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NORM INEQUALITIES WITH POWER WEIGHTS
FOR HORMANDER TYPE MULTIPLIERS

RANDY COMBS

1. Introduction. Let m(z) be a bounded, measurable function on
R"™. The operator T,, f defined by the Fourier transform equation

(T )" (2) = m(2) f(2)

is called a multiplier operator with multiplier m. Denote by A a
nonnegative real number, s a number greater than or equal to 1, |z| ~ R

the annulus {z : R < |z| < 2R}, and @ = (a1, ..., a,) a multi-index
of nonnegative integers a; with norm |a| = a1 + -+ + a,. We say
m € M(s, ) if

(1)

1/s
B(m,s,)\) = [|m||o+ sup (Rsla"/ |DYm(z)|* dx) < 00
R>0,|a|<A |z|~R

when A is a positive integer. For the case where A is not an integer, let
1 be the integer part of A and let v = X — 1. We say m € M (s, \) if

(2) B(m,s,\) = B(m,s,l)+ sup I(R,z) < ©
R>0,0<|z|<R/2

where

I(R,z) = sup <(R/|z)"/5RS|C¥|—n

|ex|=t
1/s
X / |D*m(z) — D“m(z — 2)|° da:> .
|z|~R

If X is an integer, then those multipliers belonging to M (2, ) are
the classical Hérmander-Mikhlin multipliers. The definition given here
appears in [4].
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1314 R. COMBS

This paper contains generalizations to higher dimensions of the results
contained in [2]. We refer the reader to that paper for further historical
remarks.

We denote by Sy the space of Schwartz functions whose Fourier
transforms have compact support not including the origin. It should
be noted that functions belonging to Sy ¢ have vanishing moments of
all orders. Given a real number o, we define

1/p
e = ([ @pleras)

The main result of this paper is the following theorem.

Theorem 1.1. Assume 1 < s < 2, n/s < A\, m € M(s,\) and
1< p<oo. If o is a real number that satisfies

i) max(—n,—pA) < o <min(p\,—n +p(A+n—n/s)) and

ii)
0<n<a+n—l> <1
np

where 1 is the integer part of (o +n)/(np), then for each f € Sy,

1T fllp.e < CBsl|fllp,0

where C is independent of m and f.

1.1. We now make some observations about the M (s, \) class and
set some notation. First, the M (s, A) condition is monotonic in s and
A; that is, if s > s; and A > Ay, then M(s,\) C M(s1,A1) and
B(m,s1,A1) < B(m, s, \).

For a positive real number ¢, define 7 f(z) = f(tz). Let 1 < s < 2,
o>0,and A > 0. If m € M(s,\) with norm B(m, s, \),then from the
definition of M (s, A) and an appropriate substitution, we see that the
function mm € M (s, \) with B(rym,s,A) < B(m, s, A) for each t > 0.
Furthermore, if ¢ is a Schwartz function supported in an annulus and
m € M(s, ), then the product function (:¢)m € M (s, A) with norm
bounded by CB(m, s, \) for each t > 0, where the constant C' depends

on @.
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Following Hormander [1], we fix a nonnegative ¢ € C°°(R™) that has
support contained in {z : 1/2 < |z| < 2} and satisfies

> o2 r) =1

for z # 0. With this ¢ given, we fix the following notation:

(3) m;(x) = 6(2 T 2)m(a)
(4) k() = my(z)
(5) My(x) =Y mj(z)

(6) Kn(z) =) kj().

We will decompose the function m(z) as m(z) = >.>._ m;(z) for z # 0
and note that Ky * f(z) converges pointwise to T, f(x) for f € So.
Also, if 1 <5 <2, A >0, and m € M(s, ), then My € M(s,\) and
B(Mp,s,)\) < CB(m,s,\), where C is independent of N and m.

As a consequence of the above remarks, we have the following lemma.

