SUBGROUP SEPARABILITY OF CERTAIN HNN EXTENSIONS OF FINITELY GENERATED ABELIAN GROUPS

P.C. WONG

ABSTRACT. In this note we give a characterization for certain HNN extensions of finitely generated abelian groups to be subgroup separable.

- 1. A group G is called subgroup separable if, for each finitely generated subgroup M and for each $x \in G \backslash M$, there exists a normal subgroup N of finite index in G such that $x \notin MN$. It is well known that free groups and polycyclic groups (and hence finitely generated abelian groups) are subgroup separable [6, 7].
- Let $G = \langle t, K; t^{-1}At = B, \varphi \rangle$ be an HNN extension where K is a finitely generated abelian group, A and B are the associated subgroups and φ is the associated isomorphism $\varphi : A \to B$. Suppose A and B have finite index in K. In this note we give a characterization for the HNN extension G to be subgroup separable. We shall prove the following:
- **Theorem 1.** Let $G = \langle t, K; t^{-1}At = B, \varphi \rangle$ be an HNN extension where K is a finitely generated abelian group and A and B have finite index in K. Then the following are equivalent:
 - (i) G is subgroup separable;
- (ii) Either K = A = B or there exists a subgroup H of finite index in K and H is normal in G;
- (iii) There exists a finitely generated abelian group X such that K is a subgroup of finite index in X and an automorphism $\bar{\varphi} \in \operatorname{Aut} X$ with $\bar{\varphi}|_{A} = \varphi$.

Received by the editors on October 12, 1993, and in revised form on October 31,

^{1994.} 1980 Mathematics Subject Classification. Primary 20E25, 20F05, Secondary 20F25.

 $^{20\}mathrm{F}25.$ Key~words~and~phrases. HNN extension, finitely generated abelian groups, subgroup separable, residually finite.

Theorem 1 strengthens the results of Andreadakis, Raptis and Varsos in [2, 3, 4] and Wong in [8]. We shall prove Theorem 1 in Sections 2 and 3 and then give some applications in Section 4.

The notations used in this note are standard. In addition, the following will be used. Let G be a group.

 $N <_f G$, respectively $N \triangleleft_f G$, means N is a subgroup, respectively normal subgroup, of finite index in G, f.g. means finitely generated, s.s. means subgroup separable.

2. In this section we prove (i) \Leftrightarrow (ii) in Theorem 1. We begin with the following lemma.

Lemma 1. Let $G = \langle t, K; t^{-1}At = B, \varphi \rangle$ where K is a finite group. Then G is subgroup separable.

Proof. See Wong [8].

Lemma 2. Let $G = \langle t, K; t^{-1}At = B, \varphi \rangle$ where K is a finitely generated abelian group and A and B have finite index in K. If either K = A = B or there exists a subgroup H of finite index in K and H is normal in G, then G is subgroup separable.

Proof. Suppose K = A = B. Then $G = \langle t, K; t^{-1}Kt = K, \varphi \rangle$ is a split extension of the finitely generated abelian group K by the infinite cyclic group $\langle t \rangle$. Hence, by Theorem 4 of [1], G is s.s.

Suppose there exists a subgroup H of finite index in K and H is normal in G. Let M be an f.g. subgroup of G and $x \in G \backslash M$. If $x \notin MH$, then $xH \notin MH/H$. Now $G/H \simeq \langle t, K/H; t^{-1}A/Ht = B/H, \bar{\varphi} \rangle$ where $\bar{\varphi} : A/H \to B/H$ is the isomorphism induced by φ . Therefore G/H is s.s. by Lemma 1. Thus, there exists $N/H \triangleleft_f G/H$ such that $xH \notin MH/H \cdot N/H$, namely, there exists $N \triangleleft_f G$ such that $x \notin MN$.

