with

period lattices Ay, ..., A all of A-rank at most d. Let e1(z),... ,ep(z)
be the associated Drinfeld exponential functions. Then the product
G = G X G X --- x Gy can be endowed with the structure of a

t-module (see [1]) which has as its exponential mapping the mapping:

expa (20, --- 5,2p) = (20,€1(21),--- s ep(2p))-

In this setting the A-action is the diagonal one, which we denote by

¢(a)-
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A one-dimensional analytic subgroup of G, defined over a subfield K
of k, is an entire F,-linear mapping

®: ko — Glkoo)
which satisfies:
(i) ®(az) = ¢(a) o ®(2) for all z € ky
(i) ®(2) =307, Brz?" with B, € K.
It is not hard to see, indeed it is implicit in [1], that in this situation

there is a linear mapping

, : ko — K

o0

so that
(2) ®(2) = expg(P«(2)).

A morphism between two Drinfeld modules G; and G5 is a morphism
of the additive group schemes which respects the two A-actions. In
particular, a morphism defined over a field K is an element f in K{F}
which satisfies

foei(a) =p2(a)o f
for all @ in A. An isogeny is a nonzero morphism.
We say that two Drinfeld modules G; and G5 are nonisogenous if

there does not exist an isogeny from G; to G5 defined over koo. There
is a straightforward criterion for two Drinfeld modules to be isogenous.

Proposition 1. There exists an isogeny f : G — G2 between two
Drinfeld modules of the same rank if and only if there exists a nonzero
element u n ko such that uA; C As.

Proof. See, e.g., [3]. o

Indeed, if G; and G5 are isogenous, then they have the same rank
and there exists v such that uA; C Ay. As a consequence, if e(z) and
e2(z) are nonisogenous Drinfeld modules of rank at most d, then

rank 4(A; NAy) <d-—1.
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Suppose that Gy, ..., G} are nonisogenous Drinfeld modules all de-
fined over k, and let G = G x Gy X --- x G}. Suppose further that
® : koo — G(koo) is a one-dimensional analytic homomorphism, defined
over a subfield K of k... By (2) we have a representation

(3) D(z) = (awz, e1(12), - .. ,ep(apz))
with «; € K.

We want the image ®(k,,) to be Zariski-dense in G(ku,) and, there-
fore, the coordinate functions to be algebraically independent. Since
Gp,G1,...,Gy are nonisogenous Theorem 5.1 of [3] tells us that this
holds if all of «y,... ,qp are nonzero. From this we see that any result
concerning the values of the coordinate functions of ®(z) can be for-
mulated in terms of the values of Drinfeld exponential functions. We
take this point of view in stating our results.

Theorem 2. Let ui,...,w be A-linearly independent elements
of koo, and let Gy = (Ga,1)s--.,Go = (Ga,pp), with b > 2, be
nontrivial, nonisogenous Drinfeld modules of rank at most d, all of

which are defined over k. Let ei(z),-..,ey(z) denote the associated
exponential functions and assume that vy,... , v, are all nonzero.
If
b
l>——d
-1

then at least two of the values
uj,vi,ei(viug), 1<i<b 1<j5<I

are algebraically independent over k.
As a companion to Theorem 2, we have:

Theorem 3. Under the hypotheses of Theorem 3, if

2b
>
> —d

then at least two of the values

ujaei(viuj)a lglgba lgjgl
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are algebraically independent over k.

We remark that the proofs of Theorem 2 and Theorem 3 involve the
use of Gelfond’s method and Schneider’s method, respectively. The
difference between these two, which is manifested in whether or not
the set which is shown to contain algebraically independent elements
contains the values v;, for 1 < ¢ < b, is that the former involves
differentiation of the component functions of ®(z) while the latter does
not.

If we consider a one-parameter subgroup of G; X --- X Gy, where G
has no G, factor, we obtain the result:

- Theorem 4. Let u,...,u be A-linearly independent elements of
koo, and let Gq,...,Gy, with b > 3, be nontrivial, nonisogenous,
Drinfeld modules all of rank at most d. Assume that vi,... v, are
nonzero elements of koo with
1 1
4 —AN; [ )| —A;={0
(1) AN A= 0)
fori#j. If
b
l>——d
“bh-2"

then at least two of the values
viaei(viuj)v ]-Slgba ]-S.]Sl

are algebraically independent over k.

