NORM INEQUALITIES WITH POWER WEIGHTS FOR HÖRMANDER TYPE MULTIPLIERS

RANDY COMBS

1. Introduction. Let m(x) be a bounded, measurable function on \mathbf{R}^n . The operator $T_m f$ defined by the Fourier transform equation

$$(T_m f)^{\wedge}(x) = m(x)\hat{f}(x)$$

is called a multiplier operator with multiplier m. Denote by λ a nonnegative real number, s a number greater than or equal to $1, |x| \sim R$ the annulus $\{x : R < |x| < 2R\}$, and $\alpha = (\alpha_1, \ldots, \alpha_n)$ a multi-index of nonnegative integers α_j with norm $|\alpha| = \alpha_1 + \cdots + \alpha_n$. We say $m \in M(s, \lambda)$ if

$$B(m,s,\lambda) = ||m||_{\infty} + \sup_{R>0, |\alpha| \le \lambda} \left(R^{s|\alpha|-n} \int_{|x| \sim R} |D^{\alpha} m(x)|^s dx \right)^{1/s} < \infty$$

when λ is a positive integer. For the case where λ is not an integer, let 1 be the integer part of λ and let $\gamma = \lambda - l$. We say $m \in M(s, \lambda)$ if

(2)
$$B(m, s, \lambda) = B(m, s, l) + \sup_{R>0, 0 < |z| < R/2} I(R, z) < \infty$$

where

$$\begin{split} I(R,z) &= \sup_{|\alpha|=l} \left((R/|z|)^{\gamma s} R^{s|\alpha|-n} \right. \\ &\times \int_{|x|\sim R} |D^{\alpha} m(x) - D^{\alpha} m(x-z)|^{s} \, dx \right)^{1/s}. \end{split}$$

If λ is an integer, then those multipliers belonging to $M(2,\lambda)$ are the classical Hörmander-Mikhlin multipliers. The definition given here appears in [4].

Received by the editors on August 17, 1993, and in revised form on May 2, 1994.

This paper contains generalizations to higher dimensions of the results contained in [2]. We refer the reader to that paper for further historical remarks.

We denote by $S_{0,0}$ the space of Schwartz functions whose Fourier transforms have compact support not including the origin. It should be noted that functions belonging to $S_{0,0}$ have vanishing moments of all orders. Given a real number σ , we define

$$||f||_{p,\sigma} = \left(\int_{\mathbb{R}^n} |f(x)|^p |x|^\sigma dx\right)^{1/p}.$$

The main result of this paper is the following theorem.

Theorem 1.1. Assume $1 \le s \le 2$, $n/s < \lambda$, $m \in M(s,\lambda)$ and $1 . If <math>\sigma$ is a real number that satisfies

- i) $\max(-n, -p\lambda) < \sigma < \min(p\lambda, -n + p(\lambda + n n/s))$ and
- ii)

$$0 < n \left(\frac{\sigma + n}{np} - l \right) < 1$$

where l is the integer part of $(\sigma + n)/(np)$, then for each $f \in S_{0,0}$,

$$||T_m f||_{p,\sigma} \leq CB_s ||f||_{p,\sigma}$$

where C is independent of m and f.

1.1. We now make some observations about the $M(s,\lambda)$ class and set some notation. First, the $M(s,\lambda)$ condition is monotonic in s and λ ; that is, if $s \geq s_1$ and $\lambda \geq \lambda_1$, then $M(s,\lambda) \subset M(s_1,\lambda_1)$ and $B(m,s_1,\lambda_1) \leq B(m,s,\lambda)$.

For a positive real number t, define $\tau_t f(x) = f(tx)$. Let $1 \leq s \leq 2$, $\sigma \geq 0$, and $\lambda \geq 0$. If $m \in M(s,\lambda)$ with norm $B(m,s,\lambda)$,then from the definition of $M(s,\lambda)$ and an appropriate substitution, we see that the function $\tau_t m \in M(s,\lambda)$ with $B(\tau_t m,s,\lambda) \leq B(m,s,\lambda)$ for each t>0. Furthermore, if ϕ is a Schwartz function supported in an annulus and $m \in M(s,\lambda)$, then the product function $(\tau_t \phi)m \in M(s,\lambda)$ with norm bounded by $CB(m,s,\lambda)$ for each t>0, where the constant C depends on ϕ .

Following Hörmander [1], we fix a nonnegative $\phi \in C^{\infty}(\mathbf{R}^n)$ that has support contained in $\{x: 1/2 < |x| < 2\}$ and satisfies

$$\sum_{-\infty}^{\infty} \phi(2^{-j}x) = 1$$

for $x \neq 0$. With this ϕ given, we fix the following notation:

(3)
$$m_j(x) = \phi(2^{-j}x)m(x)$$

$$(4) k_j(x) = \widetilde{m}_j(x)$$

(5)
$$M_N(x) = \sum_{-N}^N m_j(x)$$

(6)
$$K_N(x) = \sum_{j=N}^{N} k_j(x).$$

We will decompose the function m(x) as $m(x) = \sum_{-\infty}^{\infty} m_j(x)$ for $x \neq 0$ and note that $K_N * f(x)$ converges pointwise to $T_m f(x)$ for $f \in S_{0,0}$. Also, if $1 \leq s \leq 2$, $\lambda \geq 0$, and $m \in M(s,\lambda)$, then $M_N \in M(s,\lambda)$ and $B(M_N,s,\lambda) \leq CB(m,s,\lambda)$, where C is independent of N and m.

As a consequence of the above remarks, we have the following lemma.

