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EXTENDING FINITE SUBSETS OF AN IMMUNE SET
J. BARBACK AND J.C.E. DEKKER

ABSTRACT. We shall deal with nonnegative integers (num-
bers), collections of numbers (sets) and collections of sets
(classes). If o is a finite set, |o| denotes its cardinality. We
write Pgy (v) for the class of all finite subsets of the set v.
If, given any set o € Pg, (v), we can effectively extend o to
a larger set o* € Pgy (v), then v is recursively infinite, i.e.,
v has an infinite recursively enumerable (r.e.) subset. This
paper deals with a more general property of Pg, (v). Let
f be a strictly increasing, recursive function with range a.
Then the finite subsets of v are f-extendible, if given any set
o € Pgy (v) with |o| ¢ «, we can effectively extend o to a
larger set & € Pgn (v), so that

|&| = the first number > |o| in the

enumeration fo, f1,... of a.

For many choices of the strictly increasing, recursive function
f, this relation between the finite subsets of v and the function
f is not trivial. Let N be the RET (recursive equivalence
type) of the immune set v. Then the arithmetical properties
of the infinite isol N are intimately related to the strictly
increasing recursive functions with respect to which the finite
subsets of v are extendible. For example, N is even if and
only if the finite subsets of v are 2n-extendible, while N is
odd if and only if the finite subsets of v are 2n + 1-extendible.
In this paper we study the notion “the finite subsets of v
are f-extendible,” in particular its relationship with Myhill’s
combinatorial operators [7] and Nerode’s frames [8].

1. Notations and terminology. In addition to the notations and
terminology mentioned in the abstract, we shall use the following. We
write ¢ for the set (0,1,...) of all numbers, C for inclusion and C for
proper inclusion. A function is a mapping from a subset of ¢ into e.
If p is a function, dp denotes its domain and pp its range. We write
Q for the class of all finite sets. If a, is a function from ¢ into e,
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“a(n)” and “a,” mean the same. We need a Godel-numbering of the

denumerable class @ and we choose the canonical enumeration (p,) of
Q. It is defined by:

po = the empty set,
{ (ay,...,ax), where ay,...,a are the distinct
Pn+1 =

numbers s. t. n + 1 = 2¢() 4 ... 4 ga(k),

This enumeration of ) has no repetitions. If o € ), the unique number
i such that o = p; is called the canonical index of o and is denoted
by cano or can(o). For S C @ we define canS = {cancoloc € S}. A
subclass S of @ is r.e. if the set can S is r.e. A mapping from a subclass
of @ into @ is called a procedure. If II is a procedure, we denote its
domain by Dom II and its range by RanIl. A procedure II is effective,
if the function cano — canll(c), for o € DomIl, is partial recursive
(p.r.). Since the domain and the range of a p.r. function are r.e. sets,
the domain and the range of an effective procedure are r.e. classes.
We let r be the recursive function with r; = |p;| and let j denote the
familiar primitive recursive pairing function that maps 2 onto €.

For a function f from € into €, we define
(1.1) ng = (un)[fn > z], forz >0.

If f is a strictly increasing function with range «, relation (1.1) implies

(1.2) r€a<z=f(ng), forz>0,
1.3) <y and y € a=y > the first number >z
in fo, f1,..., forax,y>0.

Let v be an isolated set and N = Reqv. Then v and N are called
even, if N = 2X, for some isol X. Similarly, v and IV are called odd, if
N = 2Y + 1, for some isol Y.

2. Elementary properties.

Proposition P1. Let f be a strictly increasing, recursive function
with range o, and let v be an infinite set. Then the following two
conditions on f and v are equivalent:
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(a) there is an effective procedure 11 : 0 — & with Py, (v) C Dom I
such that
(2.1)
o€ Pap(v) and |o|¢a=0CL 7 Cuy,

lo| € a and |5 = f(n)),

(b) there is an effective procedure IT* : ¢ — o* with Pgy, (v) C Dom IT*
such that

(2.2) 0 € P, (V)=0Co*Cv and |o'|€a.

Proof. Note that, on the right side of (2.1) the first of the two
conditions “|g| € o” and “|g| = f(n|,)” can be deleted, since it
is implied by the second one. Assume (a). Define a procedure
II*: o — a* by

DomIT* = DomIT U {O’ €Q|lol € oc},
i {& if |o| ¢ «,
oF =

o if |o] € a.

The classes DomII and {o € Q||o| € a} are both r.e., hence so is
DomIT*. Suppose o € Pap (v). Then we can decide whether |o| € a,
since « is a recursive set. Hence, II* is also an effective procedure. We
distinguish two cases.