Just as Theorem 2 above has a companion wherein the algebraically
independent set does not involve the values v;, so does Theorem 4.

Theorem 5. Under the hypotheses of Theorem 4, if

2b
l>——d
“b-2

then at least two of the values
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are algebraically independent over k.

One expects in both Theorem 4 and Theorem 5 the condition (4)
is either not necessary or can be relaxed. However, it does not seem
possible to do so using the techniques of this paper.

2. Arithmetic estimates. For a fixed lattice A;, of A-rank d, the
exponential function, e;(z), associated with A; is an E,-function. What
this means is that when e;(z) is written as a power series

ei(z) = Zb,(f)zqk,
k=0

which must be of this form by Artin’s theorem, one has a good bit
of arithmetic information concerning the coefficients b,(j). If the field
of definition of ¢(a) is L C k, then each b,(:) € L and there exists a
constant Cfi) = C4(e;(2)) such that for all k

max{d (b,(j)o) : b,(:)o a conjugate of b,(j)} < Cfi).

What is also important is that the denominators of the sequence {b,(:)}
are well-behaved. More precisely, there exists a sequence {a,(:)} cCA
and a positive constant C{” = Cy(e;(2)) with

(1) doo(afj)) < Cg(i)k:qk for all &

(2) for all h <k, a,(ci)bgj) is integral over A

(3) if ¢Ft + -+ ¢* < ¢V, then a,(fl) . -a,(fs) | a%).

We will use this information to study the arithmetic properties of the
functions z, e;(v12),... ,ep(vpz) at points from the set:

U(s) = {arur + - +aug : aj € A, d(aj) < S}

Let L denote an algebraic field of definition of the Drinfeld modules
©1,--. ,pp. Let K be an extension of L which contains all of the values
Viy--- ,Up-
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Let 6,...,0s denote a transcendence basis of K over L, and
let v1,...,v, (with 1 = 1) be a vector space basis for K over
L(6,...,0;). For any z € K we then have a representation:

n
(5) €= <ZPM(01,... ,es)u(,)/PO,z(el,... ,0,),
o=1
where we take the polynomials Py 5, Pz, .. , Pne with coefficients in

A, the integral closure of A in L, without a common factor. We
let D(z) = max{degPyy,...,degP,}, and let ho(x) denote the

maximum do, of the coefficients of Py 4, ..., Pp z-
Hence, for
° k
(@),4" 4"
ei(viz) = E b, vl 27,
k=0

the Taylor coefficients now lie in K. Indeed, by the properties of the
q

E,-functions above, it follows that b,(:)vik has a denominator §; in
A,l01, ... ,0,] which satisfies the estimates:

(1) D(di) < a*Cs(vi)

(2) hoo(8i) < O3 ke + hoo(vi)a"

(3) if g™ + -+ g* < ¢V then &k, -+ 8k, |0i N

For a fixed u(a) = ajuy + -+ -+ aju; € U(S), and for each 3,

k

(6) ei(vi2) = ei(viu(a)) + Y b v? (2 — u(a))”".
k=0

However, using the A-module action given by ¢, we have

(7) ei(viu(@)) = Y play) o ei(viuy),
j=1
where p(a;) € L{F}, a; € A.
It is well known that k is a finite separable extension of Fy[r] for any
7 with do () = 1. Moreover, A is a subring of the integral closure of

F,[7] in k. Fix such a 7 and suppose that n; =1, n2,... ,ny is a vector
space basis for A over F,[r]. Then for a € A

(8) a=aim+-+ams
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with a; € Fy[r]. Therefore

;
9) p(a) =Y ola)e(n)

t=1

Proposition 9. Let a € A with d(a) = . Fiz 7 with deo(7) = 1
and a basis n1 = 1, n2,...,n5 of A over Fy[r]. Suppose that a is
represented as in (8). Then, if p(a) = a+ @M (a)F + --- 4+ o*) (o) F*
and 99 (a) = a, we have

maxdm(ww())<inwx{d (), doo (9™ (@), -, doo (9! 10= () (a))}

0<t<k 1<t<
(4)
+ max, deo(p) (7))

d max doo
" q a: IStSf{ (nt)} —1 qd(maxlgtgf{doo(at)}_l)‘

g4 -1

Proof. For a = axm1 + -+ - + ayny with o € Fy[7] we are reduced to
computing de (p(ayn:)) for each t. Yet

p(an:) = @) p(ne)

d-doo (at) ky
— Z Z (9 () F9)
1=0 7=0
drdeo (as) ky .
= 3 ()" () F.
i=0  j=0

We then apply the estimate for do, () (1;)) given by Lemma 2.1 of [2]
to obtain our result. O