Lemma 1.2. Suppose 1 < s < 2, A > 0 and w(z) > 0 is a
weight function. Let A C L2. If, for some C independent of f and
m € M(s,A),

T fllpw < CB(m, s, A)|[flp,w

for each m € M(s,\) and for each f € A, then there is a C’
independent of f, m, and N such that

KN # fllpw < C"B(m, s, A)||f]

p,w
forall f € A.
The method of proof of Theorem 1.1 depends upon the following

lemma proved in the one-dimensional case in [2]. The n-dimensional
case follows mutatis mutandzis.
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Lemma 1.3. Suppose that K(x,y) is a function defined on R™ x R™
and U(z) and W (z) are nonnegative functions defined on R™. Let a be
a real number, and let t be in R™. Set

Tf(z) = - K(z,y)f(y) dy.

Suppose that
m [Th(z)Ple - t°U(e) do
{z:R<|z—t|<2R}
< A/ Ih(z)P|z — W () da
Rn
for all h € C*° with support in {z : R/8 < |x —t| < 16R}, where A is

independent of h and R. If f € C*, then ||[Tf|[} , is bounded by the

sum of

® AL,
h 1/p
¢ z,y)|PU(x) dz
Y /0 <‘/B(t:7‘/4) </{z;r/2<lzt|<2r} K (z,y)[PU(2) >
Pdr
<lwlay) =,
and
h 1/p
C p
(10) /0 </B(t,4r)° </{m”"/2<z—t<2r} |K(z,y)|PU(z) dx>
<lilay) &

where C is independent of f, K and W.
Also, we will use the following proposition found in [4].

Proposition 1.4. If1 <p<oo, -n<o<n(p—-1),1<s<2
A>n, me M(s,\), and f € S, then

/ (T f(2)P|2)” dz < CB, / (@) Plal” da
RTL

n
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where C' is independent of f and m.

To conclude this section, we state a variation of the Hardy inequalities
found in [3, page 196]. The proof of these lemmas follow from a change
to polar coordinates and the original Hardy inequalities.

Lemma 1.5. If g is defined on R™, ¢ > 1 and t > 0, then

*° q
/ </ g(y)dy> rotThdr < C/ lg@)|*ly[" ™ " dy
0 lyl<r Rn

where C' depends only on t, g and n.

Lemma 1.6. If g is defined on R™, ¢ > 1 and t > 0, then

o q
/ </ l9() dy) r'~hdr < C/ lg(y)| |y |+ " dy
0 ly|>r Rn

where C' depends only on t, q and n.

2. Preliminaries. Throughout this section and the following
sections, p’ will denote the exponent conjugate to p. Also, we will
denote by Bs the norm B(m, s, \) when no confusion arises.

Lemma 2.1. Suppose that 1 < s < 2 and 1 < p < o0. Set
t = min(p,s), and let A be a nonnegative real number. Let o be a
multi-indez such that 0 < || < X. If m is in M(s,\) and 2R > 1,
then

1/p
(11) </ D%k () P dx) < OB, (27 R)lal-X+n/0) gn/p-(aln)
|z|~R
where C depends only on A and n.

Proof. We first consider the case where A is an integer. Note that for
z in the annulus {z : R < |z| < 2R} and each multi-index S,

Z |z%| > CR.
181=X
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Hence,

(/.. |D°‘k:j<x>|pdx)1/p

1/p
<CR™)Y (/ |m'BD°‘kj(x)|pd:v> .
o~ R

1Bl=A

By hypothesis, p < t/, so by Holder’s inequality and the Hausdorff
Young inequality, we have the bound

(12)  CRPRMV/P VDY (/

1/t
DPzp(2 T x)m(z)|t dx) .
1B1=X

n

Note that for each 7, (277z)*¢(2 7z)m(z) is in M(t,\) with a norm
that is less than or equal to CB(m,t,)). Also note that the function
is supported in |z| ~ 27. Consequently, with these facts, the M (¢, \)
condition, B; < CBy, and 1/p —1/t' = 1/p — 1 + 1/t we have (12) is

< CB,R™R"V/p=1+1/t)9jlalgi(n/t=)
< OB,(2/ R)(lel=24n/t) gn/p=(jal+n)

This concludes the proof where A is an integer.

