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DIOPHANTINE APPROXIMATION OF MATRICES
G.N. TEN HAVE AND R. TIJDEMAN

ABSTRACT. Upper and lower bound results are given for
the approximation of real matrices by quotients of integer
matrices.

Introduction. In the theory of Diophantine approximations the
approximated objects are usually numbers or functions. In this study
we consider matrices as objects of which we investigate approximation
properties. A typical question is the following. Let m and n be given
positive integers. Let A be an m X m matrix with integer entries.
Let /A be a matrix whose n-th power equals A. How well can /A
be approximated by rational matrices if it is not rational itself? The
question shows some essential differences with the classical cases. For
example, it is not even obvious how to define the distance between two
matrices. Furthermore, there may be infinitely many choices for {/A,

since )
1 A (1 0
0 -1 —\o0 1

In Section 2 we introduce some notation. In Sections 3, 4 and 5, we
shall deal with upper bounds for approximations. In the homogeneous
case we prove an analogue of Dirichlet’s theorem on simultaneous
approximations. It will turn out that the choice of the distance
function is essential for the quality of the bounds. Lattice basis
reduction algorithms can be used for computing good approximations
in polynomial time. In the inhomogeneous case we derive an analogue
of Kronecker’s theorem on simultaneous diophantine approximations.
We further state an effective version of this result which follows from
the work of Kannan and Lovész.

for any choice of A.

In Sections 6, 7 and 8 we study lower bounds for approximations. We
show that a generalization of Roth’s theorem holds for 2 x 2-matrices,

Received by the editors on December 28, 1994, and in revised form on October
5, 1995.

Copyright ©1996 Rocky Mountain Mathematics Consortium

1139



1140 G.N. TEN HAVE AND R. TIJDEMAN

but with the exception of an explicitly given set of matrices which are
well approximable. Here we apply a result of Schmidt on Roth systems.
In Section 9 we apply the result of Section 8 to give an answer to the
question posed at the beginning. It turns out that a 2 x 2-matrix /A
is badly approximable by rational matrices if A is rational, but not a
rational multiple of the identity matrix.

The methods used in this paper are the same as those introduced
in Chapters 4 and 5 of the thesis of the first named author [4],
but some results are new or more general and some are formulated
differently. The mentioned chapters also contain a definition and
some properties of algebraic matrices and an algorithm for computing
good inhomogeneous approximations in polynomial time which are not
treated in this article. The present paper is an elaborated version of a
talk given by the second named author at a conference in Boulder held
at the occasion of the sixtieth birthday of W.M. Schmidt.

2. Notation. The letters k, [, m and n stand for positive integers,
the letters A, B, P and () for matrices. The field of algebraic numbers
is denoted by Q. We write M (I, m, K) for the set of all [ x m-matrices

with entries in a ring K and M(m,K) in case | = m. For given
B = (b;j) € M(l,m,C), we put
|B| = max bij| and [|B||= = min |B-P|
%] pPeM(l,m,Z)
Ifb = (b1,... ,bn) is a vector, then the Euclidean norm (37, |b,.|?)1/?

is denoted by |bl2. For B € M(l,m,C) the geometric mean of the
Euclidean lengths of the row vectors is given by

! 11
1B, = (H |esz) ,
k=1

where e, is the kth unit vector (0,0,...,0,1,0,...,0).
Finally we put

IBllo= min |B— Pl
PeM(l,m,Z)

3. Upper bounds in the homogeneous case. Minkowski’s
theorem on linear forms can be stated as follows (see [8, p. 104] or
2, p. 153)).
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Minkowski’s theorem 3A. For any real numbers b;;, 1 < i <,
1<j53<1landcj, 1 <j <1, there are integers g;, 1 < i < I, not all
zero, such that

< ¢y, 1< <,

!
> aibi
i—1

!
> qibi
i—1

provided that c1 ...c¢; > |det (b;;)| > 0.

(3.1)
< Cl,

Let a;5, 1 <i <1,1<j <m,and N be real numbers with IV > 1.
On applying Minkowski’s theorem with [ 4+m in place of [ to the system
of inequalities

{|Zi=1(haiqu+j| <NUm 1<ji<m
lgil <N 1<i<l

we obtain Dirichlet’s theorem on simultaneous approximation in the
following form (cf. [2, p. 13]).

Dirichlet’s theorem 3B. Suppose that A € M(l,m,R) and that
N e R, N > 1. Then there ezists a Q € M(1,1,Z) with

1

An obvious consequence is that

(3.3) QA < Q™.

The following statement is a straightforward extension of Theorem 3B.