Let u(a) = aju1 +- - - + aqruy with a; = aj1m +- - -+ ojny. From the
expression (7) for e;(v;u(a)), we see that we can write

Z Pk ei(u(a eZ (viug))

l
k=1
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where each P ()

bes (u(a)) € Ao [X] is an Fg-linear polynomial with

deg XPéfii(u(a)) < gdmaxicecsi<y<ifdeo (i) tdoo (me)}

(This estimate comes from the observation that the degree in F of ¢(a),
when a is represented as in (8), is at most

max {d - doo (aje) +d - doo () }.)
1<5<I
Additionally, it follows from Proposition 6 above that the coefficients

of each Plgl; (u(a)) have d,, at most

C’4qdmax1<t<f 1<j<i{doo (ajt)+doo (ne)}

stxr,lsgs

where C; = max; x{doo ™ (a;)}.
When we have a; represented as above, we also note that if deg  (a) >
Cs = Cs(m, .- ,1m¢), it is possible to assume that for each t:
doo(a;) = doo(jt) + doo (n);

therefore, we can rewrite the above estimates for deg XP,gizi (u(a)) and

ds of the coefficients of Pk(f)

,€i

maxi<i<f1<j<i{doo(@j¢)}. In particular, we obtain

(u(a)) in terms of du(a) instead of

degXPk(:f) (@) < qd(cs+doo (a))

ei(u

oo (P utay) < €7,

3. Multiplicity estimate. We temporarily let G be a product of
n nonisogenous Drinfeld modules where one of the factors is, possibly,
G. For a polynomial P(Xj,...,X,) we define the order of vanishing
of P at a point u, along an analytic subgroup ® : ks, — G(koo)
as in [2]. For completeness, we recall this here: We first define the
hyperderivatives of P with respect to ® to be the coeflicients in the

Taylor expansion:

P(X+®(2)) = i AT P(X)2.

=0
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For any u € ky, we can write

P(2(2)) = Z AT P(®(u))(2 — u)’

(see [2]).
We say that P vanishes to order T' at ®(u), along ®, if

ATP(®(u) =0, 0<j<T.
In this context we have the following result, which is due to Yu [7]:

Proposition 7. Let P(X1,...,X,) be a polynomial with deg x,P =
D;, and let ®(z) = (e1(a12),... ,en(anz)). Letuy,... ,up be A-linearly

independent points in ko, and for S > 0 recall that

US) ={arur + -+ au; : a; € A,dw(a;) < S}.

Suppose that P vanishes at each point v € T'(S) = ®(U(S)), along @,
to order at least T. Then there exists an algebraic subgroup H of G,
with H = Hy X +++ X H,,, which is invariant under the A-action on G,
so that:

(S)+H T dim G/ H
T'card (T>degH < C(G) HD. .

A
i=1

Proof. This is nothing more than Theorem 2.1 of [2] together with
the description of A-invariant connected algebraic subgroups of G,
Theorem A of [3]. o

Proof of Theorem 2. Let G = G x G1 X --- X Gy. We view the
integer S used in the definition of U(.S) above as free and let Lo, L; and
T be integers (depending on S) which we choose below. The constants
c1,C2,... which appear below do not depend on any of these integers.
Put

L={(oy...,lp) ENTL:0<1y <Ly, 0<1; <Lyforj=1,...,b}
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Assume that all of the values u;,v;,e;(viu;), 1 <4 <b, 1< j <l
lie in a field K of transcendence degree one over L. Let 6 denote a
transcendental generator of K over L. We then let (y1)1ez denote an
element of (A, [9])(L°+1)(L1+1)b. Associated with each such vector there
is a function

(10) Fy(2) =) mz el (nz) - e (v2).
leL

Our immediate aim is to find a nonzero vector v = (71)1c. so that the
associated function F, vanishes at all points u(a) € U(S), with mul-
tiplicity ¢”. Moreover, we want to maintain control of the arithmetic
(D and hy) of the coordinates of the vector ~.