If )\ is not an integer, set A = [+, where [ is the integer part of A. Let
0 be a multi-index with 81 +- - -+, = [, and set zg = 3/(4R|3|), where
|B| is the Euclidean norm of 3. Then |+ z5| = 1/(4R) < 29/4 < 201,
Also

Z 2P sin(z - 23)| > CR' > 0

18|=t
for z in the annulus {z : R < |z| < 2R}. Note that multiplying by sine
factors corresponds to taking differences on the Fourier transform side.
Thus, we have the following inequalities

(/.. |Dakj<x>|de)1/p

1/p
<CR™! Z </| o 2P sin(z - 25) Dk; ()P dm) .
1Bl=t o
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Holder’s inequality and the Hausdorff Young inequality imply this is
, 1/t
< CR™Hn(/p=1/t) (/ \DPFj(z + 25) — DPFj(z — 25)|* dw)

where Fj(z) = z%¢(277z)m(z). As before, 2771%/ F;(z) is in M (¢, \) for
j with a norm that is less than or equal to CB(m, s, A). Also note that
the functions in the integrand are supported in |z| ~ 27 and, as shown
above, |z5| < 29/2. Consequently, we have by the M(¢,\) condition
that the above is

27
< CB,(2/ R)*I=2+n/t) gr/p=(laltn)

Y
< CB,R'RM(/p-1+1/Dglal <2_6> 9i(n/t-D)

This concludes the proof of the lemma. ]

Theorem 2.2. Suppose 1 < s < 2,1 < p < oo, and R > 0.
Set t = min(p’,s). Let \ be a real number such that A\ > n/t. If
m € M(s,\) and a is a multi-index such that 0 < |a| < XA —n/t, then

1/p
(13) (/ |D*K n (z)|P dm) < CB,R"P-(lal+n)
|z|~R
where C depends only on A and n.

Proof. We have by Minkowski’s inequality,

N

(14) ( /leR|DaKN(x>|de> <y ( /M |D“kj<x)|pdx>1/”.

j=—N

We will dominate the sum on the right by an infinite series and thus
obtain a bound for the lefthand side that is independent of N.

Let J be the first integer such that 2R > 1 for j > J. Consequently,
2jR§lforj<Jand
[D%kj(z)| = |(z*p(2 7 x)m(z)) |
< C«HmHOOQj(IaIJrn)
< C'BSQj(‘aH'").
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Hence,
1/p ‘
(/ ID“kj(w)l”dm) < OB, (27 R)\21+m) gn/p=(lal4n)
|z|~R

for j < J.
If 7 > J, then Lemma 2.1 implies

1/p
(/ Do‘kj(ac)|pdm> < OB, (2 R)e~ 0/t gn/o—(el+n).
|z|~R

Now set € = |a| +n and § = |a| — A+ n/t. With these values, the sum
on the right in (14) is dominated by CB,R™/P~(o47) times

J—-1

> (2R) + i(sz)é <2.

This completes the proof of the theorem. o
The following two lemmas will be used to prove Theorem 2.5.

Lemma 2.3. Suppose 1 < s<2and1<p<oco. Sett=min(p',s).
Let A\ be a real number an L an integer such that 0 < L < A —n/t <
L+1. Let R>0 andy € R"™ with |y| < R/2. If m € M(s,\) and j is
an integer such that 29|y| > 1, then there exists a C such that

(15) (/|z~R |kj(z —y) — Z (|Ci/|)!aDakj(x)|p dw) 1/p

lal<L

) A—n/t
SOBS<2J|y>L‘”"”(%> R

where C is independent of y, R and j.

Proof. To prove (15), note that |y| < R/2 and Lemma 2.1 with
|a] = 0 imply

a0 ([t y)wdw)w
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Also, by the same lemma we have

w ([ corrseras)”

< OB, (27 |y]) "/ tHal - <E> Rr(L/p-1).