Suppose that $x \in MH$. Then x = mh, $m \in M$, $h \in H$ but $h \notin H \cap M$ (since $x \notin M$). Now H and $H \cap M$ are f.g. abelian. Since H is s.s., [7], there exists a characteristic subgroup R of H of finite index in it such that $h \notin (H \cap M)R$. If $xR \in MR/R$, then $x = mh = m_1r$, $m_1 \in M$, $r \in R$. Hence, $hr^{-1} = m^{-1}m_1 \in H \cap M$ (since R < H) and

so $h \in (H \cap M)R$, a contradiction. So $xR \notin MR/R$. Now, again by Lemma 1, the group G/R is s.s. So we can argue as before, with R in place of H and find $N \triangleleft_f G$ such that $x \notin MN$. This completes the proof of the lemma. \square

To prove the converse of Lemma 2, we need the next lemma.

Lemma 3. Let $G = \langle t, K; t^{-1}At = B, \varphi \rangle$ where K is a finitely generated abelian group. If $K = A \neq B$ or $K = B \neq A$, then G is not subgroup separable.

Proof. We prove only the case $K=A\neq B$. The other case is similar. Let $X=\{a,b,\ldots,f\}$ be a minimal generating set for K=A such that $a\notin B$ (since $K=A\neq B$). Then $t^{-n}at^n=a\varphi^n\in B$, for all $n\in {\bf Z}^+$, since $K\varphi=A\varphi=B$. Let $G\theta$ denote a homomorphic image of G of order r. Then $a\theta=t^{-r}\theta a\theta t^r\theta=(t^{-r}at^r)\theta=(a\varphi^r)\theta\in B\theta$. Thus G is not s.s.

Lemma 4. Let $G = \langle t, K; t^{-1}At = B, \varphi \rangle$ where K is a finitely generated abelian group and A, B have finite index in K. If G is subgroup separable, then either K = A = B or there exists a subgroup H of finite index in K and H is normal in G.

Proof. Suppose G is s.s. Then G is residually finite and so, by Theorem 1 of [2], either K = A or K = B or there exists a subgroup H of finite index in K and H is normal in G. However, Lemma 3 shows that, if $K = A \neq B$ or $K = B \neq A$, then G is not s.s. Hence, the result follows. \square

- **3.** In this section we prove (ii) \Leftrightarrow (iii) in Theorem 1. First we quote the following two lemmas from Andreadakis, Raptis and Varsos [4].
- **Lemma 5.** Let K be a free abelian group of finite rank r(K) = n. Let A and B be subgroups of finite index in K and $\varphi : A \to B$ an isomorphism. Suppose there exists a subgroup H of finite index in K, $H < A \cap B$ and $H\varphi = H$. Then there exists a free abelian group X

with r(K) = r(X) such that K is a subgroup of finite index in X and an automorphism $\bar{\varphi} \in \operatorname{Aut} X$ with $\bar{\varphi}|_A = \varphi$.

Proof. This is Proposition 1 in [4].

Lemma 6. Let K be a finite abelian group. Let A and B be subgroups of K and $\varphi: A \to B$ an isomorphism. Then there exists a finite abelian group X such that K is a subgroup of X and an automorphism $\bar{\varphi} \in \operatorname{Aut} X$ with $\bar{\varphi}|_A = \varphi$.

Proof. This is Proposition 3 in [4]. \square

Lemma 7. Let $G = \langle t, K; t^{-1}At = B, \varphi \rangle$ where K is a finitely generated abelian group and A and B have finite index in K. If either K = A = B or there exists a subgroup H of finite index in K and H is normal in G then there exists a finitely generated abelian group X such that K is a subgroup of finite index in X and an automorphism $\bar{\varphi} \in \operatorname{Aut} X$ with $\bar{\varphi}|_{A} = \varphi$.

Proof. If K = A = B, then φ is an automorphism of K. We take X = K and $\bar{\varphi} = \varphi$. Suppose that there exists a subgroup H of finite index in K and H is normal in G.

