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1. Introduction and statement of results. Let G be a Zariski
connected reductive algebraic group defined over QQ such that the
abelian part of G(R) is compact. Let G°(R) be the topological identity
component and K be a maximal compact subgroup of G°(R). Suppose
that the quotient G°(R)/K has an invariant complex structure and
hence is isomorphic as a complex manifold to a bounded symmetric
domain D C C™ for an integer m > 1. A point z € D is called a special
point if it is the fixed point of a maximal torus 7" C G defined over Q
for which T'(R) is compact. Suppose that D is realized in C™ in such a
way that the special points are in DN Q. If T is a (neat) arithmetic
subgroup of G, there is a I'-invariant holomorphic map J = J(D,T)
of D into a projective space which induces a biregular isomorphism of
I'\D onto a complex quasi-projective variety V [1]. Moreover, Faltings
showed in [9] that the variety V can be defined over Q and that the
Q-structure of V' may be uniquely determined by requiring of (D, J, V)
that all special points z € D have Q-rational image point J(z) in
V. (For modulus varieties of abelian varieties of given PEL-type this
was shown in [22, 23]. Faltings’ approach of course bypasses abelian
varieties. For Hilbert modular surfaces, Faltings’ proof is written out
in [25, p. 82]. We call a triple (D, J,V) as above a normalized model
over Q for (G,T'). It seems reasonable to make the following:

Prediction. Let (D,J,V) be a normalized model over Q for (G,T)
with D € C™. Then z€ DNQ " and J(z) € V(Q) if and only if z is a
spectal point.
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Given the results of [9], the “if” part of the above Prediction is
a consequence of the definition of a normalized model over Q. The
“only if” part is supported by the results obtained to date on the
transcendence properties of suitably normalized automorphic functions.
Recall that, in 1937, Th. Schneider [17] showed that the elliptic
modular function takes an algebraic value at an algebraic point if and
only if the point in question is imaginary quadratic. A generalization
of this result to automorphic functions with respect to the norm unit
group of a (maximal) order in an indefinite quaternion algebra over
Q was obtained in 1972 by Morita [13]. In 1992, Shiga [18, 19]
considered Picard modular functions, the Matsumoto theta map and
Siegel modular functions. Picard modular functions were also dealt
with by Holzapfel [10] in 1993. In [4, 3, 20] (henceforth abbreviated
as [3, 20]) a generalization of Schneider’s theorem was obtained which
includes all the above results by extending them to the context of
modulus varieties for abelian varieties with some additional structure.
The setting was that of Shimura’s paper [21] on analytic families of
polarized abelian varieties and automorphic functions. In dimension
greater than 1, these results do not in general give information about
the transcendence properties of individual automorphic functions, but
rather about the nonvanishing of the transcendence degree of the field
generated by certain values of all suitably normalized automorphic
functions.

We prove in Sections 3 and 4 the Theorem stated below: namely
that the Prediction comes true for normalized models (D, J,V) over
Q of (G,T) for which (G,D) admits a symplectic embedding. This
generalizes the central result given by the Main Theorem and its
Corollary in [4] and [20] and by the Théoréme in [3]. We owe to
Alice Silverberg a suggestion which led to the modular embedding
remarks of Section 4 of [3, 20] and which was also useful in the present
article. Moreover, a key idea having its origin in Shiga’s article [18]
was an inspiration here as it was in [3, 20]. Shiga’s idea was to apply
a special case of Wiistholz’s analytic subgroup theorem [26, 27] to
reduced period matrices of abelian varieties defined over Q in order to
generalize Schneider’s result to the Siegel modular case. However, the
proof in [18] presents difficulties and this motivated the Cohen-Shiga-
Wolfart collaboration in [3, 20]. The proof in Sections 3 and 4 of
the more general Theorem of the present paper implies, in particular,
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an alternative and more direct treatment, for the case of the modulus
varieties of [21], than the one of [3, 20]. Nonetheless, there are a
number of other related additional results in [3, 20] which we do not
mention here and whose proofs are not covered in the present paper or
elsewhere. In Sections 5 and 6 of the present article we give one of the
simplest examples of the methods of Sections 2, 3 and 4 in dimension
greater than 1, namely that of Hilbert modular functions in dimension
2 (Proposition 1). Despite its simplicity, this example brings out the
basic ideas and also serves to show that the result of the Theorem is
open to refinement (Proposition 2).