Since || < L and 2/|y| > 1, (16) and (17) are bounded by the righthand
side of (15). This concludes the proof of the lemma. O

Lemma 2.4. Suppose that 1 < s < 2 and 1 < p < oo. Set
t = min(p’,s). Let X\ be a real number and L an integer such that
0<L<A—n/t<L+1. Let R>0 andy c R"” with |y| < R/2. If
m € M(s,\) and j is an integer such that 27|y| < 1, then there exists
a C such that

(18) (/zNR|kj($—y)_ 3 %D“kj(xﬂwm)l/p

la|<L

) A—n/t
< OBy (2 [y|) P12/t (%) R(/p=1)

where C is independent of y, R and j.

Proof. To prove (18), we consider the two cases when A is an integer
and when )\ is a noninteger.

We first consider the case when A is an integer. As in the proof of
Lemma 2.1, on the annulus {z : R < |z < 2R} we have }_5_, |z#| >

CR*. Hence, the lefthand side of (18) is bounded by

([ (2

1B1=A

2’ (kj(z —y)

P 1/p
> dm) .

- 3 CU Doty @)

|
lo] <L o
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By Holder’s inequality and the Hausdorff Young inequality, this is

(19) <C Y RAm/rt/)

1B]=X
D[t - 30 OV )

t 1/t
X </ dm) .
" | <L

Note that the support of m; is in |z| ~ 2/. By the Leibnitz formula
and the fact that m; € M(s,A) with norm bounded by CB(m, s, A),
we have the integral in (19) is equal to

(/l g Z Cn7nDn [eiz-y

n+r=p

_i)lalpa o
_ Z ( ) Y ]D”mj(m)

|
e

t 1/t
dm)

<0y ( /lMD"gm,y)D“mj(x)

nt+r=0

t 1/t
dx)

where g(z,y) = e @V — Z‘a|<L(—i)|a|may“/\a|L Taylor’s theorem
then implies this is -

1/t
<C ) IylL“2(L“’”</ ID”mj(w)ltdw>
| |~2i

n+r=4
S OBt‘y|L+12j(L+1_)‘+n/t).

From this and (19) it follows that the lefthand side of (18) is bounded
by
CBtfo\Rn(l/pfl/t')|y‘L+12j(L+17)\+n/t)‘

When we rearrange terms, we have the righthand side of (18). This
concludes the proof when A is an integer.

For the case where ) is a noninteger, we assume 2/R < 1. If 2R > 1,
the proof is similar to Lemma 2.1.

Let A = | + v with [ the integer part of \. To avoid confusion, let
| - | denote the Euclidean norm and | - |5 the multi-index norm. For
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B such that |8|y =1, set

Note that for R < |z| < 2R, we have

2 cos(z - 23)| > CR.
B
181=t

We multiply by these cosine factors noting that this corresponds to
taking sums on the Fourier transform side. Hence, the lefthand side of
(18) is bounded by

> CR™

1Bl=l

(Lo

< Y CRtalr1)
16]=1

P cos(z - 2p) (kj(x —y)— Y (_j)apakj(x))

P 1/p
dw)
|a|<L o

1/t
< ([ 1Dtz s 452) + ala sy o=zl o)

with g(z,y) defined as above. By definition, | + z5| < 27/2 and the
functions in the integrand are supported in |z| ~ 27. For these z,
|z £ 25| < C27. Hence, by Taylor’s theorem,

(20) |D"g(x % 25,1) < Cly[EH12d(E+1-InD

for each multi-index 7.

By the Liebnitz formula for derivatives we have the above bounded

by
(21)
t 1/t
Z CRl+"(1/P1/t)</ _ Z Cnyﬁ\yﬂaﬁ(m’zﬁvy) dl‘)
1B=t 1~ Tne=p
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where .
U, «(z,28,y) = D"g(x + 28,y) D "m;(x + 23)

+ D"g(x — 2g,y)D"m;(xz — 2p).