Theorem 3C. Let k be an integer with 1 < k < [. Suppose
A e M(l,m,R) and N € R~;. Then there exists a Q € M(k,l,Z)
of rank k such that

Q<N and ||QA|| < N~U=k+D/m,
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Proof. By Dirichlet’s theorem 3B, the first row of @ = (gxx) can be
chosen in such a way that 15, # 0 for some \; and that, for k =1,

(34) |Qk)\|§Na A:]-aal
and
1

By another application of Dirichlet’s theorem, the second row can be
chosen such that Qax, = 0, @2, # 0 for some Ay and that (3.4) and
(3.5) hold for x = 2. For the third row we have Qs3x, = @3, = 0,
Qsx, # 0 for some A3 and (3.4) and (3.5) for k = 3. Iterating the
procedure for kK =4, ..., k, we obtain a Q € M(k,[,Z) of rank k which
satisfies the requirements. a

Corollary 3D. For every A € M(l,m,R) there ezxists a nonsingular
Q€ M(l,Z) such that

1
(3.6) QI <N and [|QA]l < Ni/m®

The proofs of the above mentioned results do not provide a method
to construct @ = (g.») effectively. Such a method was introduced by
Lenstra, Lenstra and Lovéasz [7] at the cost of a factor depending only
on the size of the matrix. Their algorithm, L3-algorithm for short,
provides on the other hand a nonsingular matrix @ such that |Q(b;;)|2
is small, whereas Minkowski’s theorem 3A only provides a single vector
q such that |g(b;;)| is small. We formulate the result of the L*-algorithm
in terms of | |2, the geometrical mean of the Euclidean norms of the
row vectors (cf. Lenstra, Lenstra and Lovéasz [7, (1.8) and (1.26)]).

Lemma 3E. Let B = (b;;) € M(l,Z) be nonsingular. Let 3 € R>, be
such that |bi;| < B for alli and j. The L3-algorithm finds a nonsingular
matriz Q € M(l,Z) such that

(3.7) |QB|y < 20=Y/4|det B!
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in time and space which is polynomial in | and linear in log 3.

If g = (q1,...,q) is the row vector for which the corresponding row
of @B has the smallest Euclidean norm, then (3.7) implies

¢B] < |qBl> < 20~ D/4|det (B) /! (ct. (3.1)).

The L3-algorithm can be used to prove the following variant of Corol-
lary 3D. To compare both results, apply Corollary 3D with N™/(m+1)
in place of N.

Theorem 3F. Let A € M(l,m,R) and N € Z, N > 2m(m+1)/4_ pyy
a = max{2,|NA|}. Assume that the rounding of the entries of NA
to integers can be domne in polynomial time in terms of I, m and log c.

Then one can find in polynomial time in lm log a a nonsingular matric
Q€ M(l,Z) such that

(3.8) |Q| < 2m/AN™/(mHD  and  ||QA|| < 20mH3/AN L/ (mA),

Proof. Set A = (dy,) as A = (ay,) with the entries rounded to
multiples of N~!. Put

"‘(jm <1/10v>fz> and J ‘(fim <1/zov>fz>’

where I, denotes the m x m identity matrix and 0 the zero matrix.
We have NJ € M(l +m,Z). Applying the L*-algorithm to the row
vectors of NJ may result in a singular matrix Q. To avoid this, form
NJpy € M(m + 1,Z) for 1 < X < I by skipping the last [ rows
and columns in NJ except for row and column m + \. Now the L3-
algorithm [7, p. 521] provides a short vector (pa1,- .- , Pam, qA)Nj(A) in
the lattice spanned by the row vectors of Nj(,\) for \=1,...,[. Put

by = (pa1, - - - 7p/\m7q/\)j()\)- We have
oAl < [ba]p < 2M/AN-V AL N =1, 1

by (3.7). Let @ be the diagonal matrix with entries q1,...,¢q. If gx =0,
then by is a nonzero vector with integral entries, but 2™/4N~1/(m+1) <
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1. Hence g1 ...q; # 0. Then @ is nonsingular. Since

lareall = llaadx, + ax(aa, — @)l
< Hq}\dku” + ‘Q)\| |04)\H - d)\ﬂ|

< 2m/4N—1/(m+1) + l2m/4N—1/(m+1)
- 2

S 2(m+3)/4N—1/(m+1)

and
lgr] < Nby| < 2m/ANm™/ (D)

we obtain (3.8). o
By a standard argument Corollary 3D implies the following result.

Corollary 3G. Let A € M(I,m,R). There exist infinitely many
nonsingular matrices QQ € M(l,Z) such that

(3.9) QA < Q™.

Proof. See [4, p. 40]. o

If we want to construct such matrices @}, we can apply Theorem 3F
in place of Corollary 3D. Then there is an additional factor 2™/4t1 on
the right side of (3.9).

One may wonder how much Corollary 3G can be improved, since
the proofs of Theorem 3C and 3F do not employ the free choice of all
entries of (). In Theorem 3F the matrix @ is even a diagonal matrix.
The surprising answer is that in Corollary 3G the exponent —1/m of
|Q| is the best possible. According to Perron [9], Dirichlet’s theorem
3B is the best possible in the sense that for every positive integer m
there exist real numbers ay,... ,a,, and ¢ > 0 such that

C
|qapfpp|<W, 'u/:]_,...,m

admits only finitely many solutions (py, ... ,Pm,q) € Z™H! with ¢ # 0.
(Such a set of real numbers aj, ..., a,, is commonly referred to as a
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badly approximable system of r numbers.) Thus there exists a positive

number ¢’ = ¢/(m,ay,. .. ,a,) such that
cl
(3.10) llgal| < g7 p=1...,m

admits no solutions with g € Z, ¢ # 0. Put

a1 2 PN Qmy
-1
A =

-1 0

where the blanks represent zeros. We claim that ||QA|| < ¢/|Q|~Y/™

has no nonsingular solution Q). Otherwise, for u =1,... ,m we would
have
C/
llguicn = gual| < [Q[i/m
(3.11) y
gu1ctm—1 = quml| < W
c/
llguiaml| < [Q[/m

Since (3.11) has no solutions g,; # 0, we conclude that g,; = 0 for
w=1,... ,m so that @ is singular.

