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SUBGROUP SEPARABILITY
OF CERTAIN HNN EXTENSIONS
OF FINITELY GENERATED ABELIAN GROUPS

P.C. WONG

ABSTRACT. In this note we give a characterization for
certain HNN extensions of finitely generated abelian groups
to be subgroup separable.

1. A group G is called subgroup separable if, for each finitely
generated subgroup M and for each z € G\ M, there exists a normal
subgroup N of finite index in G such that * ¢ MN. It is well known
that free groups and polycyclic groups (and hence finitely generated
abelian groups) are subgroup separable [6, 7].

Let G = (t,K;t 1At = B,p) be an HNN extension where K is a
finitely generated abelian group, A and B are the associated subgroups
and ¢ is the associated isomorphism ¢ : A — B. Suppose A and B have
finite index in K. In this note we give a characterization for the HNN
extension GG to be subgroup separable. We shall prove the following:

Theorem 1. Let G = (t,K;t 1At = B, ) be an HNN extension
where K is a finitely generated abelian group and A and B have finite
index in K. Then the following are equivalent:

(i) G is subgroup separable;

(ii) Fither K = A = B or there exists a subgroup H of finite index
i K and H is normal in G;

(iii) There exists a finitely generated abelian group X such that K is
a subgroup of finite index in X and an automorphism ¢ € Aut X with
Pla=¢.
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Theorem 1 strengthens the results of Andreadakis, Raptis and Varsos
in [2, 3, 4] and Wong in [8]. We shall prove Theorem 1 in Sections 2
and 3 and then give some applications in Section 4.

The notations used in this note are standard. In addition, the
following will be used. Let G be a group.

N <j G, respectively N <y G, means N is a subgroup, respectively
normal subgroup, of finite index in G, f.g. means finitely generated, s.s.
means subgroup separable.

2. In this section we prove (i) < (ii) in Theorem 1. We begin with
the following lemma.

Lemma 1. Let G = (t, K;t~ YAt = B, ) where K is a finite group.
Then G 1is subgroup separable.

Proof. See Wong [8]. O

Lemma 2. Let G = (t,K;t *At = B,p) where K is a finitely
generated abelian group and A and B have finite index in K. If either
K = A = B or there ezists a subgroup H of finite index in K and H
is normal in G, then G is subgroup separable.

Proof. Suppose K = A = B. Then G = (t,K;t 'Kt = K,p) is a
split extension of the finitely generated abelian group K by the infinite
cyclic group (t). Hence, by Theorem 4 of [1], G is s.s.

Suppose there exists a subgroup H of finite index in K and H is
normal in G. Let M be an f.g. subgroup of G and x € G\M. If x ¢
MH, then zH ¢ MH/H. Now G/H ~ (t, K/H;t " A/Ht = B/H, $)
where ¢ : A/H — B/H is the isomorphism induced by ¢. Therefore
G/H is s.s. by Lemma 1. Thus, there exists N/H <y G/H such that
xH ¢ MH/H - N/H, namely, there exists N <y G such that = ¢ MN.

Suppose that « € MH. Thenz =mh,m € M, h € Hbut h ¢ HNM
(since x ¢ M). Now H and H N M are f.g. abelian. Since H is s.s.,
[7], there exists a characteristic subgroup R of H of finite index in it
such that h ¢ (HNM)R. If zR € MR/R, then * = mh = mqr,
mi € M,r € R. Hence, hr ' =m™'m; e HNM (since R < H) and
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so h € (HN M)R, a contradiction. So xR ¢ M R/R. Now, again by
Lemma 1, the group G/R is s.s. So we can argue as before, with R in
place of H and find N <y G such that ¢ MN. This completes the
proof of the lemma. ]

To prove the converse of Lemma 2, we need the next lemma.

Lemma 3. Let G = (t,K;t"'At = B,¢) where K is a finitely
generated abelian group. If K = A # B or K = B # A, then G is not
subgroup separable.

Proof. We prove only the case K = A # B. The other case is similar.
Let X = {a,b,..., f} be a minimal generating set for K = A such that
a ¢ B (since K = A # B). Then t™"at"™ = ap™ € B, for all n € Z7,
since Ko = Ap = B. Let G denote a homomorphic image of G of
order 7. Then af =t "6aft"0 = (¢ "at")0 = (ap”)f € Bf. Thus G is
not s.s. O

Lemma 4. Let G = (t,K;t YAt = B,¢) where K is a finitely
generated abelian group and A, B have finite index in K. If G 1is
subgroup separable, then either K = A = B or there exists a subgroup
H of finite index in K and H is normal in G.

Proof. Suppose G is s.s. Then G is residually finite and so, by
Theorem 1 of [2], either K = A or K = B or there exists a subgroup H
of finite index in K and H is normal in G. However, Lemma 3 shows
that, if K = A # Bor K = B # A, then G is not s.s. Hence, the result
follows. O

3. In this section we prove (ii) < (iii) in Theorem 1. First we quote
the following two lemmas from Andreadakis, Raptis and Varsos [4].

Lemma 5. Let K be a free abelian group of finite rank r(K) = n.
Let A and B be subgroups of finite index in K and ¢ : A — B an
isomorphism. Suppose there exists a subgroup H of finite index in K,
H < ANB and Hp = H. Then there exists a free abelian group X



362 P.C. WONG

with 7(K) = r(X) such that K is a subgroup of finite index in X and
an automorphism @ € Aut X with @|4 = ¢.

Proof. This is Proposition 1 in [4]. o

Lemma 6. Let K be a finite abelian group. Let A and B be subgroups
of K and ¢ : A — B an isomorphism. Then there exists a finite
abelian group X such that K is a subgroup of X and an automorphism
® € Aut X with ¢|a = .