If we add and subtract mj(z) in the argument of D® and use
Minkowski’s inequality, we get that (21) is bounded by

(22) C Z R-lAn(1/p=1/t") Z (I + I + I3)
181=1 n+r=p

where

b= ([ rate Do ) - i)
n=( /|~ |D7g(z — 2,5) D" (my(z — 25) mj(x))tdw)l/t

1/t
Is = </| - |ID"(g(x + 28,y) + g(x — 23,y))D"m;(z)|" dac) .
x|~27

The M (¢, |s| + ) condition and (20) imply that I; and I, have the
bound

2!

Li1gieat—pnl) (1281 " gitnse-im)

CB(m, . Is] + 7)1 *12 (t21) e,

The M (t,1) condition and (20) implies that I3 has the bound
CB(m,t,1)|y|LrtoiE+i=nDgi(n/t=lx])

Hence, we have (22) is bounded by
CBSR7l+n(1/p71+1/t) ‘y|L+1(2j(L+17l77+n/t) |Zﬂ|7 + 2j(17l+n/t))‘

20y\" _ -
Y = e <R v
|25] ( 7 > <

since 27|y| < 1. Altogether, we have the bound

However,

OBSR_l+n(1/p_1+1/t) |y|L+12j(L+1—l—’y+n/t)R—'y

: )
= OB, (2|y)) F 1=/ <§> R(/p=1),
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This completes the proof of the lemma. ]
The proof of the following theorem is similar to that of Theorem 2.2.

Theorem 2.5. Suppose that 1 < s < 2 and 1 < p < oco. Set
t = min(p’,s) and let L be a nonnegative integer. Let X\ be a real
number such that 0 < L <X—n/t < L+1. If m € M(s,\), then there
exists a C such that for each R > 0 and |y| < R/2

@ (fmoe-n- X G rrre)”

le|<L

ly\
< CB. (E) Rr(1/p-1)

where C is independent of y, R and N.
Proof. As in the proof of Theorem 2.2, the integral on the left in (23)
is dominated by

N

> (L

j=—N

The terms in the sum are estimated by considering the two cases
27|y] > 1 and 2’|y| < 1 and then applying Lemmas 2.3 and 2.4. The
proof is then finished as in Theorem 2.2. a

The proof of the following lemmas and theorems are similar to those
in [2] and are provided here for completeness.

Lemma 2.6. Assume that 1 < s < 2, n/s < A < n, and
me M(s,\). Ifl<p<n/(n—XA) andp(n—X) —n<o<n(p—-1)
and f is integrable, then

KN * fllpo < CBslf]|

p,o

where C is independent of m, N and f.
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Proof. We apply Lemma 1.3 with K(z,y) = Kny(z — y), a = —0,
b=0and U(z) = W(z) = |z|°. By Lemma 1.2 and Proposition 1.4,
(7) is satisfied. Thus, we want to show that (9) and (10) have the
bound CB?||f[]} .

For (9) we have

00 1/p
e [T (] (o )Plet o)
0 ly|<r/4 r/2<|z|<2r
Pdr

<lrwlay) -

Theorem 2.2 and the bounds on |z| and |y| imply that this is bounded

by o0 p
cpy [T et ( [ i) dy> dr.
0 lyl<r/4

But, since o < n(p — 1), Lemma 1.5 applies to give the bound

cBy [ 1f@pl e dy = c [ 1rw)Pl dy

R"
which is the desired bound for (24).

We now turn to the estimate of (10). We have by hypothesis that

o > p(n — ). Hence,
np n

<
oc+n n—-X\
and we can choose g such that

np cge
max —_— .
b LY
With this g, we apply Holder’s inequality on the inner integral, and

the bounds on |z| and |y| to obtain (10) are less than or equal to a
constant times

*° de\ M1
0 ly|>4r \ J|y|/2<|z—y|<2ly| r

P
< 17()| dy) P41 g,



HORMANDER TYPE MULTIPLIERS 1327

By Theorem 2.2, this is
00 p
@) <o ([ wrswla) eerta
0 |ly|>4r

We set t = 0 +n —np/q > 0 and apply Lemma 1.6 to obtain (25) is

<cBr / F@PIYl” dy.