Lemma 1.2. Suppose $1 \le s \le 2$, $\lambda \ge 0$ and $w(x) \ge 0$ is a weight function. Let $A \subset L^2$. If, for some C independent of f and $m \in M(s, \lambda)$,

$$||T_m f||_{p,w} \le CB(m,s,\lambda)||f||_{p,w}$$

for each $m \in M(s,\lambda)$ and for each $f \in A$, then there is a C' independent of f, m, and N such that

$$||K_N * f||_{p,w} \le C' B(m,s,\lambda) ||f||_{p,w}$$

for all $f \in A$.

The method of proof of Theorem 1.1 depends upon the following lemma proved in the one-dimensional case in [2]. The *n*-dimensional case follows *mutatis mutandis*.

Lemma 1.3. Suppose that K(x,y) is a function defined on $\mathbb{R}^n \times \mathbb{R}^n$ and U(x) and W(x) are nonnegative functions defined on \mathbb{R}^n . Let a be a real number, and let t be in \mathbb{R}^n . Set

$$Tf(x) = \int_{\mathbb{R}^n} K(x, y) f(y) \, dy.$$

Suppose that

(7)
$$\int_{\{x:R<|x-t|<2R\}} |Th(x)|^p |x-t|^a U(x) dx \\ \leq A \int_{R^n} |h(x)|^p |x-t|^a W(x) dx$$

for all $h \in C^{\infty}$ with support in $\{x : R/8 \le |x-t| \le 16R\}$, where A is independent of h and R. If $f \in C^{\infty}$, then $||Tf||_{p,u}^p$ is bounded by the sum of

$$(8) CA||f||_{p,w}^p$$

(9)
$$C \int_0^\infty \left(\int_{B(t,r/4)} \left(\int_{\{x:r/2<|x-t|<2r\}} |K(x,y)|^p U(x) dx \right)^{1/p} \times |f(y)| dy \right)^p \frac{dr}{r},$$

and

(10)
$$C \int_0^\infty \left(\int_{B(t,4r)^c} \left(\int_{\{x:r/2<|x-t|<2r\}} |K(x,y)|^p U(x) dx \right)^{1/p} \times |f(y)| dy \right)^p \frac{dr}{r}$$

where C is independent of f, K and W.

Also, we will use the following proposition found in [4].

Proposition 1.4. *If* $1 , <math>-n < \sigma < n(p-1)$, $1 \le s \le 2$, $\lambda \ge n$, $m \in M(s, \lambda)$, and $f \in S$, then

$$\int_{R^n} |T_m f(x)|^p |x|^\sigma dx \le C B_s \int_{R^n} |f(x)|^p |x|^\sigma dx$$

where C is independent of f and m.

To conclude this section, we state a variation of the Hardy inequalities found in [3, page 196]. The proof of these lemmas follow from a change to polar coordinates and the original Hardy inequalities.

Lemma 1.5. If g is defined on \mathbb{R}^n , $q \ge 1$ and t > 0, then

$$\int_0^\infty \left(\int_{|y| < r} |g(y)| \, dy \right)^q r^{-t-1} \, dr \le C \int_{\mathbb{R}^n} |g(y)|^q |y|^{nq-t-n} \, dy$$

where C depends only on t, q and n.

Lemma 1.6. If g is defined on \mathbb{R}^n , $q \geq 1$ and t > 0, then

$$\int_0^\infty \left(\int_{|y|>r} |g(y)| \, dy \right)^q r^{t-1} \, dr \le C \int_{\mathbb{R}^n} |g(y)|^q |y|^{nq+t-n} \, dy$$

where C depends only on t, q and n.

2. Preliminaries. Throughout this section and the following sections, p' will denote the exponent conjugate to p. Also, we will denote by B_s the norm $B(m, s, \lambda)$ when no confusion arises.

Lemma 2.1. Suppose that $1 \le s \le 2$ and $1 \le p < \infty$. Set $t = \min(p', s)$, and let λ be a nonnegative real number. Let α be a multi-index such that $0 \le |\alpha| \le \lambda$. If m is in $M(s, \lambda)$ and $2^jR > 1$, then

$$(11) \left(\int_{|x| \sim R} |D^{\alpha} k_j(x)|^p dx \right)^{1/p} \le C B_s (2^j R)^{(|\alpha| - \lambda + n/t)} R^{n/p - (|\alpha| + n)}$$

where C depends only on λ and n.

Proof. We first consider the case where λ is an integer. Note that for x in the annulus $\{x: R < |x| < 2R\}$ and each multi-index β ,

$$\sum_{|\beta|=\lambda} |x^{\beta}| \ge CR^{\lambda}.$$

Hence,

$$\left(\int_{|x|\sim R} |D^{\alpha}k_{j}(x)|^{p} dx\right)^{1/p}$$

$$\leq CR^{-\lambda} \sum_{|\beta|=\lambda} \left(\int_{|x|\sim R} |x^{\beta}D^{\alpha}k_{j}(x)|^{p} dx\right)^{1/p}.$$

By hypothesis, $p \leq t'$, so by Hölder's inequality and the Hausdorff Young inequality, we have the bound

(12)
$$CR^{-\lambda}R^{n(1/p-1/t')} \sum_{|\beta|=\lambda} \left(\int_{R^n} |D^{\beta}x^{\alpha}\phi(2^{-j}x)m(x)|^t dx \right)^{1/t}.$$

Note that for each j, $(2^{-j}x)^{\alpha}\phi(2^{-j}x)m(x)$ is in $M(t,\lambda)$ with a norm that is less than or equal to $CB(m,t,\lambda)$. Also note that the function is supported in $|x| \sim 2^{j}$. Consequently, with these facts, the $M(t,\lambda)$ condition, $B_t \leq CB_s$, and 1/p - 1/t' = 1/p - 1 + 1/t we have (12) is

$$\leq CB_tR^{-\lambda}R^{n(1/p-1+1/t)}2^{j|\alpha|}2^{j(n/t-\lambda)}$$

$$\leq CB_s(2^jR)^{(|\alpha|-\lambda+n/t)}R^{n/p-(|\alpha|+n)}.$$

This concludes the proof where λ is an integer.