We choose the integers Ly, L; and T maximal so that

g7 < g(U+dv)/B)S, gk < q/vs

and Lo =T +log, 5.

For each u(a) € U(S), we substitute the representations (6) for e;(v;z)
directly into (10) above and obtain:

Fy(2) = Y wfu(a) + (= — u(a))}e
lel
l;

b o ) . .
X H {ei(viu(a)) + E BT (z — u(a))? } )
i=1 k=0

When we compare this with the Taylor expansion of F,(z) at u(a),

Fy(2) = [] fr(u(@))(z = u(a))",

we see that:

fr(U(a))ZZw{ ) (—lol(lf_’ (e

e Ltotttr=r
to<lo

b
[T X ewu@) i) bi’i) }

=1 gk gtoi =t
s;<l;
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If we substitute the representation of e;(v;u(a)) given by (5) and (7)
into the above expressions, and clear denominators, we obtain

n

b
(H P oL,ii(u(a))(e)> 0l fr(u(@) = D0 D P gy O
i=1

lel o=1
where p = max{0, [1 + log, r|}.

Moreover, we have the easy, but not immediate, estimates:

(r)
I}leatx deg (Po',l,ei (u(a))

0<o<n

) < e1g™ + epbghr TSt 4oy

< cs{gro 4+ ¢+ 4}

max hoo(P(r) ) < cg{qte + ¢F1t9S 4 rlogr}.

el o,lei(u(a))
0<o<n

Then, if we assume that all of our values:
Uj,'Ul,ei(’Ui’U,j), 1§z§b, ].Sjgl

lie in Fy[r, 0], we can apply Lemma 4.3 (the Thue-Siegel lemma) of [3]
to obtain (v1)ies # 0 with

max D(m) < er{g" + ¢ + 47}
max hoo (1) < es{Tq" +¢" **}
€

so that the associated function F(z) has the desired zeros, each with
multiplicity ¢”.

This means that when F(z) is expanded as a Taylor series about a
fixed point u(a) € U(S), one has

!
—
S
~
Il
(¢
<
—
S
—
£
~
—
N
|
<
—
1Y
~
~
<

=0

where f;(u(a)) =0 for 0 < j < 7.

We now apply the multiplicity estimate above, Proposition 7. Sup-
pose that for some cg > 0, P vanishes at all of the points I'(S + ¢9),
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along ®, to order at least ¢”. By the multiplicity estimate there exists
an A-invariant algebraic subgroup H = Hy X - -+ X H, so that:

(11) ¢%card <W> deg H

S C(G)qLodlm GL/HUJrleim Gl/H1+---+L1dim Gb/Hb‘

We consider the cases: We first note that for cy sufficiently large (11)
cannot hold for H = {0}.

If Hy = {0}, then (11) takes the form:

chard (W)deg}[ < C(G)qL0+L1(codim H—1)‘

As codim H < b we deduce from our choice of Ly, L; and T that

s H
card <%>degH < C(G)gb=D/ONS IS
provided that S is sufficiently large. In particular, there exists a nonzero
element v € U(S) so that ®(u) € H. But Hy = {0} so u = 0, a
contradiction.

Therefore, the subgroup H given by Proposition 7 must have Hy =
G_. In this case, if codim H = 1, then (11) becomes:

T H
q" card (%)degH < C(G)g*o.

By our choice of parameters we then obtain:

card <W>degH < C(G).

In particular, since H; = {0} for some j, 1 < j < b, we find that
ej(vjz) has | A-linearly independent periods. Since ! > d this is a
contradiction.

Hence, we must have Hy = G, and codim H > 2. In particular,

H, = H; = {0} for some i # j. Since G; and G; are nonisogenous, of
rank at most d, the functions e;(v;z) and e;(v;z) have at most d — 1



1178 R. TUBBS

A-linearly independent periods in common. From the A-analogue of
Lemma 3 of [4], whose proof is exactly the same with A replacing Z
throughout, it follows that

card (—F(S o)+ H

7 >degH > q(l*d)s.

Using this estimate in (11) we find that codim H > b + 1; that is, H
is trivial (which is contrary to Hy = Gp,).