Proof. This is Proposition 3 in [4]. u]

Lemma 7. Let G = (t,K;t"YAt = B,¢) where K is a finitely
generated abelian group and A and B have finite index in K. If either
K = A = B or there exists a subgroup H of finite index in K and H
is normal in G then there exists a finitely generated abelian group X
such that K is a subgroup of finite index in X and an automorphism
@ € Aut X with ¢|a = .

Proof. If K = A = B, then ¢ is an automorphism of K. We take
X = K and @ = . Suppose that there exists a subgroup H of finite
index in K and H is normal in G.

If T is the torsion subgroup of K, then A NT and B NT are the
torsion subgroups of A and B, respectively. Then K ~ (K/T) x T,
A~ (AT/T)x(ANT) and B ~ (BT/T)x (BNT). Also the isomorphism
¢ induces the isomorphism ¢y : AT/T — BT /T with (aT)p; = (ap)T
and the restriction p2 : ANT — BNT.

Let Ky = K/T, Ay = AT/T, By = BT/T and H; = HT/T. Clearly,
K,, Ay, By, Hy and ¢ satisfy the hypothesis of Lemma 5. Hence, there
exists a free abelian group X; such that K3 is a subgroup of finite index
in X; and an automorphism @; € Aut X; with @;]4, = ¢1.

For the finite abelian groups T, Ay = ANT, B, = BNT and the
isomorphism @5, by Lemma 6, there exists a finite abelian group X,
such that 7" is a subgroup of X, and an automorphism @s € Aut X,
with (,52‘142 = P2.
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Weset X = X1 xXo, ¢ = (@1, P2). Then Ky xT is a subgroup of finite
index in X, @ is an automorphism of X and, furthermore, @|4, x4, =

(¢1,92). The lemma now follows with the obvious identification of K
with K7 x T’7 A with A]_ X A2 and B with By x Bs. O

To prove the converse of Lemma 7, we need the next lemma.

Lemma 8. Let G = (t,K;t"'At = B,¢) where K is a finitely
generated abelian group and A and B have finite index in K. If ¢
comes from an automorphism of K, then there exists a subgroup H of
finite index in K and H 1is normal in G.

Proof. Let S = AN B. Then S has finite index, say s, in K. Since
K is f.g., there exists a finite number of subgroups of index s in K.
Let H be the intersection of all these subgroups of index s in K. Then
H is characteristic in K and H has finite index in K. Since ¢ is an
automorphism of K and H < AN B, we have H < G. o

Lemma 9. Let G = (t,K;t YAt = B,¢) where K is a finitely
generated abelian group and A and B have finite index in K. If there
ezists a finitely generated abelian group X such that K is a subgroup of
finite index in X and an automorphism ¢ € Aut X with @|s = ¢, then
there exists a subgroup H of finite index in K and H is normal in G.

Proof. Let G* = (t,X;t YAt = B,p). Now ¢ comes from the
automorphism @ of X and hence, by Lemma 8, there exists a subgroup
H of finite index in X, H < ANB and H is normal in G*. This implies
that H has finite index in K (since K < X) and H is normal in G
(since G < G*). o

Theorem 1 now follows from Lemmas 2, 4, 7 and 9.

4. We give some applications of our theorem. We restate Lemma
8 and compare it with Lemma 4.4 of B. Baumslag and Tretkoff [5],
which states that G = (¢, K;t 1At = B, ) is residually finite if K is
residually finite, K is A-separable and B-separable and ¢ comes from
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an automorphism of K.

Corollary 1. Let G = (t,K;t 1At = B, ) where K is a finitely
generated abelian group and A and B have finite index in K. If ¢
comes from an automorphism of K, then G is subgroup separable.

Corollary 2. Let
G = (t,ay,as,... ,an;tfla?it = a?", i=1,2,...,n,[a;,a;] = 1)
and K = (a1,az, ... ,an;[a;, a;] = 1).
Then the following are equivalent:
(i) G is subgroup separable;
(i) |hil =|dil, i =1,2,... ,m;

iii) the map ¢ which sends al to a%, i = 1,2,... ,n comes from
2 i i
an automorphism of K.

Proof. Let K = (a1,az, ... ,an;[a;, a]] 1) be the free abelian group
of rank n and A = (a?l,agz, ..,ah), B = (a{*,a%,... ,a%) and

alip = a¥, i = 1,2,...,n. Then G = (t,K;t""At = B,¢p) and G
satisfy the hypothesis of Theorem 1.
We show (i) = (ii). Suppose G is s.s. Then, by Theorem 1, either

K = A = B or there exists a subgroup H of finite index in K and
H is normal in G. If K = A = B, then trivially |h;| = |d;] = 1,

it = 1,2,...,n and we are done. Now suppose that there exists a
subgroup of H of finite index in K and H is normal in G. Since
H < AN B, we can write H = (a7*,a3?,... ,a%) with h;|c;, d;|c;. But

C; o cihi/h; . i Cc; i
(af)p = (ai"™ ™) = (a} ) /"
Since Hp = H, we have |h;| = |d;], 1 =1,2,...,n
(ii) = (iii) is trivial.
(iii) = (i) follows from Corollary 1.

From Corollary 2 we obtain the fact that the Baumslag-Solitar groups
G = (t,a;t ta"t = a*) is subgroup separable if and only if |h| = |k|
(see Wong [8]). o
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Corollary 2 also extends Corollary 3 of Andreadakis, Raptis and
Varsos [2].
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