We turn now to the statement of results. Let n > 1 be a positive
integer and

Sp = {2z € M,(C)|z = 2%,1d,, — 22 >> 0} C C"*°

the (bounded) Siegel domain of degree n. We shall often work with the
unbounded realization of S,, given by the Hermitian symmetric domain

H, = {7 € M,,(C)|7 = 7", Im(7) >> 0}.

The domains S,, and H,, are related by a biholomorphic transformation

7 ~ z(7) that preserves M,(Q). The special points of S, and H,
are in M, (Q) and correspond to abelian varieties of CM (complex
multiplication) type. We redub them CM-points. Let A be an R-vector

space of dimension 2n carrying a symplectic form E. Let
Sp(A,E) = {g € GL(A)|E(gv, gv') = E(v,v'),v,v" € A}

be the symplectic group fixing E. Then Sp(A, E) acts on the complex
manifold S(A, E) of complex structures I on A with E(., I.) symmetric
positive definite, via

(9,I)—glg',  g€Sp(AE), I €S(AE).

Let T be the C-linear vector space given by the +i eigenspace of I in
A ®g C. Then there is an ordered C-basis {f1,...,fn} of T and an
R-basis {f1,..., fon} of A such that the matrix of (fn41,... , fon) with
respect to {f1,...,fn} is given by 7 € H,,. We write [ = I, = I,
where z = z(7) (see for example [16, Chapter 2, Section 7]). The
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Hermitian symmetric space S(A, E) may be identified via the Harish-
Chandra embedding [16, p. 81] with S,, and, by transport of structure,
the group Sp(A, E) acts on S, and H,,.

Let A have a Q-structure, so that A = Aq ®q R for a Q-vector space
Aq of dimension 2n, satisfying F(Aqg,Aq) C Q . We now suppose
that there is a strongly equivariant embedding of a (G, D) as in the
Prediction into (Sp(A, E),S,,), that is [16, p. 92] a pair (¢, F') where ¢
is an R-homomorphism, defined over Q, of linear algebraic groups

t:G— Sp(AE)
and a holomorphic embedding
F:D—-S,
such that for z € D, g € G°(R) we have
F(gz) =u(g)F(z), 1ob=0bs0.

Here, respectively, 6 (6s) are Cartan involutions of G (Sp(A, E)) at a
chosen origin zg € D (F(z9) € Sp). Suppose in addition that F' maps
the special points of D to CM-points of S,,. We then say that (G, D)
admits a symplectic embedding. We have:

Theorem. Let (D,J,V) be a normalized model over Q foL&G,F)
where (G, D) admits a symplectic embedding. Then z € DN Q and

J(z) € V(Q) if and only if z is a special point.

To see that the result of the Theorem in the Siegel modular case,
which we will prove in Section 3, gives (in fact a generalization from
the context of [21] to that of [22, 23] of) the result of the Main
Theorem and its Corollary in [3, 20], consider the construction by
Shimura in [21, 22, 23] of modulus varieties for families of abelian
varieties of a given PEL-type. Namely, let I, be the complex structure
on A corresponding to z € S,,. Let B be a semi-simple algebra over Q
with positive involution realized as a unital subalgebra, with involution
induced by E, of

{a € End(Aq)|al,, = L,,a}
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for a fixed zg € S,,. Let
G(B) ={g € Sp(A, F)|ga = ag,a € B}

and
D=DB)={z€ S,|l,a=al,,ac B}

The Zariski connected identity component G of G(B) is a reductive
Hermitian linear algebraic group defined over Q with associated sym-
metric domain D C C™. A symplectic embedding of (G, D) is realized
here as a natural inclusion of G in Sp(A, E) and D in S,,. We refer
to [22, p. 319] and [16, Chapter 4] for details. The existence of nor-
malized models over Q in the present context was shown in [22, 23].
(The above embedding solution has a certain rigidity. Shimura studied
solutions in the nonrigid case which are needed in the construction of
canonical models, see for example [6, 7, 11].)