In the next section we shall show that if we use | |2 in place of the
maximum norm | | then the exponent of |Q] in (3.9) may be considerably
improved upon.

4. Upper bounds in the simultaneous homogeneous case.
The results from the preceding section can be applied directly to
obtain results on simultaneous approximation of matrices. For example,
Corollary 3D applied with N/ (mn+0) in place of N and mn in place
of m has the following consequence.
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Corollary 4A. Let N € Rsy. For any Ai,..., A, € M(l,m,R)
there exists a nonsingular @ € M(l,Z) such that
(an QSN and QA < N7V,

' v=1,...,n.

We shall show that the exponent —1/(mn + [) can be replaced by
—1/(mn +1) if we use | |2. We recall that, for B € M (I,m,R), we have
set HBHZ = minPeM(hmz) |B — P|2

Theorem 4B. Let Ay,... , A, € M(I,m,R) and N > 20mtD*_ Thep,
there exists a nonsingular Q € M (l,Z) such that

|Q‘2 < 2mn+len/(mn+l) and ||QA1/H2 < 2mn+lN—l/(mn+l)

v=1,...,n.

Proof. Set A, as A, with its entries rounded to multiples of 1/N.
Put

—I,
J =
-1,
Ay - A, (/N
and
-1,
J =
~ —Im
Ay o A, (/N
We have NJ € M(mn+1,Z). Let by,... ,bmnys be the reduced basis
vectors of J as found by the L3-algorithm. Set by, = (p,(cll), e ,p,(;)l, qk1,

. ,qkl)j for k =1,...,mn+1. Let k& < --- < k; be the minimal
indices such that, for A = 1,... I, the matrix (g, ) for j = 1,...,X;

p =1,...,1 corresponding to by, for j = 1,..., X has rank \. Hence
ki=1 Fori=1,...,mn+1 we set
b1
Bi=| ]| eM@,mn+1,Q)

b;
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and R; = (p\1)), .-, (05), (ax)) € M(i,mn +1,Z) for A = 1,... i
and p=1,...,1L

To complete the proof, we need the following three lemmas.

We use the notation introduced above.

Lemma 4C. Denoting the rank of (qau)i1<i<ii<u<i by s, we have
[b1]2 -+ |bila > N 75,

Lemma 4D. Suppose that N > 2(mn+D° - Then ki <(j—1)(mn+
D/I+1forj=1,...,1L

Lemma 4E. Suppose N > 2(mn+0)°  Thep

l
H |bre. |2 < 2l(mn+l)/2N712/(mn+l)‘
j=1

Proof of Lemma 4C. Since R;J = B; and rank B; = i, there are i
linearly independent columns of R;. We may therefore suppose that
we can choose s columns of (gx,) and 7 — s columns of ((pf\lu)) S (pf\rl?))
such that these i columns form a linearly independent set of vectors.

Define R] as the submatrix of R; consisting of these i columns and

bl

1

Bi=|: | eM(iQ)
b,

as the matrix consisting of the corresponding columns of B;. Let J’
be the matrix satisfying R,J’ = B!. By the nonsingularity of R/, the
matrix J' exists and is unique. We will give a construction of J' which
shows that J' is a lower triangular matrix with determinant N~*. To
get R!J' = B! from R;J = B;, we must delete the jth column of .J if we
delete the jth column of B;. This jth column of B; is deleted if and only
if the jth column of R; and hence the jth row of J is deleted. Removing
the jth row of J may be done without problems if j < mn, since the
only nonzero element in this row is in place (j, j). Hence it only affects
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the jth column of B; which had already been removed. If j > mn,
the jth column of R; (if it is to be deleted) is linearly dependent on
some of the previous j —1 columns of the R;. Hence a rational multiple
of the jth row of J must be added to some of the previous rows of
J for still getting the same B! at the end. Since the element 1/N in
place (j,) of J was already removed when deleting the jth column,
no above-diagonal elements are added. Thus, the determinant of J' is
only affected by the deletions. Since s columns of (g»,) are left in R},
also s of the last i rows and last [ columns of J are left in J' whence
det J = N—*. The coefficients of R, are integral whence |det R} > 1.
Thus we obtain

lbilz -+ |bil2 > |bi|2- - [bi]2 > |det B'|
=|detR}|-|det J'| > N7%. o

Proof of Lemma 4D. The statement is obvious for j = 1. Let
1<i<l. PutT =[i(mn+1)/l+1]. Suppose that the rows (g;1...q;)
for j =1,...,T corresponding to by, ... , by have rank at most i. Then,
by Lemma 4C, |b1]2 - |br|2 > N~¢ whence, according to [7, (1.7) and
(1.8)],

mn-+l mn-+l
H \bklz—H|bk|z 1T 18l
k=T+1

(mn+l-T)/T

> N-igm WA X o (e=1) (H|bk|2>

— 2—(mn+l)2/4N—z(mn+l)/ .