If λ is not an integer, set $\lambda = l + \gamma$, where l is the integer part of λ . Let β be a multi-index with $\beta_1 + \cdots + \beta_n = l$, and set $z_{\beta} = \beta/(4R|\beta|)$, where $|\beta|$ is the Euclidean norm of β . Then $|\pm z_{\beta}| = 1/(4R) \le 2^j/4 < 2^{j-1}$. Also

$$\sum_{|\beta|=l} |x^{\beta} \sin(x \cdot z_{\beta})| \ge CR^{l} > 0$$

for x in the annulus $\{x: R < |x| < 2R\}$. Note that multiplying by sine factors corresponds to taking differences on the Fourier transform side. Thus, we have the following inequalities

$$\left(\int_{|x|\sim R} |D^{\alpha}k_{j}(x)|^{p} dx\right)^{1/p}$$

$$\leq CR^{-l} \sum_{|\beta|=l} \left(\int_{|x|\sim R} |x^{\beta} \sin(x \cdot z_{\beta}) D^{\alpha}k_{j}(x)|^{p} dx\right)^{1/p}.$$

Hölder's inequality and the Hausdorff Young inequality imply this is

$$\leq C R^{-l+n(1/p-1/t')} \bigg(\int_{R^n} |D^{eta} F_j(x+z_{eta}) - D^{eta} F_j(x-z_{eta})|^t dx \bigg)^{1/t}$$

where $F_j(x) = x^{\alpha}\phi(2^{-j}x)m(x)$. As before, $2^{-j|\alpha|}F_j(x)$ is in $M(t,\lambda)$ for j with a norm that is less than or equal to $CB(m,s,\lambda)$. Also note that the functions in the integrand are supported in $|x| \sim 2^j$ and, as shown above, $|z_{\beta}| < 2^j/2$. Consequently, we have by the $M(t,\lambda)$ condition that the above is

$$\leq CB_tR^{-l}R^{n(1/p-1+1/t)}2^{j|\alpha|}\left(\frac{|z_{\beta}|}{2^j}\right)^{\gamma}2^{j(n/t-l)}$$

$$\leq CB_s(2^jR)^{|\alpha|-\lambda+n/t)}R^{n/p-(|\alpha|+n)}.$$

This concludes the proof of the lemma.

Theorem 2.2. Suppose $1 \le s \le 2$, $1 \le p < \infty$, and R > 0. Set $t = \min(p', s)$. Let λ be a real number such that $\lambda > n/t$. If $m \in M(s, \lambda)$ and α is a multi-index such that $0 \le |\alpha| < \lambda - n/t$, then

(13)
$$\left(\int_{|x| \sim R} |D^{\alpha} K_N(x)|^p \, dx \right)^{1/p} \le C B_s R^{n/p - (|\alpha| + n)}$$

where C depends only on λ and n.

Proof. We have by Minkowski's inequality,

(14)
$$\left(\int_{|x|\sim R} |D^{\alpha}K_N(x)|^p dx\right) \leq \sum_{j=-N}^N \left(\int_{|x|\sim R} |D^{\alpha}k_j(x)|^p dx\right)^{1/p}$$
.

We will dominate the sum on the right by an infinite series and thus obtain a bound for the lefthand side that is independent of N.

Let J be the first integer such that $2^{j}R > 1$ for $j \geq J$. Consequently, $2^{j}R \leq 1$ for $j \leq J$ and

$$|D^{\alpha}k_{j}(x)| = |(x^{\alpha}\phi(2^{-j}x)m(x))^{*}|$$

$$\leq C||m||_{\infty}2^{j(|\alpha|+n)}$$

$$\leq CB_{s}2^{j(|\alpha|+n)}.$$

Hence,

$$\left(\int_{|x|\sim R} |D^{\alpha}k_{j}(x)|^{p} dx\right)^{1/p} \leq CB_{s}(2^{j}R)^{(|\alpha|+n)}R^{n/p-(|\alpha|+n)}$$

for j < J.

If $j \geq J$, then Lemma 2.1 implies

$$\left(\int_{|x|\sim R} |D^{\alpha}k_j(x)|^p dx\right)^{1/p} \le CB_s(2^j R)^{|\alpha|-\lambda+n/t} R^{n/p-(|\alpha|+n)}.$$

Now set $\varepsilon = |\alpha| + n$ and $\delta = |\alpha| - \lambda + n/t$. With these values, the sum on the right in (14) is dominated by $CB_sR^{n/p-(|\alpha|+n)}$ times

$$\sum_{-\infty}^{J-1} (2^j R)^{\varepsilon} + \sum_{j=J}^{\infty} (2^j R)^{\delta} \le 2.$$

This completes the proof of the theorem.

The following two lemmas will be used to prove Theorem 2.5.

Lemma 2.3. Suppose $1 \le s \le 2$ and $1 \le p < \infty$. Set $t = \min(p', s)$. Let λ be a real number an L an integer such that $0 \le L < \lambda - n/t < L+1$. Let R>0 and $y \in \mathbf{R}^n$ with |y| < R/2. If $m \in M(s,\lambda)$ and j is an integer such that $2^j|y| > 1$, then there exists a C such that

(15)
$$\left(\int_{|x| \sim R} |k_j(x - y) - \sum_{|\alpha| \le L} \frac{(-y)^{\alpha}}{|\alpha|!} D^{\alpha} k_j(x)|^p dx \right)^{1/p}$$

$$\le C B_s (2^j |y|)^{L - \lambda + n/t} \left(\frac{|y|}{R} \right)^{\lambda - n/t} R^{n(1/p - 1)}$$

where C is independent of y, R and j.