To state Propositions 1 and 2 we now consider the case where V
is a Hilbert modular surface. Throughout the present article, the
background reference for Hilbert modular surfaces, from which we
shall borrow heavily, is van der Geer’s book [25]. Hilbert modular
surfaces are the moduli varieties for polarized abelian varieties whose
endomorphism ring contains a given order in a totally real quadratic
number field. More specifically, let F' be a totally real quadratic number
field and consider, for simplicity of exposition, the order given by
the ring © of integers of F'. Any projective ©-module of rank 2 is
isomorphic to the direct sum © @ A for some fractional ideal A of ©.
Let SL(© @& A) be the set of matrices in SL(2, F'), of the form

[z 2] where a,d € ©,bc A ce A,

and let ' = PSL(© @& A) = SL(© ® A)/{+1,—1}. Via the Galois
embeddings of F into R, the group I acts on 2 where A is the complex
upper half plane. Let T be the standard form on © & A given by

T((0,a),(0",a")) = Trp/q(0a" — ab'), (0,a),(0',a") € O @ A,

where Tr = Trp/q is the sum of the two Galois conjugates of an element
of F. Then [25, p. 208] the space I'\H? is the moduli space of triples
(A,j,r) where A is a polarized abelian complex surface equipped with
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an injective order homomorphism j : ® — End(A) and a ©-module
isomorphism r : Hy(A,Z)=0 & A carrying the Riemann form on A to
the standard form 7. (The polarization given by the standard form on
© @ A is a principal polarization if and only if A is the Z-dual ©V of
© with respect to Tr.) Let (%2, Jg, V) be a normalized model over Q
as above so that Jg : H2 — V/(C) is a [-invariant holomorphic map
sending CM-points to Q-rational points of V. The transcendence part
of the statement of the Theorem can, in the present case, be improved
to the following:

Proposition 1. If z = (z1,22),2: € H,i=1,2 is not a CM-point

and at least one of z1 or zo is in H N Q then Jy(z) € V(Q).

We give the proof of Proposition 1 in Section 5 (for A = © this
is a variant of the proof appearing in [3]. A different proof for
A = © appears in [4, 20]. There is a natural mapping of the space
PSL(© @ A)\H?, which consists of dropping the extra endomorphism
structure of the polarized complex abelian surfaces for which it is
a modulus variety, into PSp(L£)\H2 where H, is the Siegel upper
half space of degree 2, and Sp(L) is the subgroup of Sp(4,Q) fixing
a symplectic lattice £, with elementary divisors ej|es given by the
elementary divisors of the abelian group ©V/A. Without loss of
generality for the sequel, we always choose the minimal Riemann form
of the polarization of a complex abelian surface, so that e; = 1,e5 = ¢
where ¢ > 1 is a positive integer. Let (Hz,Js, W) be a normalized
model over Q so that Js : Hz — W (C) maps CM-points to Q-rational
points of W. The map Jy (Js) has projective coordinates Hilbert
(Siegel) modular forms of sufficiently high weight defined over Q, that
is with Fourier expansions with algebraic coefficients at the cusps. For
each modulus Jg(2) of a CM-point z € H? the above natural map
determines a unique modulus Jg(7) of a CM-point 7 € Ha. As the CM-
points are dense in V(Q), the natural map induces a morphism defined
over Q from V to W. The Humbert surfaces of the title refer to the
images of Hilbert modular surfaces in Siegel modular threefolds under
these natural maps (see [25, Chapter 9] for a detailed treatment). By
using the description [25, p. 212, Theorem (2.4)] of the representations
in Ho of the irreducible components of the Humbert surfaces together
with a modular embedding argument we deduce in Section 6, with
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notations as above, the following:

Proposition 2. Suppose that

T = [Tl T2:| € Ho

T2 T3

is not a CM-point. Let a,b,c be integers with 0 < b < 2c¢ and
A = b®—4ac positive and square-free. Suppose that T + by + acrs = 0.
Then if either 15 + (1/2)(b+VA)s or 7o+ (1/2)(b— VA)7s is an

algebraic number then Jg(7) & W(Q).

2. A transcendence result and an intertwiner proposition.
The basic transcendence result needed for the sequel, given in Propo-
sition 3 below, is a special case of [26, Theorem 5] itself a consequence
of Wiistholz’s analytic subgroup theorem (see [26, 27]). First we in-
troduce some notation. Let A be an abelian variety defined over Q
and T4 be the Q-vector space given by the tangent space to A at the
origin Oa. Let Ta(C) = Ta ®g C with expy : T4(C) — A(C) the
exponential map and £ = epoI(O 4). Let L denote the realization of
D = End,(A) = End(A4) ®z Q given by the C-linear maps on T4(C)
which preserve Lo = £ ®7 Q.