If T is the torsion subgroup of K, then $A\cap T$ and $B\cap T$ are the torsion subgroups of A and B, respectively. Then $K\simeq (K/T)\times T$, $A\simeq (AT/T)\times (A\cap T)$ and $B\simeq (BT/T)\times (B\cap T)$. Also the isomorphism φ induces the isomorphism $\varphi_1:AT/T\to BT/T$ with $(aT)\varphi_1=(a\varphi)T$ and the restriction $\varphi_2:A\cap T\to B\cap T$.

Let $K_1 = K/T$, $A_1 = AT/T$, $B_1 = BT/T$ and $H_1 = HT/T$. Clearly, K_1, A_1, B_1, H_1 and φ_1 satisfy the hypothesis of Lemma 5. Hence, there exists a free abelian group X_1 such that K_1 is a subgroup of finite index in X_1 and an automorphism $\bar{\varphi}_1 \in \operatorname{Aut} X_1$ with $\bar{\varphi}_1|_{A_1} = \varphi_1$.

For the finite abelian groups T, $A_2 = A \cap T$, $B_2 = B \cap T$ and the isomorphism φ_2 , by Lemma 6, there exists a finite abelian group X_2 such that T is a subgroup of X_2 and an automorphism $\bar{\varphi}_2 \in \operatorname{Aut} X_2$ with $\bar{\varphi}_2|_{A_2} = \varphi_2$.

We set $X = X_1 \times X_2$, $\bar{\varphi} = (\bar{\varphi}_1, \bar{\varphi}_2)$. Then $K_1 \times T$ is a subgroup of finite index in X, $\bar{\varphi}$ is an automorphism of X and, furthermore, $\bar{\varphi}|_{A_1 \times A_2} = (\varphi_1, \varphi_2)$. The lemma now follows with the obvious identification of K with $K_1 \times T$, A with $A_1 \times A_2$ and B with $B_1 \times B_2$.

To prove the converse of Lemma 7, we need the next lemma.

Lemma 8. Let $G = \langle t, K; t^{-1}At = B, \varphi \rangle$ where K is a finitely generated abelian group and A and B have finite index in K. If φ comes from an automorphism of K, then there exists a subgroup H of finite index in K and H is normal in G.

Proof. Let $S = A \cap B$. Then S has finite index, say s, in K. Since K is f.g., there exists a finite number of subgroups of index s in K. Let H be the intersection of all these subgroups of index s in K. Then H is characteristic in K and H has finite index in K. Since φ is an automorphism of K and $H < A \cap B$, we have $H \triangleleft G$. \square

Lemma 9. Let $G = \langle t, K; t^{-1}At = B, \varphi \rangle$ where K is a finitely generated abelian group and A and B have finite index in K. If there exists a finitely generated abelian group X such that K is a subgroup of finite index in X and an automorphism $\bar{\varphi} \in \operatorname{Aut} X$ with $\bar{\varphi}|_A = \varphi$, then there exists a subgroup H of finite index in K and H is normal in G.

Proof. Let $G^* = \langle t, X; t^{-1}At = B, \varphi \rangle$. Now φ comes from the automorphism $\bar{\varphi}$ of X and hence, by Lemma 8, there exists a subgroup H of finite index in $X, H < A \cap B$ and H is normal in G^* . This implies that H has finite index in K (since K < X) and H is normal in G (since $G < G^*$). \Box

Theorem 1 now follows from Lemmas 2, 4, 7 and 9.

4. We give some applications of our theorem. We restate Lemma 8 and compare it with Lemma 4.4 of B. Baumslag and Tretkoff [5], which states that $G = \langle t, K; t^{-1}At = B, \varphi \rangle$ is residually finite if K is residually finite, K is A-separable and B-separable and φ comes from

an automorphism of K.

Corollary 1. Let $G = \langle t, K; t^{-1}At = B, \varphi \rangle$ where K is a finitely generated abelian group and A and B have finite index in K. If φ comes from an automorphism of K, then G is subgroup separable.