Note that T' > (i(mn +1) +1)/l, whence i(mn +1)/T <1—1/T. Since
[7, (1.8)] gives

mn-+l

H |bk|2 < 2(mn+l)2/4N—l’
k=1

we obtain a contradiction for

Nl/T > 2(7n'n—i—l)2 ]
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To get a contradiction for all i, take N > 20mn+D* and use that
T <mn+I. o

Proof of Lemma 4E. We first show that there exists a bijective
mapping f from the multiset consisting of the elements k1, ... , k; where
each element is taken mn + [ times to the multiset consisting of the
elements 1,2,... ,mn+1 where each element is taken [ times such that
f(z) > x for all z. Recall that, by Lemma 4D, k; < (j—1)(mn+1)/l+1.
Hence, there are at least

l(mn+l {—(jl)(lmnﬂ)]) > (1= j+1)(mn+1)

permitted values for f(k;). We use induction on {—j. If | —j = 0, then
there are at least mn + [ permitted values for the mn + [ images f(k;)
which is just sufficient. If the images of f(k;), f(ki—1),--., f(kj+1) are
fixed, there are at least

=g+ 1)(mn+l)—((—-J5)(mn+1)=mn+l

remaining permitted values for f(k;) which is sufficient too. This proves
the existence of the mapping f.

By applying formula (1.7) of [7] to by, and by () we obtain

mn—+1

l mn-+l S l
(kuj|2> < <2(1/2> e 1 |bk|2> '
j=1 k=1
Hence, by (1.8) of [7],

l mn—+1 R
(H bk|2> < 2l(mn+l) /2(|det L|)l
j=1

< 2l(mn+l)2/2N—12‘ O

Proof of Theorem 4B (continued). Take Py,...,P,, Q € M(l,Z), Q
nonsingular, such that

bk,
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Thus we have ej(QfL —P,...,QA, — P,,(1/N)Q) = bx,, whence
s lej (@A, — P)l < o,

and
lejQl2 < Nbg; |a-
Hence, by Lemma 4E,
|Q|l2 _ ﬁ |ejQ|2 < 2l(mn+l)Nl7l2/(mn+l)
j=1
_ 2l(mn+l)Nlmn/(mn+l)‘

Further, we have, by the Cauchy-Schwarz inequality and Lemma 4E,

(max|e; (QA, — Py)l»
1

l
j=

|
EN

(max|e; (QA, — P,)|s + max e;Q(A, — A,)]2)

<.
Il
—_

IN
EN

_ 1
<mlz,a,x lej(QA, — P.,)|2 + W|ejQ|2>

3
<§bkj|2)

l
> 2l(mn+l)/2N7l2/(mn+l) .

1

<.
Il

IN
EN

<.
I
—

N
N

This implies

(

1/
QAulz < ( T unxles(@a, ~ R )
j=1
< 2mn+lel/(mn+l) . o

Remark 4F. In case [ = m a slightly stronger statement than Theorem
4B would read: Let A;,...,A, € M(m,R). Then there exists a
nonsingular @ € M (m,Z) such that

(4.2) QA2 < cQI7Y™, wv=1,...,n,
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where c is some constant. We conjecture that this statement is correct.
The following simple argument shows that the exponent —1/n in (4.2)
cannot be improved. This implies that the exponent of N in Theorem
4B is the best possible.

Use Perron’s construction to select Ay,..., 4, € M(m,R) in such a
way that
(4.3) lgdet (A < ¢/lg/", v=1,...n

admits no solutions with ¢ € Z, ¢ # 0 (cf. (3.10)). Consider any
nonsingular matrix Q € M,,(Z). Then |det (Q)| < |Q|5*. Furthermore,
by (4.2),

cl

Idet (Q4,) | = Iidet (Q) - det (AL)I| 2 {3z

for at least one v. It follows that

max [|QA,|lz > max ||det (QA,)[["/™
v=1,...,n v=l1,...,n

(C/)l/m

TR

Hence, (4.2) cannot be improved upon.

5. Upper bounds in the inhomogeneous case. In 1884,
Kronecker derived the following approximation theorem (see [6, pp.
85—88] or, for a more compact description, [12, Theorem 24]).

(5A). Let G € M(I,m,R) and 8 € M(1,m,R). Then the following
statements are equivalent:

1. for every € > 0 there is an x € M(1,1,Z) with |[zG — 3| < €.
2. for everyt € M(m,1,R) with Gt € M(l,1,Z) we have 3 -t € Z.