Proposition 3 (G. Wiistholz). Let A be a simple abelian variety of
dimension n defined over Q. Any Q-basis of Ta defines an isomorphism
¢ of Ta(C) with C™. The components of the vectors in ¢(L) generate
a Q-vector space of dimension 2n2/[L : Q).

More details of the remarks that follow may be found in [21, pp.
155-157, 161-162]. We continue to suppose that A is simple so that
L is a division algebra over Q with positive involution. Let k be the
center of L. Then k is either a totally real field or a totally imaginary
quadratic extension of a totally real field. Let Lo be any complex
matrix representation of L of degree n. The rational representation of D
is equivalent over C to the direct sum of Lo and its complex conjugate
representation. In the totally real case, one deduces from this that L¢ is
equivalent over C to Lo where Lo = &Y _, X, and X,,v =1,... ,g for
g = [k : Q] are the mutually inequivalent absolutely irreducible matrix
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representations of L. The multiplicity p,, = p and the dimension d over
Q of X,, are independent of v and one has pu* = n?/(g%d). Let B be in
the set B of intertwiners of Ly in GL,,(C). Then the number of nonzero
matrix coefficients of B is no greater than gu? = n?/(gd) = n?/[L : Q].
In the totally imaginary case L¢ is equivalent over C to Ly where Ly =
@9_,(ruXy + suXy) with now g = (1/2)[k : Q] and, again by comparing
with the rational representation, we have for the multiplicities that
r, +5,=q(2n)/[L:Q] for all v = 1,... ,g. Here ¢? is the dimension
of L over k. Again, let B be in the intertwiners B as above. Then
the number of nonzero matrix coefficients of B is no greater than
b=>"Y_,(r2+s2). Now, if r,s, # 0 for some v = 1,...,g then b is
strictly less than > 7_, (r, + s,)? = 2n?(2¢%g)/[L : Q]* = 2n?/[L : Q]
as 2¢°g = [L : Q). If A has complex multiplication then k is totally
imaginary and r,s, = 0 for all v = 1,...,g. Conversely, if these
latter conditions hold, then [21, Proposition 14], implies A has complex
multiplication. We have

Proposition 4. Let B be the set of intertwiners of Ly in GL,(C).
Then if A is a simple abelian variety without complex multiplication,
any matriz B in B has strictly less than 2n?/[L : Q] nonzero coeffi-
cients.

In Section 3, we use the results of this section to prove the Theorem
of Section 1 for the Siegel modular case. A result in [16] on symplectic
embeddings then allows us in Section 4 to complete the proof of the
Theorem in general.

3. Proof of the theorem in the Siegel modular case. We adopt
the notations of Section 2 and let £; = £;(A) be the Q-vector space
of elements of T)4(C) given by the linear combinations over Q in the
elements of £. To prove the Theorem in the Siegel modular case, it
suffices to do the following;:

We suppose that A is an abelian variety defined over Q, not of
complex multiplication type, for which the Q-vector space L1 in Ta(C)
is of dimension n = dim(A) over Q and we show that this leads to a
contradiction.
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We begin by supposing that A is simple. Let L be the realization
of D = End,(A) on T4(C). As L preserves £;, any Q-basis of £;
determines a Q-matrix representation L; of L of degree n. Moreover,
as A is defined over Q, any Q-basis of T4 gives rise to a Q-matrix
representation Ls of L of degree n. As we saw in Section 2 any C-matrix
representation of L of degree n is equivalent over C to the Q-matrix
representation L defined in that same section. Therefore, for i = 1,2
the matrix representation L; is equivalent over C to Ly and hence is
equivalent over Q to Lo (use for example [5, Theorem (29.7), p. 200]
applied to the algebra DQ =D ®q Q). Therefore, there is a basis of
T4 (C) with elements in £; which defines an isomorphism ¢, : T4 (C) —
C" inducing the matrix representation Ly of L. Moreover, there is
also a basis of T4(C) with elements in T4 defining an isomorphism
¢2 : T4(C) — C™ which also induces the representation Lo of L.
Therefore, there is a matrix B in GL,(C) which intertwines Lq such
that ¢2(£) = Bé1(L). But ¢1(£) C Q" hence the vector components of
$2(L) lie in the vector space generated over Q by the non-zero matrix
components of B, which are strictly less than 2n?/[L : Q] in number
by Proposition 4 of Section 2, as A was supposed without complex
multiplication. But this contradicts Proposition 3 of Section 2.