Corollary 2. Let

$$G = \langle t, a_1, a_2, \dots, a_n; t^{-1} a_i^{h_i} t = a_i^{d_i}, \quad i = 1, 2, \dots, n, [a_i, a_j] = 1 \rangle$$

and $K = \langle a_1, a_2, \dots, a_n; [a_i, a_j] = 1 \rangle$.

Then the following are equivalent:

- (i) G is subgroup separable;
- (ii) $|h_i| = |d_i|, i = 1, 2, \dots, n;$
- (iii) the map φ which sends $a_i^{h_i}$ to $a_i^{d_i}$, $i=1,2,\ldots,n$ comes from an automorphism of K.

Proof. Let $K=\langle a_1,a_2,\ldots,a_n;[a_i,a_j]=1\rangle$ be the free abelian group of rank n and $A=\langle a_1^{h_1},a_2^{h_2},\ldots,a_n^{h_2}\rangle,\ B=\langle a_1^{d_1},a_2^{d_2},\ldots,a_n^{d_n}\rangle$ and $a_i^{h_i}\varphi=a_i^{d_i},\ i=1,2,\ldots,n$. Then $G=\langle t,K;t^{-1}At=B,\varphi\rangle$ and G satisfy the hypothesis of Theorem 1.

We show (i) \Rightarrow (ii). Suppose G is s.s. Then, by Theorem 1, either K=A=B or there exists a subgroup H of finite index in K and H is normal in G. If K=A=B, then trivially $|h_i|=|d_i|=1$, $i=1,2,\ldots,n$ and we are done. Now suppose that there exists a subgroup of H of finite index in K and H is normal in G. Since $H < A \cap B$, we can write $H = \langle a_1^{c_1}, a_2^{c_2}, \ldots, a_n^{c_n} \rangle$ with $h_i|c_i, d_i|c_i$. But

$$(a_i^{c_i})\varphi = (a_i^{c_i h_i/h_i})\varphi = (a_i^{h_i}\varphi)^{c_i/h_i}$$
$$= a_i^{d_i c_i/h_i} = (a_i^{c_i})^{d_i/h_i}.$$

Since $H\varphi = H$, we have $|h_i| = |d_i|$, $i = 1, 2, \ldots, n$.

- $(ii) \Rightarrow (iii)$ is trivial.
- (iii) \Rightarrow (i) follows from Corollary 1.

From Corollary 2 we obtain the fact that the Baumslag-Solitar groups $G = \langle t, a; t^{-1}a^ht = a^k \rangle$ is subgroup separable if and only if |h| = |k| (see Wong [8]). \square

Corollary 2 also extends Corollary 3 of Andreadakis, Raptis and Varsos [2].

REFERENCES

- 1. R.T.B.J. Allenby and R.J. Gregorac, On locally extended residually finite groups, Lecture Notes in Math. 319 (1973), 9–17.
- 2. S. Andreadakis, E. Raptis and D. Varsos, Residual finiteness and hopficity of certain HNN extensions, Arch. Math. 47 (1986), 1-5.
- 3. ——— A characterization of residually finite HNN extensions of finitely generated abelian groups, Arch. Math. 50 (1988), 495–501.
- $\bf 4.$ ———, Extending isomorphism to automorphism, Arch. Math. $\bf 53$ (1989), 121–125.
- ${\bf 5.~B.}$ Baumslag and M. Tretkoff, Residually finite HNN extensions, Comm. Algebra ${\bf 6}$ (1978), 179–194.
- 6. M. Hall, Coset representation in free groups, Trans. Amer. Math. Soc. 67 (1949), 421-432.
- 7. A. Mal'cev, On homomorphisms onto finite groups, Transl. Amer. Math. Soc. 119 (1983), 67–79.
- 8. P.C. Wong, Subgroup separability of certain HNN extensions, Rocky Mountain J. Math. 23 (1993), 391–394.

Department of Mathematics, University of Malaya, 59100 Kuala Lumpur, Malaysia