Applying Kronecker’s theorem to G = ( 71{1"‘ ) where A € M(I,m,R),
it follows that

(56B). 1. For every € > 0 and every B € M(1,m,R) there exist
p € M(1,m,Z) and g € M(1,1,Z) with |gA —p — B| < € if and only if
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2'. For every t € M(m,1,Z) with |t| > 0 we have At ¢ M(l,1,Z).

Another formulation of this equivalence says that, for any A €
M(l,m,R),

(5C). 1”. For every ¢ > 0 and every B € M(1,m,R) there ezists a
q € M(1,1,Z) with ||gA — B|| < € if and only if

2", ||At|| # O for every t € M(m,1,Z) with |t| > 0.
The implication 2" = 1” is the case k = n = 1 of the following result.

Theorem 5D. Let k,l,m,n be positive integers with k < [. Let
Ay, ..., A, € M(l,m,R). Suppose ||A1t1 + -+ + Ant,|| # 0 for all
tiy.o. ytn € M(m,1,Z) not all identically zero. Let € > 0. Then,
for every By,...,B, € M(k,m,R) there exists a Q € M(k,l,Z) with
rank Q = k such that ||QA, — B, || <e forv=1,... ,n.

Proof. Apply Kronecker’s theorem to the matrix
I,

G= ; € M(mn +[,mn,R).

A, - A,

By the supposition of the theorem, Gt € M(mn + [,1,Z) for t €
M(mn,1,R) implies ¢ = 0 so that condition 2 is satisfied. It follows
that there is an X € M(k,mn + [,Z) with | XG — B| < ¢/2 where
B = (By,...,B,) € M(k,mn,R). This implies that there exists a
Q' € M(k,l,Z) such that ||Q"A, — B,|| <e/2forv=1,...,n.

Let s be the rank of Q'. If s = k, then we can take Q = Q’.
Otherwise we use Theorem 3C with N > (2/¢)"/(=F+1) to find a
Q" € M(k,l,Z) withrank Q" = k and ||Q"A,|| <e/2forv=1,... ,n.
Write qf,...,q, and ¢f,...,q) for the row vectors of Q' and Q",
respectively. Let i1,...,75 be the indices of s rows of @’ which are
linearly independent and ji,...,jx_s the indices of k& — s rows of
Q" such that q ,...,q ,q}, ... ,q;  are linearly independent. Let
Q" € M(k,l,Z) be the matrix with only zeros at the rows iy, ... ,is and
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qjs---,4qj,_, as the other rows. Put @ = Q' + Q"". Then rank Q = k
and
1QA, — B|| <[|Q"A, = B|| +[|Q"A, || <e. D

An essential difference between the formulation of Theorem 3C and
Theorem 5D is that the former contains an upper bound for |@Q| and the
latter does not. It is obvious that a localized Kronecker-type sequence
requires a measure of linear independence of Ay, ... , A, in place of the
linear independence condition itself. This is expressed by the following
result of Kannan and Lovdsz [5, p. 599]. Here ¢ is some absolute
constant with ¢y > 1.

(5E). Suppose ay,... ,a, are any reals, and let N and e be positive
reals such that for all integers ty,. .. ,t,, not all zero,

(5.1) Nllayty + - + antn|| + £ > |ts] > con’.
v=1

Then for all reals Bi,...,[Bn, there exists an integer q with |g| < N
such that

(5.2) lga, = Bull <&, v=1,...,n

Conversely, if for all reals B1,...,0Bn, there exists an integer q with
lg] < Q such that (5.2) is satisfied, then for all integers ty,... ,tn, not
all zero,

Nllarty + -+ + antn|| + £ > [ts] > 1/2.

v=1

Kannan and Lovész [5, p. 600] remark that, by using a result of
Hastad, one can obtain a version which would assert a similar “pseudo-
equivalence” for each particular choice of the (3; as in Kronecker’s
original theorem, but with a worse value (n® instead of n?) on the
right side.

From the result of Kannan and Lovéasz the following quantitative
version of Theorem 5D in case k = [ = m can be derived.



1154 G.N. TEN HAVE AND R. TIJDEMAN

Theorem 5F. Let Ay,... ,A, € M(m,R). Let N and ¢ be positive
reals such that for all ty,... ,t, € M(m,1,Z), not identically zero,

(5.3) N|\A1t1+---+Antn|\+sZ\t,,| > co(mn +m)?.

v=1
Then for all matrices By, ... ,B, € M(m,R) there exists a nonsingular
matriz Q € M(m,Z) with |Q| < N such that
(5.4) |QA, — B,|| <e, v=1,...,n.

For the proof of Theorem 5F we refer to [4, pp. 47-50]. There
Theorem 5F is formulated under a weaker condition than (5.3).

Theorem 5D is a direct consequence of Theorem 5F. There are
only finitely many ¢1,...,t, € M(m,1,Z) for which Y ."_ |t,| <
co(mn-+m)?. Because of the linear independence condition in Theorem
5D, there is a positive minimum v of ||A1¢1 +- - -+ Anty || taken over all
these finitely many ¢, ... ,t,, not all identically zero. Choose N such
that Nv > co(mn + m)2. Then (5.3) is satisfied for all ¢1,...,t, not
all identically 0, and (5.4) follows.