To deal with the case where A is not simple we use the fact that up to
isogeny A decomposes as a direct product of powers of simple abelian
varieties Ay, defined over Q. As A is not of complex multiplication type
one of the Ay does not have complex multiplication and clearly the
property for Ay, that £;(Aj) be of dimension dim(A4y) over Q holds for
this abelian variety as we assume it holds for A. Therefore, it is enough
to treat the simple case (see also the remarks in Step (i), Lemma 1 of
18]).

4. Proof of the theorem. With the notations of the Theo-
rem, there is a strongly equivariant embedding (¢, F') of (G, D) into
(Sp(A, E), S,,), where A has a Q-structure A = Aq ® Q as in Section 1.
In order to realize D and S,, as bounded symmetric domains one can
exploit the Harish-Chandra embedding, and in this way realize F' as
the restriction of a C-linear map (see [16, p. 85]). This map on D maps
the special pzoints to CM-points and is injective, hence an image point
isin SnﬂQn if and only if its preimage is in D N Qm. For our purposes,
we shall need just the “if” part of this last statement as given in the
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Lemma below. As I' is arithmetic, by replacing it by a subgroup of fi-
nite index if necessary, one may suppose that ¢(I') C ¢(G°(R))NSp(Az)
where Az is a Z-module of rank 2n for which Aq = Az ®z Q and
E(Az,Az) C Z with Sp(Az) being the subgroup of Sp(A, E) fixing Ay.
Let (S,,Js, W) be a normalized model over Q. The map F induces a
quotient morphism p: V' — W which sends the images of the special
points to images of CM-points. As the images of the special points are
dense in V(Q) the map p is rational over Q. We now have the following
Lemma, from which the Theorem follows immediately:

Lemma. There is a holomorphic embedding F' of D into S,, compat-
ible with a group injection v of T' into Sp(Az) such that F(DNQ") C

F(D)NQ  and the induced quotient map p:V — W is a rational
morphism defined over Q.

5. Proof of Proposition 1. We now apply the considerations
of Sections 2 and 3 to prove Proposition 1. We retain the notations
of those sections and of Section 1. Suppose the Proposition is false
so that z = (21, 22), 2z € H, i = 1,2 is not a CM-point, at least one
of 21 or z2 is in H N Q but Jy(2) € V(Q). Recall that I'\H? is the
moduli space of triples (A, j,r) as in Section 1. As Jy(z) € V(Q) there
is such a triple whose abelian surface A is defined over Q with A(C)
isomorphic as a complex torus to C?/(0.z +.A.1). Here 2 is written as
the column vector (21, 22) in C? and 1 = ?(1,1). The action of j(F) is
determined by the action of an element a of F on w = *(wy,ws) € C?
by a.w = *(aws, a”ws) where o is the non-trivial Galois embedding of
F into R. Notice that the mutually inequivalent absolutely irreducible
representations of F' are given by the identity and o. Let B be the
commutant in GLy(C) of the above realization of j(F) as

a 0
{ [0 aa] ‘aEF}.
A direct computation shows
p=1|b 0 ‘bl,bg € C,biby 0.
0 by

Let T4(C) be the complex tangent space obtained by extension of
scalars from T4 as in Section 2. Then there is a basis of T4 with respect
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to which we obtain also on T4(C) the above representation of j(F').
Therefore, there are generators Ay = ‘(A11, A21) and Ay = ¥(A12, A22)
over j(F) of the Q-lattice L and a matrix

b 0
b_[o b2:|68

such that )\11 = blzl, )\21 = szz, )\12 = bl,)\zg = b2. Therefore, if
either z; or z; is algebraic the components of the vectors A; and Ay
generate a vector space U over Q of dimension at most 3. Suppose
that A is simple and that j(F) is in the center of End,(A4). If
j(F) = End,(A) then by Proposition 3, Section 2, the dimension
of U is no less than 4, so that End,(A) strictly contains j(F) and
has the maximal dimension 4 over Q. If j(F) is all of the center of
End,(A) then [21, p. 152] End,(A) is of dimension 4 over j(F') which
is impossible. Therefore the center of End,(A) is a totally imaginary
quadratic field extension of j(F') equal to all of End,(A) and so A has
complex multiplication. This contradicts the hypothesis that z is not
a CM-point and concludes the proof for the case where the center of
End,(A) contains j(F') and A is simple.