Therefore, for ¢y sufficiently large, we have that there exists u(a’) €
U(S + ¢g) and j with j < ¢” so that fj(u(a’)) # 0. Applying the
techniques of [2], Section D with R = ((d +1)/d)S, we deduce that

doo (fj(u(a'))) < —c10g" .
This leads to a polynomial Pg(X) € A[X] with

deg (Ps) < c1pgkitds
heo(Ps) < C12{TqT + qLﬁdS}

so that
doo(P5(0)) < —c13g™+5.

Under our hypothesis that { > (b/(b—1))d it follows from the A-analog
of Gelfond’s criterion (Proposition 3 of [5]) that € is algebraic over
F,[r]. However, this contradicts Theorem 4.1 of [6], which states that
at least one of the values under consideration must be transcendental.
O

We only include the highlights of the proof of Theorem 3, as it is
virtually identical to the above proof. To establish this result, one
assumes that all of the indicated values lie in k(f) and constructs an
auxiliary function as in displayed line (10). Here we use parameters Ly
and L; which are chosen maximally with:

Lo < ((+dD)/(+1) g Lr < 5o(U=D)/(b+1)S,

q q

By Siegel’s lemma it is possible to find (;);cc with

D(m) < era{g™ +¢"+4%}
him < cis{g™ + ¢ 7%}
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so that for u € U(S)
F(u)=0.

As in the proof of Theorem 2, this leads to a polynomial Pg(X) €
A[X] with:

deg Ps < c16q™* ™%

hooPS < Cl7qL1+dsv

and Pg(#) is nonzero with

doo(Ps(o)) < —Clgsqls.

It follows from “Gelfond’s criterion” that 6 is algebraic, contrary to
Theorem 4.1 of [6].

Proof of Theorem 4. The proof of Theorem 4 is similar, where we
construct our function F(z) as above with the choice of parameters
made so that L = Ly = L7 and

¢S < Tb/(bd) o (b=1)/(+bd)T
g~ < 5TV (+bd) o ((1+d)/(+bd)T

With the set U(S) defined as above and with the indexing set

L={(l,...,l) :0<1; <g" 1< j <b}, we construct an auxiliary
function
(12) F(z)= Z'ylelll (v12) - - - € (vp2).

1eL

If we assume that all of our values lie in a field K = L(6), our choice of
integers L, T and S allows us to conclude from the Thue-Siegel lemma
(Lemma 4.3 of [2]) that there exists a nonzero vector

(Mhiee € Aplo]EHD’

with Lids .
fflefiEXD(Vl) <ecp{d"™ + 4"}

max hoo (1) < c20{g""** + Tq"}
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so that F(z) vanishes at each point in ¢/(S) with multiplicity 7.

If we view F(z) in the explicit form
F(z) = P(e1(v12), ... ,ep(vpz))

where P(Xy,...,Xy) € A,[0][X1,...,Xs], we may apply the above
multiplicity estimate. Let cy; > 0 and suppose that F(z) vanishes
at all points in U(S + cp1) with multiplicity ¢©. Then there exists a
connected A-invariant algebraic subgroup H = Hy X -+ x Hy of G so
that

F(S + 021) + H

T
(13) g" card ( 77

>degH < C(G)qLCOdimcH.

If H is trivial, then (13) cannot hold for ¢o; sufficiently large. Hence,
we assume that H is nontrivial. If codim H = 1, then since each e;(v;2)
has rank at most d,

card <F(5 + Cﬁz{l) + H> > gU—d+D)s

and (13), together with the choice of parameters, yields a contradiction.

Therefore, codim H > 2 and, as e;(v;z) and e;j(v;z) cannot have a
common period, for i # j, by our hypothesis (4), we obtain

L(S+co)+H 1S
d| ———— ) =¢q¢".
car < q
Hence, codim H > b, and H is trivial.

Then, as above and as in Section D of [2], we obtain a nonzero
polynomial Pg(X) € A[X] with

L+dS
C22¢ +

C23{qL+dS + TqT}

deg (Ps)

<

and
doo (Pg(e)) < 7024SqT+ls.

Hence, 6 € k, contradicting Theorem 4.1 of [6]. O
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We do not include the similar proof of Theorem 5. We only indicate
that one finds an auxiliary function of the form (12) where L is chosen
maximal with:

g < 5qV/S,

so that F(u) = 0 for all u € U(S). The proof is then as above.
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