Proof. To prove (15), note that |y| < R/2 and Lemma 2.1 with $|\alpha| = 0$ imply

(16)
$$\left(\int_{|x| \sim R} |k_j(x-y)|^p dx \right)^{1/p}$$

$$\leq C B_s (2^j |y|)^{(n/t-\lambda)} \left(\frac{|y|}{R} \right)^{(\lambda-n/t)} R^{n(1/p-1)}.$$

Also, by the same lemma we have

(17)
$$\left(\int_{|x| \sim R} |(-y)^{\alpha} D^{\alpha} k_{j}(x)|^{p} dx \right)^{1/p}$$

$$\leq C B_{s}(2^{j} |y|)^{(n/t + |\alpha| - \lambda)} \left(\frac{|y|}{R} \right)^{(\lambda - n/t)} R^{n(1/p - 1)}.$$

Since $|\alpha| \leq L$ and $2^{j}|y| > 1$, (16) and (17) are bounded by the righthand side of (15). This concludes the proof of the lemma.

Lemma 2.4. Suppose that $1 \le s \le 2$ and $1 \le p < \infty$. Set $t = \min(p', s)$. Let λ be a real number and L an integer such that $0 \le L < \lambda - n/t < L + 1$. Let R > 0 and $y \in \mathbf{R}^n$ with |y| < R/2. If $m \in M(s, \lambda)$ and j is an integer such that $2^j |y| \le 1$, then there exists a C such that

(18)
$$\left(\int_{|x| \sim R} |k_j(x - y) - \sum_{|\alpha| \le L} \frac{(-y)^{\alpha}}{|\alpha|!} D^{\alpha} k_j(x)|^p dx \right)^{1/p}$$

$$\le C B_s (2^j |y|)^{L+1-\lambda+n/t} \left(\frac{|y|}{R} \right)^{\lambda-n/t} R^{n(1/p-1)}$$

where C is independent of y, R and j.

Proof. To prove (18), we consider the two cases when λ is an integer and when λ is a noninteger.

We first consider the case when λ is an integer. As in the proof of Lemma 2.1, on the annulus $\{x: R < |x| < 2R\}$ we have $\sum_{|\beta|=\lambda} |x^{\beta}| \ge CR^{\lambda}$. Hence, the lefthand side of (18) is bounded by

$$CR^{-\lambda} \left(\int_{|x| \sim R} \left(\sum_{|\beta| = \lambda} \left| x^{\beta} (k_{j}(x - y) - \sum_{|\alpha| \leq L} \frac{(-y)^{\alpha}}{|\alpha|!} D^{\alpha} k_{j}(x)) \right| \right)^{p} dx \right)^{1/p}.$$

By Hölder's inequality and the Hausdorff Young inequality, this is

$$(19) \leq C \sum_{|\beta|=\lambda} R^{-\lambda+n(1/p-1/t')} \times \left(\int_{\mathbb{R}^n} \left| D^{\beta} \left[\left(e^{-ix \cdot y} - \sum_{|\alpha| \leq L} \frac{(-i)^{|\alpha|} x^{\alpha} y^{\alpha}}{|\alpha|!} \right) m_j(x) \right] \right|^t dx \right)^{1/t}.$$

Note that the support of m_j is in $|x| \sim 2^j$. By the Leibnitz formula and the fact that $m_j \in M(s,\lambda)$ with norm bounded by $CB(m,s,\lambda)$, we have the integral in (19) is equal to

$$\left(\int_{|x|\sim 2^{j}} \left| \sum_{\eta+\kappa=\beta} C_{\eta,\kappa} D^{\eta} \left[e^{-ix\cdot y} - \sum_{|\alpha|\leq L} \frac{(-i)^{|\alpha|} x^{\alpha} y^{\alpha}}{|\alpha|!} \right] D^{\kappa} m_{j}(x) \right|^{t} dx \right)^{1/t} \\
\leq C \sum_{\eta+\kappa=\beta} \left(\int_{|x|\sim R} \left| D^{\eta} g(x,y) D^{\kappa} m_{j}(x) \right|^{t} dx \right)^{1/t}$$

where $g(x,y)=e^{-ix\cdot y}-\sum_{|\alpha|\leq L}(-i)^{|\alpha|}x^{\alpha}y^{\alpha}/|\alpha|!$. Taylor's theorem then implies this is

$$\leq C \sum_{\eta+\kappa=\beta} |y|^{L+1} 2^{(L+1-|\eta|)} \left(\int_{|x|\sim 2^{j}} |D^{\kappa} m_{j}(x)|^{t} dx \right)^{1/t}$$

$$\leq C B_{t} |y|^{L+1} 2^{j(L+1-\lambda+n/t)}.$$

From this and (19) it follows that the lefthand side of (18) is bounded by

$$CB_t R^{-\lambda} R^{n(1/p-1/t')} |y|^{L+1} 2^{j(L+1-\lambda+n/t)}.$$

When we rearrange terms, we have the righthand side of (18). This concludes the proof when λ is an integer.

For the case where λ is a noninteger, we assume $2^{j}R \leq 1$. If $2^{j}R > 1$, the proof is similar to Lemma 2.1.