If A is simple and j(F') is not in the center of End,(A) then End,(A)
is an indefinite quaternion algebra over Q and this case reduces to
Morita’s result [13] mentioned in Section 1. When A is not simple, it
is isogenous to a product of two elliptic curves. As End,(A) contains
J(F) these elliptic curves are isogenous and the Proposition follows
from Schneider’s theorem on the elliptic modular function [17] also
mentioned in Section 1. For more details on these two cases see [25,
Chapter 5.

6. Proof of Proposition 2. More details of the modular embedding
remarks of this section may be found in [25, Chapter 9, Sections 1
and 2]. We adopt the notation of Section 1 of the present article.
Given a positive integer ¢ and a positive square-free integer A such
that A = b? — 4ac for integers a,b with 0 < b < 2c, the Humbert
surface Ha can be defined as the complex surface in Sp(£)\H2, where
L = L. = Z® x Zc, whose irreducible components are given by the
image under

m:Ho — Sp(ﬁ)\'Hg
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of the
T = [Tl T2:| € Ho

T2 T3

with 71 +bre+acrs = 0[25, Theorem(2.4)]. As A is square-free, by [25,
Proposition(2.3)], if ©4 is the order of discriminant A in F' = Q(vA)
and A is a complex abelian surface C?/Z? + 722, 7 € Ha, then End(4)
contains O precisely when 7(7) is in Ha. The discussions of Sections
1 and 5 of the present article go through equally well with © replaced
by ©a. In particular, each irreducible component of Ha corresponds
to a strict ideal class of © o containing an ideal A where ©) /A ~ Z/cZ.
Therefore the natural map

p: PSL(OA & A)\H? — Sp(L)\Hs

will be determined by a matrix transforming the ©®A-module OA & A
equipped with the standard form into the symplectic lattice Z3 x Zc
(as on [25, pp. 209, 210, 212]). As in the proof of Proposition (2.5) of
[25, p. 212], a direct calculation shows that the image of
L HQ — Ho
_ 0 _
sG]

where S is the base change matrix
1 b+vVA
S = ,
is the surface defined by 7, + brs + acr3 = 0. Therefore, if
o
T —
T2 T3

is in the image of ¢, then it is the image of (21, 22) where

z1 0 _g|™t T2|ig
0 z9 T2 T3 ’
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A direct calculation shows that
1
=1+ b+ VAR + Z(b +VA)? 1

=11+ (b— VAT + i(b — VA,
On using the fact that 7 + bz + (1/4)(b* — A)73 = 0 one finds that
21 = \/Z(TQ + %(b + \/Z)T:;)
and
2= VBt L0~ VB)r).

Proposition 2 now follows from Proposition 1 with © replaced by ©a,
as using the interpretation of the values of J-functions in terms of fields
of moduli of abelian varieties, one sees that each Q-rational modulus
Js(7),m(7) € Hp is determined by a Q-rational modulus J (2).

7. Remarks. 1) An alternative proof of the Lemma of Section 4
in the context of Shimura’s modulus varieties for families of abelian
varieties of given PEL type [22, 23] can be deduced from [23, Section
3.3] where an F, as in the statement of the Lemma, compatible with
the natural inclusion ¢ is very explicitly constructed and shown to be a
rational map of the complex coordinates of D. As the map sends special
points to CM-points and is injective, one can conclude the proof of the
Lemma as above.

2) It is well known that Wiistholz’s announcement [26, Theorem 5]
used in Section 2, is a consequence of Wiistholz’s analytic subgroup
theorem. A discussion was provided in [4] and [20] but with a specific
application to the methods of those articles in mind and certainly it is
possible to give a more economic proof of [26, Theorem 5.

Acknowledgments. I thank Bertrand Philibert for noticing that
the case where j(F') is not in the center of End,(A) was not mentioned
in the proof of Proposition 1 given in [3].