Case 1. |o| ¢ a. Then the left side of (2.1) holds, hence so does
the right side. Since we defined ¢* = &, we obtain ¢ C ¢* C v and
|o*| € a.

Case 2. |o] € a. Then we defined o* = o, so that ¢ C ¢* C v and
|o*| € a. We proved (b).

Now assume (b). Define a procedure II by Dom IT = Dom IT* and let,
for o € Py, (v) the set & be defined as follows:
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Case 1. |o| € a. Then we define & = o*. Relation (2.1) is now true,
since its hypothesis is false.

Case 2. |o| ¢ a and |0*| = f(n|s). Then we define ¢ = o*. Let
0 € Pqn (v). Then (2.2) implies 0 C ¢ C v and |g| € . Since o] ¢ a,
while |G| € «, we have 0 # &. Hence we can strengthen ¢ C & C v

too C4 & C v. It follows that o C1 & C v and |g| € a. Moreover,
|o*| = f(n)s|), hence |G| = f(n|,). We proved the right side of (2.1).

Case 3. |o| ¢ a and |0*| > f(n|s)). Then o C 0* C v and |0*| € a.
Note that |o| ¢ o implies f(n|,) > ||, hence |0*| > |o|. We wish to
define & = II(o) so that

cCyoCv and [g|€a and [7]= f(n))
or equivalently so that
(2.3) ocCyaCrv and [7]= f(n)

We therefore define k = f(n|,|) — |o|, 7 is the set of the smallest k
elements of 0* — o and ¢ = c U7. Then ¢ C 7, hence ¢ C 7 C v.
Moreover, |G| = |o| + k = f(n|,). Also, 0 C & C v and o # & imply
0 C4+ 0 C v. Hence & satisfies (2.3) and II satisfies (2.1). O

Definition D1. Let f be a strictly increasing, recursive function with
range «, and let v be an infinite set. Then the finite subsets of v are
f-extendible, if one of the two conditions (a) and (b) of Proposition P1
holds.

Remark R1. Let f be a strictly increasing, recursive function with
range «, and let v be an infinite set. Then the finite subsets of v are
f-extendible if and only if there is an effective procedure II : ¢ — &
with Pgy, (v) C DomII such that

0€Pan(v) and |o|¢a=0CidCv and |o|=|o]+ 1

For, given any set o € Py, (v) with || ¢ a, such a procedure can be
iterated until a set 7 € Py, (v) with |7| € a is obtained. It follows
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that one can also phrase the definition of “the finite subsets of v are
f-extendible” as follows: there is a p.r. function p such that

pnCv and r, ¢ a=n€dp and p, Ev— p,.

We now give some examples. First consider the identity function i
on . Condition (a) of P1 is satisfied by f = i, for every infinite set v
and the effective procedure II : ¢ — &, where & = ¢. Thus the finite
subsets of every infinite set v are i-extendible. The strictly increasing,
recursive functions f such that the finite subsets of every immune set
are f-extendible will be characterized in Proposition P7 of Section 4.
Two less trivial examples arise if we consider the functions f, = 2n
and f, = 2n + 1. We have, by Remark R1,

(i) the finite subsets of an infinite set v are 2n-extendible if and only

if there is a p.r. function p such that

(2.4) pn Cv and rp,odd=ne€dp and p, Ev—p,,

(ii) the finite subsets of an infinite set v are 2n + l-extendible if and
only if there is a p.r. function g such that

(2.5) pn Cv and r,even=—=n € dq and ¢, €V — p,.
We shall see in Section 7 that, for an immune set v,

v even <= v 2n-extendible, v odd <= v 2n + l-extendible.

We now turn to the question: “Which infinite sets v are such that
the finite subsets of v are f-extendible, for every strictly increasing,
recursive function f?” We call two strictly increasing functions f and
g intertwined, if fo <go< fi<gi<---org<fo<g < fi<---.

Proposition P2. The following three conditions on an infinite set
v are mutually equivalent:

(a) the finite subsets of v are f-extendible for every strictly increasing
recursive function f,

(b) there are two intertwined strictly increasing recursive functions
f and g such that the finite subsets of v are both f-extendible and g-
extendible,
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(c) v is recursively infinite.