In [4, pp. 50-54] it is shown how an algorithm of Babai [1, Theo-
rem 7.1] for nonhomogeneous simultaneous diophantine approximation
combined with Theorem 3F can be used to actually construct nonsin-
gular matrices @ such that ||QA, — B, || is small if the rational matrices
A, and B, admit such a solution with |@| not too large.

6. Lower bounds in the homogeneous case. In 1955, Roth
[10] proved his famous result on rational approximation of algebraic
numbers, thereby finishing the preceding work of Liouville, Thue,
Siegel, Dyson and Gelfond. We denote the set of algebraic numbers

by Q. Roth proved that

Roth’s theorem 6A. For every o € QNR and every € > 0, there
exists a number ¢ = c(a,e) > 0 such that, for all ¢ € Z with ¢ # 0
either ||qal| = 0 or [|qal| > ¢/|q|*T=.

Does the corresponding result for square matrices hold true? That
is, is it true that for every A € M(m,Q N R) and every £ > 0 there
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exists a number ¢ = ¢(A4, €) > 0 such that, for all Q € M(m,Z) with @
nonsingular either |QA|| = 0 or ||QA]|| > ¢/|Q|*T=?

We shall deal with the question in case m = 2. We first show that
the answer is sometimes no. Later we shall use a result of Schmidt on
so-called Roth systems to characterize all exceptions.

Let a; and agy be real algebraic numbers such that 1, oy and as
are linearly independent over Q. According to Dirichlet’s theorem 3B
applied with [ = 2 and m = 1, there exist integers p1, ¢; and g3 such
that

_ 1
(6.1) 0 < |qran + gzaz — p1| < (max(|q1], |g2])) 72 < 00"

Without loss of generality, we may assume ged (p1,¢1,92) = 1. Put r =
max(|q1], |g2|) and s = ged (g1, ¢2). Then s < r and ||gra1 + geaz|| <
r~2. We apply Dirichlet’s theorem again, but now with N = r — 1.
Hence, there exist integers p2, g3 and g4 such that

1 _
(62)  0<lasor+a102 =2l < -y < (wax(lash aal))

Put t = ged (g3, g4)- Then t < r and ||gzay + qaaz]| < 2/r2. Put

_ (41 Q2
Q_<Q3 Q4>'

Suppose that @ is singular. Then tq; = sqs and tq2 = sq4. If tp; = spo,
then s|t in view of gecd (q1,¢2,p1) = 1, whence r = max(|q1], [¢g2]) <
max(|gs|, |ga|) < r — 1, which is a contradiction. If tp; # spy, then we
obtain, by subtracting (¢/s)(qra1 + geas — p1) and gzay + qaas — D2,

that
1
- <
S

2t 25+t _3 3
LA LT

e L D e
r2 = sr2 rZs rs  10s

t
b2 — -1
s

We conclude that @ is nonsingular. Let A be of the form

_ (5] b
A= o)

where b and c are rational numbers such that both ¢;b+¢2c and g3b+qg4c
are integers. (For example, we can take b,c¢ € Z.) Then, by (6.1) and
(6.2),

Q1 = max(lail gzl laal, laal) <7 and [|QAI| < 2/r7,
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so that [|QA|| < 2/|Q|*>. It will turn out in Section 8 that this is
essentially the only class of matrices A for which the answer to the
above question is negative.

7. Roth systems. In 1971, Schmidt [11] extended Roth’s theorem
6A to a result on linear forms in rational integers with real algebraic
coefficients. Let Li(z),...,L,(x) be v linear forms with real algebraic
coefficients in the u + v variables z = (z1,... ,Zy4v). Suppose that
{Ly,...,L,} has rank v. It is no restriction to assume, by permuting
the variables z1,... , Zy4, if necessary, that rank {Li,...,L,,21,...,
Zy} = u+ v. Now Minkowski’s theorem 3A on linear forms, applied
to these u + v linear forms, implies that there exist infinitely many
z € Z*Tv\{0} such that

(7.1) |L;(x)| < er{max(|z1],...,|z.])} ", j=1,...,v

where the constant ¢; = c¢i(L1,...,L,) depends on the L;’s only.
Hence, (7.1) remains true if max(|z1],...,|zy|) is replaced by |z| :=
max(|z1],...,|Tuts|) and ¢; by another constant ¢y depending only on
the L;’s. Schmidt defined Ly (z), ... , Ly(z) to be a Roth system if, with
|z| = max(|z1],- .. ,|Tutv|), for every € > 0 the system of inequalities

ILj(@)] < [a| =+, j=1,.. 0

has finitely many solutions in integer points z # 0. Schmidt [11] proved
the following criterion for Roth-systems.

(TA). Suppose that Li(x),...,L,(z) are linear forms in z =
(T1y.- y Tytoy) with real algebraic coefficients. Necessary and sufficient
for Li(x), ..., Ly(z) to be a Roth-system is that, on every rational sub-
space S of dimension d with 1 < d < u+v, the forms Ly(x), ... , L,(x)
have rank v satisfying r > dv/(u + v).