1000 P.B. COHEN

I am most grateful to David and Pia Wigner for generously providing
me with their copy of the reference [16] while I was writing the present

paper.
REFERENCES

1. W.L. Baily Jr. and A. Borel, Compactification of arithmetic quotients of
bounded symmetric domains, Annals of Math. 84 (1966), 442-528.

2. M.V. Borovoi, Conjugation of Shimura varieties, Amer. Math. Soc., Proc.
ICM, Berkeley 1, (1987), 783-790.

3. P.B. Cohen, Propriétés transcendantes des fonctions automorphes, Séminaire
de Théorie des Nombres, Paris, Cambridge University Press, 1992-93.

4. P.B. Cohen, H. Shiga and J. Wolfart, Criteria for compler multiplication
and transcendence properties of automorphic functions, Johann Wolfgang Goethe
Universitat, Frankfurt am Main, 1993, preprint.

5. C.W. Curtis and I. Reiner, Representation theory of finite groups and asso-
ciative algebras, Pure Appl. Math. 11, Interscience, 1966.

6. P. Deligne, Travauz de Shimura, Séminaire Bourbaki, 23éme année (1970/71),
LNM 398, 244, Springer (1971), 123-165.

7. , Variétés de Shimura: interprétation modulaire et techniques de con-
struction de modéles canoniques, Proc. Symp. Pure. Math. 33, (1979), 247-290.

8. P. Deligne, J.S. Milne, A. Ogus and K-y.Shen, Hodge cycles, motives and
Shimura varieties, LNM 900, Springer-Verlag, 1989.

9. G. Faltings, Arithmetic varieties and rigidity, Séminaire de Théorie des
Nombres de Paris, 1982-83, Birkhiuser, 1984.

10. R.P. Holzapfel, Transcendental ball points of algebraic Picard integrals, Math.
Nachr. 161 (1993), 7-25.

11. J.S. Milne, Canonical models of mized Shimura varieties and automorphic
vector bundles, in Automorphic forms, Shimura varieties and L-functions (L.
Clozel, J.S. Milne, eds.), Academic Press, Ann Arbor, 1988.

12. K. Miyake, Models of certain automorphic function fields, Acta Arith. 126
(1971), 245-307.

13. Y. Morita, On the transcendency of special values of arithmetic automorphic
functions, J. Math. Soc. Japan 24 (1972), 268-274.

14. 1. Satake, Holomorphic imbeddings of symmetric domains into a Siegel space,
Amer. J. Math. 87 (1965), 425-461.

15. , A note on holomorphic imbeddings and compactification of symmet-
ric domains, Amer. J. Math. 90 (1968), 231-247.

16. , Algebraic structures of symmetric domains, Pub. Math. Soc. Japan
14, Shoten Pub. and Princeton University Press, 1980.

17. Th. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math.
Ann. 113 (1937), 1-13.




HUMBERT SURFACES 1001

18. H. Shiga, On the transcendency of the values of the modular function at
algebraic points, Proc. J. Arith. Genéve 1991, Astérisque 209 (1992).

19. , On certain arithmetic properties of the modular function of type
(3,6), preprint.

20. H. Shiga and J. Wolfart, Criteria for complex multiplication and transcen-
dence properties of automorphic functions, J. Reine Angew. Math, 463 (1995),
1-25.

21. G. Shimura, On analytic families of polarized abelian varieties and automor-
phic functions, Ann. Math. 78 (1963), 149-192.

22. , Moduli of Abelian varieties and number theory, Proc. Sympos. Pure
Math. 9 (1966), 312-332.

23. , Moduli and fibre systems of abelian varieties, Ann. Math. 83 (1966),
294-338.

24. G. Shimura and Y. Taniyama, Complex multiplication of Abelian varieties
and its applications to number theory, Pub. Math. Soc. Japan 6 (1961),

25. G. van der Geer, Hilbert modular surfaces, Springer-Verlag, 1980.

26. G. Wiistholz, Algebraic groups, Hodge theory, and transcendence, in Proc.
ICM Berkeley 19.

27. , Algebraische Punkte auf analytischen Untergruppen algebraischer
Gruppen, Annals Math. 129 (1989), 501-517.

URA GEOMETRIE - ANALYSE - TOPOLOGIE, UNIVERSITE DES SCIENCES ET TECH-
NOLOGIES DE LILLE, 59655 VILLENEUVE D’ASCQ CEDEX, FRANCE
E-mail address: pcohen@gat.univ-lillel.fr