This completes the proof of the lemma. ]
By duality, we have

Lemma 2.7. Assume that 1 < s < 2, n/s < X < n, and
m € M(s,\). If n/A\ < p < ocoand —n < o0 < p\—n and | is
integrable, then

IKN * fllpo < CBs||f]

p,o

where C is independent of m, N and f.

Theorem 2.8. Assume that 1 < s <2, n/s <X <n,me M(s,\)
and 1 < p < . If o is a real number such that

max(—n,—p\) < o < min(n(p — 1),pA)
and f is a Schwartz function, then

T fllp.o < CBl|f]

p,o

where C' is independent of m and f.

Proof. We fix p and o satisfying the hypothesis of the theorem and

observe that
np . ( n >
< min | p, .
np—o n—A

Thus, we can choose a pg such that

np . ) ( n >
< po < min | p,
np—o n—A
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that also satisfies
n o
— <n—-—.
Do p

Hence, there is an € > 0 such that

n—z—)\< =
p Do —¢€ p

and

. . n
p0—5<m1n<p, >
n—A
We set pg = pp — € and observe

Po(”*/\)*n<%<”(m*1)

with

. n
1<p0<m1n(, >
n—A

Thus, pp and opg/p satisfy the hypothesis of Lemma 2.6 from which
we have

/ | K * f(a:)\p°|w\ap°/p dz < CBY° / \f(m)|l’0|x|0po/p de.
R™ Rn
Similarly, choose p; such that
n
max <X7p> <pp <X

and op
—-n < 71 < p1A—n.

Lemma 2.7 implies
| Vs s@jalirae < omp [ if@per s da.
R™ Rn

Consequently, by the Riesz convexity theorem, we have

|| K * f]

o < OBsl[fllp.o-
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The conclusion of the theorem then follows from Fatou’s lemma. O

3. Main result. We now turn to the proof of Theorem 1.1.

We observe that if A > n/s, s > 1, and pA < n(p — 1), then the
theorem is a consequence of Theorem 2.8. For A > n, s = 1 and
o < n(p — 1), the theorem follows from Proposition 1.4.

To complete the proof, it suffices to consider the case for o,p such
that

min(pA,—n+pA+n—n/s) >o >n(p—1)
with
o+n
np

where [ is the integer part of (o +n)/(np) and 0 < ny < L.

We fix p,s,A > n/s and o > n(p — 1) satisfying the hypothesis and
let t = min(p’, s). Then

nllp—1)=0c—npy<o

and
n(lp—1)+p=0op(l—ny) >0

since 1 — ny > 0. Hence,
(26) n(lp—1) <o <n(lp—1)+p.
Also, since s < t, we have by hypothesis
o< —n+pn+-—n/t)
from which we obtain
n(l—1+1/t) <.

Furthermore, by the monotonicity of the M(s,\) condition, we can
assume without loss of generality that

n(l—1+1/t) <A<n(l—1+1/t)+1.
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With this inequality, A satisfies the hypothesis of Theorem 2.5.
Now let

_\B
K(z,y) = Kn(z —y) — Z (,8y|)' DﬂKN(m)
|B|<n(l-1)

a=—0,b=0,and U(z) = W(x) = |z|” in Lemma 1.3.

Since f is in Sg and thus has vanishing moment of all orders

. K(z,y)f(y)dy = o Kn(z —y)f(y)dy,

and the inequality (7) holds by Lemma 1.2 and Proposition 1.4. Hence,
we need to show that (9) and (10) have the bound C'BE||f|[} , i.e.,

(27) /oOo </y|<r/4 <~/T/2<.t|<2’l‘ (@ = y)fll” dm) "
<lil ) &

and

(28) /ooo </y|>4r </r/2<z|<2r K (@ =yl dm) "
<lildn) &

have the bound CBE||f|[} .