We will work out what this means for nonsingular algebraic 2 x 2
matrices. Let

_(a B .
A_<7 5>EM(2,QHR)
be nonsingular, and let Ly (z) and Ls(x) be given by

Ly(z) = azy + yxe + x3,
Ly(z) = Bx1 + 0z + 4.



DIOPHANTINE APPROXIMATIONS OF MATRICES 1157

For each d we check for which A we can have r < d/2.
d=1. r = 0 happens only for

A= (wlss w're)
ap+b av+c

on the subspace given by ©1 = —axsy, 3 = —bxs, x4 = —cx2, where
a,b,c € Q and pu,v are algebraic over Q, and for

()

on the subspace given by x93 =0, 3 = —bz;, x4 = —cz;.
d =2. r =0 happens only if A € M(2,Q).
d = 3. r =0 is impossible, since A is nonsingular.

r = 1 happens only for
A (Km ar +0b
“\v av+e

on the subspace given by x4 = —bz; — cz2 + azs, where a,b,c € Q and
W, v are algebraic over Q, and for

(2 0)
c v
on the subspace x3 = —bx; — cxs.
We conclude that

(7B). A nonsingular matric A € M(2,Q N R), corresponds to a
Roth-system if and only if it is not of the form

o oap+b I v
(7.2) <1/ al/+c>’ (a,u+b au—l—c)

where rows and columns may be interchanged and where a,b,c € Q and
wv e QNR.
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8. Lower bounds in the homogeneous case (continued). We
shall prove the following theorem.

Theorem 8A. Let A€ M(2,QNR) with A ¢ M(2,Q). Then either
for every € > 0 there exists a number ¢c; = ¢1(A,€) > 0 such that

QA > |Q|1+€

for every nonsingular Q € M(2,Z) or A is of the form

(8.1) <u a,u+b> or (a,u+b ,u>

v av—+c av+c v
where a,b,c € Q and 1,u,v are Q-linearly independent algebraic
numbers. In the latter case there exist numbers ca = ca(A,e) > 0

and cg = c3(A) > 0 such that

QA > |Q|2+€

for every nonsingular Q@ € M(2,Z), and there exist infinitely many
nonsingular Q € M(2,Z) such that ||QA|| < c3|Q| 2.

We call matrices A of the first kind badly approximable and matrices
A of the second kind well approximable. It is remarkable that there
are no matrices A for which the optimal exponent is between 1 and
2. If A e M(2,Q), then, for every nonsingular Q € M(2,Z), we have
[|QA|| =0 or [|QA|| > ¢ > 0 for some number ¢ depending only on the
denominators of the entries of A. Just as in the case of numbers the
rational case is not interesting.

In the proof of Theorem 8A we shall use the following lemma where
* can represent any real number.

Lemma 8B. Let ¢ > 0. Let

12 %
_ (awb *> e M(2,R)
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with a,b € Q and p € QN R with p ¢ Q. Then there erists a positive
constant c4(A, €) such that ||QA|| > c4(4,€)|Q| ¢ for all nonsingular
Qe M(27Z).

Proof. Put a = a1/az, b = by /by with a1, az, b1, by integers in lowest
terms, ag > 0, by > 0. For any nonsingular matrix

(5

in M(2,Z) we have either z + ay # 0 or  + aj # 0. Hence, we may
assume that z + ay # 0. Put 2’ = z + ay. Then

(8.2) QA = ||z + byl

Since p ¢ Q, Roth’s theorem 6A implies that there is a number
¢s(p,€) > 0 such that

(8.3) lazba (' 1+ by)l| > c5(p, €)|agbaa’| 7' 7%

On the other hand, we have 2’| < |z|+|a| |y| < (1+]a|)|Q|. Combining
these inequalities with (8.2) and (8.3), we obtain

1QAI| > es(u,©)lazbel (1 + [a) Q7. o

Proof of Theorem 8A. Suppose that

(5 %)
v 6
corresponds to a Roth-system. This implies that, for every € > 0, the
system of inequalities

{Ilawl +ywo|] < Jw|tE
||Bx1 + daal| < |z|~17°

has only finitely many solutions. Hence, ||QA|| > c¢(4,¢)|Q|~!1~¢ for
every nonsingular Q € M(2,Z).
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In the remaining case A corresponds to one of the forms (7.2). If,
after interchanging rows and columns, if necessary, A is of the form
considered in Lemma 8B, then the assertion follows immediately from
the lemma. It remains to consider matrices of the form (8.1) with
a,b,c € Q and p,v € QNR. If 1, and v are Q-linearly dependent,
then they can be rewritten in the form considered in the previous case.
This proves the first statement.

We may now suppose that
A (B ar +0b
“\v av+e

where a,b,c € Q and 1,u,v are Q-linearly independent algebraic

numbers. We have
Ty
H (* *> AH > ||pz + vyll.

According to Schmidt’s theorem 7A the linear form L(X) := pzy +
vxe + 3 forms a Roth system if and only if the rank of L(x) is > 1 on
every rational subspace of R3. This is the case since 1, i1, v are linearly
independent over Q. It follows that there exists a number cg(4,¢) >0
such that for all integer pairs x,y, not both zero,

H (i Z) AH > co(A, €) (max(|z], [y]) "2 *.