Let $\lambda = l + \gamma$ with l the integer part of λ . To avoid confusion, let $|\cdot|_E$ denote the Euclidean norm and $|\cdot|_M$ the multi-index norm. For

 β such that $|\beta|_M = l$, set

$$z_{\beta} = \frac{2^j |y|_E}{R} \frac{\beta}{|\beta|_E}.$$

Note that for R < |x| < 2R, we have

$$\sum_{|\beta|=l} |x^{\beta} \cos(x \cdot z_{\beta})| \ge CR^{l}.$$

We multiply by these cosine factors noting that this corresponds to taking sums on the Fourier transform side. Hence, the lefthand side of (18) is bounded by

$$\begin{split} &\sum_{|\beta|=l} CR^{-l} \\ &\times \bigg(\int_{|x|\sim R} \bigg| x^{\beta} \cos(x\cdot z_{\beta}) (k_{j}(x-y) - \sum_{|\alpha|\leq L} \frac{(-y)^{\alpha}}{|\alpha|!} D^{\alpha} k_{j}(x)) \bigg|^{p} dx \bigg)^{1/p} \\ &\leq \sum_{|\beta|=l} CR^{-l+n(1/p-1/t')} \\ &\times \bigg(\int_{R^{n}} |D^{\beta}[g(x+z_{\beta},y)m_{j}(x+z_{\beta}) + g(x-z_{\beta},y)m_{j}(x-z_{\beta})] \big|^{t} dx \bigg)^{1/t}, \end{split}$$

with g(x,y) defined as above. By definition, $|\pm z_{\beta}| < 2^{j}/2$ and the functions in the integrand are supported in $|x| \sim 2^{j}$. For these x, $|x \pm z_{\beta}| \leq C2^{j}$. Hence, by Taylor's theorem,

(20)
$$|D^{\eta}g(x \pm z_{\beta}, y) \le C|y|^{L+1} 2^{j(L+1-|\eta|)}$$

for each multi-index η .

By the Liebnitz formula for derivatives we have the above bounded by

(21)

$$\sum_{|\beta|=l}^{\prime} CR^{-l+n(1/p-1/t')} \left(\int_{|x|\sim 2^{j}} \left| \sum_{\eta+\kappa=\beta} C_{\eta,\kappa} \Psi_{\eta,\kappa}(x,z_{\beta},y) \right|^{t} dx \right)^{1/t}$$

where

$$\Psi_{\eta,\kappa}(x,z_{\beta},y) = D^{\eta}g(x+z_{\beta},y)D^{\kappa}m_{j}(x+z_{\beta}) + D^{\eta}g(x-z_{\beta},y)D^{\kappa}m_{j}(x-z_{\beta}).$$

If we add and subtract $m_j(x)$ in the argument of D^{κ} and use Minkowski's inequality, we get that (21) is bounded by

(22)
$$C \sum_{|\beta|=l} R^{-l+n(1/p-1/t')} \sum_{\eta+\kappa=\beta} (I_1 + I_2 + I_3)$$

where

$$I_{1} = \left(\int_{|x| \sim 2^{j}} |D^{\eta} g(x + z_{\beta}, y) D^{\kappa} (m_{j}(x + z_{\beta}) - m_{j}(x))|^{t} dx \right)^{1/t}$$

$$I_{2} = \left(\int_{|x| \sim 2^{j}} |D^{\eta} g(x - z_{\beta}, y) D^{\kappa} (m_{j}(x - z_{\beta}) - m_{j}(x))|^{t} dx \right)^{1/t}$$

$$I_{3} = \left(\int_{|x| \sim 2^{j}} |D^{\eta} (g(x + z_{\beta}, y) + g(x - z_{\beta}, y)) D^{\kappa} m_{j}(x)|^{t} dx \right)^{1/t}.$$

The $M(t, |\kappa| + \gamma)$ condition and (20) imply that I_1 and I_2 have the bound

$$CB(m,t,|\kappa|+\gamma)|y|^{L+1}2^{j(L+1-|\eta|)}\left(\frac{|z_{\beta}|}{2^{j}}\right)^{\gamma}2^{j(n/t-|\kappa|)}.$$

The M(t, l) condition and (20) implies that I_3 has the bound

$$CB(m,t,l)|y|^{L+1}2^{j(L+1-|\eta|)}2^{j(n/t-|\kappa|)}.$$

Hence, we have (22) is bounded by

$$CB_sR^{-l+n(1/p-1+1/t)}|y|^{L+1}(2^{j(L+1-l-\gamma+n/t)}|z_{\beta}|^{\gamma}+2^{j(1-l+n/t)}).$$

However,

$$|z_{eta}|^{\gamma} = \left(rac{2^{j}|y|}{R}
ight)^{\gamma} \leq R^{-\gamma}$$

since $2^{j}|y| \leq 1$. Altogether, we have the bound

$$\begin{split} CB_s R^{-l+n(1/p-1+1/t)} |y|^{L+1} 2^{j(L+1-l-\gamma+n/t)} R^{-\gamma} \\ &= CB_s (2^j |y|)^{(L+1-\lambda+n/t)} \bigg(\frac{|y|}{R}\bigg)^{(\lambda-n/t)} R^{n(1/p-1)} \,. \end{split}$$

This completes the proof of the lemma. \Box

The proof of the following theorem is similar to that of Theorem 2.2.

Theorem 2.5. Suppose that $1 \le s \le 2$ and $1 \le p < \infty$. Set $t = \min(p', s)$ and let L be a nonnegative integer. Let λ be a real number such that $0 \le L < \lambda - n/t < L + 1$. If $m \in M(s, \lambda)$, then there exists a C such that for each R > 0 and |y| < R/2

(23)
$$\left(\int_{|x|\sim R} |K_N(x-y) - \sum_{|\alpha|\leq L} \frac{(-y)^{\alpha}}{|\alpha|!} D^{\alpha} K_N(x)|^p dx\right)^{1/p} \\ \leq CB_s \left(\frac{|y|}{R}\right)^{\lambda - n/t} R^{n(1/p-1)}$$

where C is independent of y, R and N.