For (27), replace |xz|” by Cr°. Then Theorem 2.5 implies (27) has
the bound

D > ‘y| A/t i oc+n(l—p)—p(A—n/t)—1
OB — lfW)ldy ) r dr.
0 lyl<r/a \ T

Since 0 < —o —n + p(n + A — n/t), Lemma 1.5 implies the latter is

§CB§’/ £ ()[Ply PO/ Oy retotemp)mpOmn/imn g,
R’FL

= OB\ flI5,0-
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We now consider (28). Note that the inner integral is bounded by a
constant times the sum of

! [ e
r/2<|z|<2r
and
w0 Z / y|PIP| DP K () Pre da.
18|<n(i—1) Y T/2<]z[<2r

By Theorem 2.2, (29) and (30) are bounded by

n(l-p)
CB?TU—Hl(l_p) <M)

r

and

ly| |Blp
CBSTU-«—n(l—P) <i> ,
r

respectively.

However, since |y|/r > 1, these are bounded by

np(l—1
Cpotn(i-p) <|i> vl
;

Hence, (28) is bounded by

oo p
omr [T( [, W lswlay) st
0 y|>4r

As observed above, ¢ > n(pl — 1). Hence we can apply Lemma 1.6
to obtain the bound

oBY / |Fg) Pyl Dy rototnnton g, — o pr|| ]

p
p,o°

Thus, ||Kn * f||p,e < CBs||f||p,s and an application of Fatou’s lemma
obtains the theorem. |
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4. Applications. We have the following definition for the Sfo
symbol class of pseudo-differential operators.

Definition 4.1. Let 2 be an open set of R™ and k € R. We define
the symbol class Sf, to consist of the set of p € C*°(€2 x R") with the
property that, for any compact A C 2, and multi-indices «, 3, there
exists a constant C'4 o5 such that

(31) |DEDEp(x,€)| < Caa,p(l+ &)k

forall z € A and £ € R".

We may assume, without loss of generality, that p has compact
support in the x variable.

For each symbol p € S:’fjo, we have an associated operator, p(z, D),
defined by

(32) p(z,D)f = | p(z,€)f(€)e™ de.

R’Vl

Also, we define p, (&) to be the inverse Fourier transform of p in the «

variable, i.e.,
1 T
2a(6) = oy [ @) da,

The following lemma shows that p, belongs to M (s, \) for each s and
A

Lemma 4.2. Let 1 <s<2and A>0. Ifk >0 andp € Sfo, then
Py € M(s, ) for each fized , and moreover,

C
< -
(33) B(pmSa)‘) =14+ |n|2n

where C' is independent of 7.
Proof. We will show that the lemma holds whenever A is a positive

integer, and the general case will follow from the monotonicity of the
M (s, \) condition.
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Let A be a positive integer. Given a multi-index a and r > 0, we
prove that for each n,

1/s n/s—|a|

Cr
34 (/ Dep, (€ Sdg) <
(34 r<|§\<zr| epn() 1+ [n[?n

Equation (33) will then follow from the definition of the M(s, )
condition.

We observe that for an arbitrary multi-index (3,
7Dy < C [ IDIDER,6)]da
Rn

Thus, since we have assumed that p has compact support in the x
variable and £ is arbitrary, we have

(1+Jgh*

(35) |Dgpy(§) < C 1+ |2

The righthand side of (34) follows readily from (35). This concludes
the proof of the lemma. a

Theorem 4.3. Let o be a real number satisfying the hypothesis of
Theorem 1.1. Let k <0 and assume that 1 <p < oo. If P € Sfo, then

(36) I1P(s D) fllp,e < Cllfllp,o
for f € So,0 with C independent of f.

Proof. All of the functions involved in the definition of P(z, D)f are
absolutely integrable. Hence, we may switch the order of integration
to obtain

P@@D)f=C | e [ / TR ()f () df] dn.

We note that the inner integral is precisely 7'p, f(z). Consequently, the
lefthand side of (36) is equal to

(],

p 1/p
|z|” da:>

/ e " Tp, f(x) dw
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and by Minkowski’s integral inequality, this is bounded by

1/p
/ ( / |Tpnf<x>f’|x|”dx) dn.
Rrn \JRn

Lemma 4.2 and Theorem 1.1 imply that this is bounded by the
righthand side of (36). This concludes the proof of the theorem. O
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