Hence, [|QA|| > cs(A4,€)|Q|~2¢ for all nonsingular (even nontrivial)
Q@ € M(2,Z). For the proof of the last statement, we apply Dirichlet’s
theorem 3B to show that there exist integers p1, q1, g2, not all zero, with
ged (p1, g1, 92) = 1 such that (6.1) holds. Note that r := max(|q1], |g2|)
can be taken larger than any prescribed bound. Subsequently, we apply
Dirichlet’s theorem with N = r~! to obtain ps, g3, ¢4, not all zero, such
that (6.2) holds. Let k be the product of the denominators of a,b and

c. It then follows that
[ ka kq2>
Q= <kCI3 kqs

is nonsingular. We have |Q| < kr on one hand and ||QA|| < 2k|a|r~2 on
the other. Hence, ||QA|| < 2k3|a||Q|~? for infinitely many nonsingular
matrices Q € M(2,Z). O
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Remark 8C. It is natural to ask for a result similar to that of Theorem
8A for m x m matrices. Application of a Liouville-type argument yields
that, for every nonsingular matrix A € M(m, QNR) with A ¢ M(m, Q)
and for every £ > 0 there exists a number ¢g = ¢o(A4,¢) > 0 such that

Co
QA > [Q[mre
for every nonsingular @ € M(m,Z). On the other hand, Schmidt’s
theorem 7A can be used to formulate a condition on A under which
C1
[IQA|l > Qe
for every nonsingular @ € M(m,Z). It is probably rather complicated
to describe the optimal exponent for every matrix A. In particular, it
is an open problem whether this optimal exponent is always an integer
as in case m = 2.

9. Approximability of roots of matrices. We can now restate
the question posed at the beginning of the introduction as follows:
Which roots of rational matrices are well approximable? We shall give
a criterion for 2 X 2-matrices.

Theorem 9A. Let n be a positive integer and A € M(2,Q). If
a matriz B € M(2,Q N R) is well approzimable with B™ = A, then
A =dI; for somed € Q, d # 0 and B has eigenvalues p,o with p = 7,
p # o such that p" = o™ =d.

Corollary 9B. Every matriz B € M(2,Q N R) with B? € M(2,Q)
s rational or badly approrimable.

Ezample. The following matrix B satisfies B® = 4I and is well
approximable.

1/4 1/4
B 2 2
- 25/8 _ 21/4 -1 25/8 _ 21/4 .

Proof of Theorem 9A. We shall use the following notation:

- 2)
r s
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K =det A, L=trA, k = det B, [ =tr B,
22 L+ K= (z—a)(z—f), 22 —lz+k=(z—p)z— o),
a—p

v

v=+12 4k, v>0 if >4k >0, R=

We choose p=(I+v)/2,0=(1-v)/2, p" =a,0" =B, v=p—o0.
Note that k" = K.
If v = 0, we have (cf. [3, p. 59])

) P=Ps 41 J i J—1
(9.1) B = (5557 .71)'0 R DR 1 S
rjp’ (5525 +1)p

If v # 0, we have (cf. [3, p. 58])

; dj +Rj(p—s) Rjq .
J— (% T j —
(9.2) Bi = ( For i) a=ne

where R; = (p’ — 07)/(p — o) and d; is some real number. Note that
R, =R.

We assume that B is well approximable. Then B is of the form
(8.1) with a,b,c € Q and 1, u, v € QN R linearly independent over Q.
Suppose det B = 0. Then |uc — bv| = 0, whence b=c=0. If

g_(n au
v oav )’
then A = B® = (u+ av)""'B € M(2,Q). This contradicts the fact

that p and v are Q-linearly independent. Thus, det B # 0.

Suppose v = 0. Then A € M(2,Q) is given by (9.1) with j = n.
Since K,L € Q and a = 3, we have a = 8 € Q and therefore p™ € Q.
It follows from the previous paragraph that p # 0. We conclude from
(9.1) that p,q,r, s € pQ. Hence, 1 and v are Q-linearly dependent.

It remains to consider the case v # 0. Then A is given by (9.2) with

j=nIf
po(r ),
v av—+c
then both Rv € Q and R(p — av — ¢) € Q, whence R = 0. Hence
A = dI; where d = d,,. This implies p"” = ¢™ = d. Since B € M(2,R),
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we have both p+ 0 € R and po € R whence 0 = por p = -0 € R.
In the latter case Ry = p + o = 0, whence, by (9.2), B?> = dyI,. This
implies v(u 4+ av + ¢) = 0. This contradicts the Q-linear independence
of 1, p and v. Thus, p =37, p # 0. o

Proof of Corollary 9B. Suppose

B = (u au+b>
v av —+c

is well approximable. Then, by Theorem 9A,

2 _ * (ap+b)(p+av+c)) _
B = <1/(,u+al/+c) * = 1.

Hence, p +av +¢c = 0 or apu +b = v = 0. Both options are in
contradiction with the conditions a,b,c € Q and 1, u, v are Q-linearly
independent. u]
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