Proof. As in the proof of Theorem 2.2, the integral on the left in (23) is dominated by

$$\sum_{j=-N}^{N} \left(\int_{|x| \sim R} \left| k_j(x-y) - \sum_{|\alpha| \le L} \frac{(-y)^{\alpha}}{|\alpha|!} D^{\alpha} k_j(x) \right| dx \right)^{1/p}.$$

The terms in the sum are estimated by considering the two cases $2^{j}|y| > 1$ and $2^{j}|y| \le 1$ and then applying Lemmas 2.3 and 2.4. The proof is then finished as in Theorem 2.2.

The proof of the following lemmas and theorems are similar to those in [2] and are provided here for completeness.

Lemma 2.6. Assume that $1 \leq s \leq 2$, $n/s < \lambda < n$, and $m \in M(s,\lambda)$. If $1 and <math>p(n-\lambda) - n < \sigma < n(p-1)$ and f is integrable, then

$$||K_N * f||_{p,\sigma} \leq CB_s||f||_{p,\sigma}$$

where C is independent of m, N and f.

Proof. We apply Lemma 1.3 with $K(x,y) = K_N(x-y)$, $a = -\sigma$, b = 0 and $U(x) = W(x) = |x|^{\sigma}$. By Lemma 1.2 and Proposition 1.4, (7) is satisfied. Thus, we want to show that (9) and (10) have the bound $CB_s^p||f||_{p,\sigma}^p$.

For (9) we have

(24)
$$\int_0^\infty \left(\int_{|y| < r/4} \left(\int_{r/2 < |x| < 2r} |K_N(x-y)|^p |x|^\sigma dx \right)^{1/p} \times |f(y)| dy \right)^p \frac{dr}{r}.$$

Theorem 2.2 and the bounds on |x| and |y| imply that this is bounded by

$$CB_{s}^{p}\int_{0}^{\infty}r^{\sigma-1+n(1-p)}\left(\int_{|y|< r/4}\left|f(y)\right|dy\right)^{p}dr.$$

But, since $\sigma < n(p-1)$, Lemma 1.5 applies to give the bound

$$CB_{s}^{p} \int_{\mathbb{R}^{n}} |f(y)|^{p} |y|^{np - (n(p-1) - \sigma) - n} \, dy = CB_{s}^{p} \int_{\mathbb{R}^{n}} |f(y)|^{p} |y|^{\sigma} \, dy$$

which is the desired bound for (24).

We now turn to the estimate of (10). We have by hypothesis that $\sigma > p(n - \lambda)$. Hence,

$$\frac{np}{\sigma+n} < \frac{n}{n-\lambda},$$

and we can choose q such that

$$\max\left(p, \frac{np}{\sigma + n}\right) < q < \frac{n}{n - \lambda}.$$

With this q, we apply Hölder's inequality on the inner integral, and the bounds on |x| and |y| to obtain (10) are less than or equal to a constant times

$$\int_{0}^{\infty} \left(\int_{|y|>4r} \left(\int_{|y|/2<|x-y|<2|y|} |K_{N}(x-y)|^{q} \frac{dx}{r^{n}} \right)^{1/q} \times |f(y)| \, dy \right)^{p} r^{\sigma+n-1} \, dr.$$

By Theorem 2.2, this is

$$(25) \qquad \leq C \int_0^\infty \left(\int_{|y| > 4r} |y|^{-n+n/q} |f(y)| \, dy \right)^p r^{\sigma + n - np/q - 1} \, dr.$$

We set $t = \sigma + n - np/q > 0$ and apply Lemma 1.6 to obtain (25) is

$$\leq CB_s^p \int_{B^n} |f(y)|^p |y|^\sigma dy.$$

This completes the proof of the lemma.

By duality, we have

Lemma 2.7. Assume that $1 \leq s \leq 2$, $n/s < \lambda < n$, and $m \in M(s,\lambda)$. If $n/\lambda and <math>-n < \sigma < p\lambda - n$ and f is integrable, then

$$||K_N * f||_{p,\sigma} \leq CB_s||f||_{p,\sigma}$$

where C is independent of m, N and f.

Theorem 2.8. Assume that $1 \le s \le 2$, $n/s < \lambda < n$, $m \in M(s, \lambda)$ and $1 . If <math>\sigma$ is a real number such that

$$\max(-n, -p\lambda) < \sigma < \min(n(p-1), p\lambda)$$

and f is a Schwartz function, then

$$||T_m f||_{p,\sigma} \le CB_s ||f||_{p,\sigma}$$

where C is independent of m and f.

Proof. We fix p and σ satisfying the hypothesis of the theorem and observe that

$$\frac{np}{np-\sigma} < \min\left(p, \frac{n}{n-\lambda}\right).$$

Thus, we can choose a \tilde{p}_0 such that

$$\frac{np}{np-\sigma} < \tilde{p}_0 < \min\left(p, \frac{n}{n-\lambda}\right)$$

that also satisfies

$$rac{n}{ ilde{p}_0} < n - rac{\sigma}{p}.$$

Hence, there is an $\varepsilon > 0$ such that

$$n - \frac{\sigma}{p} - \lambda < \frac{n}{\tilde{p}_0 - \varepsilon} < n - \frac{\sigma}{p}$$

and

$$ilde{p}_0 - arepsilon < \min \left(p, rac{n}{n-\lambda}
ight).$$

We set $p_0 = \tilde{p}_0 - \varepsilon$ and observe

$$p_0(n-\lambda)-n<\frac{\sigma p_0}{p}< n(p_0-1)$$

with

$$1 < p_0 < \min\left(p, \frac{n}{n-\lambda}\right).$$

Thus, p_0 and $\sigma p_0/p$ satisfy the hypothesis of Lemma 2.6 from which we have

$$\int_{B^n} |K_N * f(x)|^{p_0} |x|^{\sigma p_0/p} dx \le C B_s^{p_0} \int_{B^n} |f(x)|^{p_0} |x|^{\sigma p_0/p} dx.$$

Similarly, choose p_1 such that

$$\max\left(rac{n}{\lambda},p
ight) < p_1 < \infty$$

and

$$-n < \frac{\sigma p_1}{p} < p_1 \lambda - n.$$

Lemma 2.7 implies

$$\int_{B^n} |K_N * f(x)|^{p_1} |x|^{\sigma p_1/p} dx \le C B_s^{p_1} \int_{B^n} |f(x)|^{p_1} |x|^{\sigma p_1/p} dx.$$

Consequently, by the Riesz convexity theorem, we have

$$||K_N * f||_{p,\sigma} \le CB_s||f||_{p,\sigma}.$$

The conclusion of the theorem then follows from Fatou's lemma.

3. Main result. We now turn to the proof of Theorem 1.1.

We observe that if $\lambda > n/s$, s > 1, and $p\lambda < n(p-1)$, then the theorem is a consequence of Theorem 2.8. For $\lambda \geq n$, s = 1 and $\sigma < n(p-1)$, the theorem follows from Proposition 1.4.

To complete the proof, it suffices to consider the case for σ, p such that

$$\min(p\lambda, -n + p(\lambda + n - n/s) > \sigma > n(p-1)$$

with

$$\frac{\sigma+n}{np} = l + \gamma$$

where l is the integer part of $(\sigma + n)/(np)$ and $0 < n\gamma < 1$.

We fix $p, s, \lambda > n/s$ and $\sigma > n(p-1)$ satisfying the hypothesis and let $t = \min(p', s)$. Then

$$n(lp-1) = \sigma - np\gamma < \sigma$$

and

$$n(lp-1) + p = \sigma p(1-n\gamma) > \sigma$$

since $1 - n\gamma > 0$. Hence,

(26)
$$n(lp-1) < \sigma < n(lp-1) + p.$$

Also, since $s \leq t$, we have by hypothesis

$$\sigma < -n + p(n + \lambda - n/t)$$

from which we obtain

$$n(l-1+1/t) < \lambda.$$

Furthermore, by the monotonicity of the $M(s,\lambda)$ condition, we can assume without loss of generality that

$$n(l-1+1/t) < \lambda < n(l-1+1/t) + 1.$$

With this inequality, λ satisfies the hypothesis of Theorem 2.5. Now let

$$K(x,y) = K_N(x-y) - \sum_{|\beta| \le n(l-1)} \frac{(-y)^{\beta}}{|\beta|!} D^{\beta} K_N(x)$$

 $a = -\sigma$, b = 0, and $U(x) = W(x) = |x|^{\sigma}$ in Lemma 1.3.

Since f is in $S_{0,0}$ and thus has vanishing moment of all orders

$$\int_{\mathbb{R}^n} K(x,y)f(y) dy = \int_{\mathbb{R}^n} K_N(x-y)f(y) dy,$$

and the inequality (7) holds by Lemma 1.2 and Proposition 1.4. Hence, we need to show that (9) and (10) have the bound $CB_s^p||f||_{p,\sigma}^p$, i.e.,

(27)
$$\int_0^\infty \left(\int_{|y| < r/4} \left(\int_{r/2 < |x| < 2r} |K_N(x-y)|^p |x|^\sigma dx \right)^{1/p} \times |f(y)| dy \right)^p \frac{dr}{r}$$

and

(28)
$$\int_{0}^{\infty} \left(\int_{|y|>4r} \left(\int_{r/2<|x|<2r} |K_{N}(x-y)|^{p} |x|^{\sigma} dx \right)^{1/p} \times |f(y)| dy \right)^{p} \frac{dr}{r}$$

have the bound $CB_s^p||f||_{p,\sigma}^p$.

For (27), replace $|x|^{\sigma}$ by Cr^{σ} . Then Theorem 2.5 implies (27) has the bound

$$CB_{s}^{p} \int_{0}^{\infty} \left(\int_{|y| < r/4} \left(\frac{|y|}{r} \right)^{\lambda - n/t} |f(y)| \, dy \right)^{p} r^{\sigma + n(1-p) - p(\lambda - n/t) - 1} \, dr.$$

Since $0 < -\sigma - n + p(n + \lambda - n/t)$, Lemma 1.5 implies the latter is

$$\leq CB_{s}^{p} \int_{\mathbb{R}^{n}} |f(y)|^{p} |y|^{p(\lambda - n/t)} |y|^{np + \sigma + n(1 - p) - p(\lambda - n/t) - n} dy$$

$$= CB_{s}^{p} ||f||_{p,\sigma}^{p}.$$

We now consider (28). Note that the inner integral is bounded by a constant times the sum of

(29)
$$\int_{r/2 < |x| < 2r} |K_N(x)|^p r^{\sigma} dx$$

and

(30)
$$\sum_{|\beta| < n(l-1)} \int_{r/2 < |x| < 2r} |y|^{|\beta|p} |D^{\beta} K_N(x)|^p r^{\sigma} dx.$$

By Theorem 2.2, (29) and (30) are bounded by

$$CB_s^p r^{\sigma+n(1-p)} \left(\frac{|y|}{r}\right)^{n(1-p)}$$

and

$$CB_s^p r^{\sigma+n(1-p)} \left(\frac{|y|}{r}\right)^{|\beta|p},$$

respectively.

However, since |y|/r > 1, these are bounded by

$$Cr^{\sigma+n(1-p)}\left(\frac{|y|}{r}\right)^{np(l-1)}.$$

Hence, (28) is bounded by

$$CB_s^p \int_0^\infty \left(\int_{|y| > 4r} |y|^{n(l-1)} |f(y)| \, dy \right)^p r^{\sigma + n - npl - 1} \, dr.$$

As observed above, $\sigma > n(pl-1)$. Hence we can apply Lemma 1.6 to obtain the bound

$$CB_s^p \int_{B_n} |f(y)|^p |y|^{pn(l-1)} |y|^{np+\sigma+n-npl-n} \, dy = CB_s^p ||f||_{p,\sigma}^p.$$

Thus, $||K_N * f||_{p,\sigma} \le CB_s||f||_{p,\sigma}$ and an application of Fatou's lemma obtains the theorem. \Box

4. Applications. We have the following definition for the $S_{1,0}^k$ symbol class of pseudo-differential operators.

Definition 4.1. Let Ω be an open set of \mathbf{R}^n and $k \in \mathbf{R}$. We define the symbol class $S_{1,0}^k$ to consist of the set of $p \in C^{\infty}(\Omega \times \mathbf{R}^n)$ with the property that, for any compact $A \subset \Omega$, and multi-indices α, β , there exists a constant $C_{A,\alpha,\beta}$ such that

$$|D_x^{\beta} D_{\xi}^{\alpha} p(x,\xi)| \le C_{A,\alpha,\beta} (1+|\xi|)^{k-|\alpha|}$$

for all $x \in A$ and $\xi \in \mathbf{R}^n$.

We may assume, without loss of generality, that p has compact support in the x variable.

For each symbol $p \in S_{1,0}^k$, we have an associated operator, p(x, D), defined by

(32)
$$p(x,D)f = \int_{\mathbb{R}^n} p(x,\xi)\hat{f}(\xi)e^{ix\cdot\xi} d\xi.$$

Also, we define $p_{\eta}(\xi)$ to be the inverse Fourier transform of p in the x variable, i.e.,

$$p_{\eta}(\xi) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} p(x,\xi) e^{ix \cdot \eta} dx.$$

The following lemma shows that p_{η} belongs to $M(s, \lambda)$ for each s and λ .

Lemma 4.2. Let $1 \le s \le 2$ and $\lambda > 0$. If $k \ge 0$ and $p \in S_{1,0}^k$, then $p_{\eta} \in M(s, \lambda)$ for each fixed η , and moreover,

(33)
$$B(p_{\eta}, s, \lambda) \le \frac{C}{1 + |\eta|^{2n}}$$

where C is independent of η .

Proof. We will show that the lemma holds whenever λ is a positive integer, and the general case will follow from the monotonicity of the $M(s,\lambda)$ condition.

Let λ be a positive integer. Given a multi-index α and r > 0, we prove that for each η ,

(34)
$$\left(\int_{r < |\xi| < 2r} |D_{\xi}^{\alpha} p_{\eta}(\xi)|^{s} d\xi \right)^{1/s} \leq \frac{C r^{n/s - |\alpha|}}{1 + |\eta|^{2n}}.$$

Equation (33) will then follow from the definition of the $M(s,\lambda)$ condition.

We observe that for an arbitrary multi-index β ,

$$|\eta^{\beta} D_{\xi}^{\alpha} p_{\eta}(\xi)| \le C \int_{\mathbb{R}^n} |D_x^{\beta} D_{\xi}^{\alpha} p(x,\xi)| \, dx.$$

Thus, since we have assumed that p has compact support in the x variable and β is arbitrary, we have

(35)
$$|D_{\xi}^{\alpha} p_{\eta}(\xi)| \leq C \frac{(1+|\xi|)^{k-|\alpha|}}{1+|\eta|^{2n}}.$$

The righthand side of (34) follows readily from (35). This concludes the proof of the lemma. \Box

Theorem 4.3. Let σ be a real number satisfying the hypothesis of Theorem 1.1. Let $k \leq 0$ and assume that $1 . If <math>P \in S_{1,0}^k$, then

$$(36) ||P(\cdot,D)f||_{p,\sigma} \le C||f||_{p,\sigma}$$

for $f \in S_{0,0}$ with C independent of f.

Proof. All of the functions involved in the definition of P(x, D)f are absolutely integrable. Hence, we may switch the order of integration to obtain

$$P(x,D)f = C \int_{\mathbb{R}^n} e^{-ix\cdot\eta} \left[\int_{\mathbb{R}^n} e^{ix\cdot\xi} P_{\eta}(\xi) \hat{f}(\xi) d\xi \right] d\eta.$$

We note that the inner integral is precisely $T_{P_{\eta}}f(x)$. Consequently, the lefthand side of (36) is equal to

$$\left(\int_{R^n} \left| \int_{R^n} e^{-ix \cdot \eta} T_{P_{\eta}} f(x) \, dx \right|^p |x|^{\sigma} \, dx \right)^{1/p}$$

and by Minkowski's integral inequality, this is bounded by

$$\int_{R^n} \left(\int_{R^n} |T_{P_{\eta}} f(x)|^p |x|^{\sigma} dx \right)^{1/p} d\eta.$$

Lemma 4.2 and Theorem 1.1 imply that this is bounded by the righthand side of (36). This concludes the proof of the theorem. \Box

Acknowledgment. I would like to thank my advisor, Douglas Kurtz, for his patience and guidance throughout the writing of my dissertation.

REFERENCES

- 1. L. Hörmander, Estimates for translation invariant operators in L^p spaces, Acta Math. 104 (1960), 93–140.
- **2.** B. Muckenhoupt, R.L. Wheeden and W. Young, Sufficiency conditions for L^p multipliers with power weights, Trans. Amer. Math. Soc. **300** (1987), 433–461.
- **3.** E. Stein and G. Weiss, Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, NJ, 1971.
- 4. J.O. Stromberg and A. Torchinsky, Weighted Hardy spaces, Springer-Verlag, New York, 1989.

DEPARTMENT OF MATHEMATICS, PHYSICAL SCIENCES AND ENGINEERING TECHNOLOGY, WEST TEXAS A&M UNIVERSITY, CANYON, TX 79016.