Proof. The conditional (a) = (b) is trivial. Suppose (b) is true. We
may assume without loss of generality that fo < go < f1 < g1 <---.
Let o¢ be a finite subset of v with |og| = fo. Then |o¢| ¢ pg, and
we can compute a finite set oy with o9 C4 o1 C v and |o1] = ¢1-
Then |o1| ¢ pf, and we can compute a set oo with oy C4 09 C v
and |o3| = fo. Continuing this procedure we generate the infinite r.e.
subset ogUoyU-- - of v, hence (c) holds. Now assume (c). Let 8 be any
infinite, r.e. subset of v, say 8 = (bg, b1, ... ), where b, is a one-to-one,
recursive function. Let f be any strictly increasing, recursive function
and « its range. Suppose a finite subset o of v is given with |o| ¢ a.
Then

o) = (un)[fn = |of] = (pn)[fn > o],

since |o| ¢ . Put k = f(n|s|) — |of, then k& > 0. Let b1y, ... ,bjx) be
the first £ numbers in the sequence by, b1, ... which do not belong to
o. Then the set 0 = o U {bj1),...,bik)} is such that o C; ¢* C v,
|o*| € a and |0*| = f(n|,|). Since we can compute the set o* from the
set o, we conclude that (a) holds. o

Remark R2. Suppose we wish to prove for some strictly increasing,
recursive function f with range o and for some infinite set v that the
finite subsets of v are f-extendible and that we use the characterization
of f-extendibility described in part (a) of P1. Then we need to show

that there is an effective procedure Il : ¢ — & with Pg, (v) C DomII
such that for o € Psy (v) and |o] € «,

(i) o CaCu,
(11) 0< |(T| <f0 = |5’| :fo,
(111) fn < ‘0’| < fn+1 = ‘5’| = fn+1, for n > 0.

Then we may delete the proof of (ii) without loss of generality. For we
may consider as given some finite subset oy of v with |og| = fy. Given
any o € Pg, (v) with |o| < fy, we now define k = fy — |o| and 7 is the
set of the smallest k elements of 609 — 0, @ =ocU7. Theno C 6 C v
and |5| = |o| + k = fy, where & can be computed from o.

The next proposition tells us that the notion of f-extendibility can
also be introduced for RETs. We shall delete the proof, since it is
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routine.

Proposition P3. Let f be a strictly increasing, recursive function
with range o, and let v and p be infinite sets with v ~ u. Then the
finite subsets of v are f-extendible if and only if the finite subsets of p
are f-extendible.

Definition D2. Let f be a strictly increasing, recursive function, and
let v be an infinite set. Then the RET N = Reqv is f-extendible, if
the finite subsets of v are f-extendible.

We see by Proposition P2 that the property of f-extendibility of an
infinite set v is only of interest if the set v is immune. Let Q denote
the collection of all RETs and A the collection of all isols. In view of
Propositions P2 and P3, every RET in 2 — A is f-extendible for every
strictly increasing, recursive function f. The notion of f-extendibility
of RETs is therefore only of interest for RETs in A — ¢, i.e., for infinite
isols.

We now turn to a crucial property of the relation of f-extendibility.
Call the strictly increasing, recursive functions f and g almost equal, if
fn = gn, for almost all numbers n.

Proposition P4. Let f and g be strictly increasing, recursive
functions with ranges a and B, respectively. Suppose that the functions
f and g are almost equal. Then, for every infinite set v,

(¥) the finite subsets of v are f-extendible
<= the finite subsets of v are g-extendible.

Proof. Assume the hypothesis. Put p = (un) (V) [z > n = fi = ga];
then p exists and = > p implies f,; = g,. Put m = f, = g, then

(2.6) z €{fp, fp+1,.--} =z € {gp,9p+1,...}, foraz >0,
hence

(2.7) rea<=zcfPB, forz>m.



98 J. BARBACK AND J.C.E. DEKKER

Let v be an infinite set. We wish to prove (x), and it suffices to prove
the = part. Assume that the finite subsets of v are f-extendible. Then
there is an effective procedure IT* : ¢ — ¢* with Pg, (v) C Dom IT* such
that

(2.8) a€Py(v)=0cCo"Cv and o] €a.

Choose a finite subset 7 of v with |r| = m. Henceforth this set =
remains fixed, and we may consider it as known. We now define a
procedure Il : ¢ — & by

DomIl = {0 € DomII* | ¢ U7 € Dom IT*}, g=(cUT)".

Then Psy, (v) C DomIl, and since the procedure II* is effective, so is
the procedure II. We show that, under the hypothesis o € Py, (v),

(a) o CaCu,

(b) |5] € a,

(c) o] € B-

Re (a). 0,7 € Pa, (V) = oUT € P (v) = ocUT C(cUT)* Cv=
cUTCoCv=0CaCuvV.

Re (b). By (2.8) we have [€*| € a for £ € Pg, (v). Taking { = o UT,
we get

oUT € Py (v) = |(cUT)"| €a=|F| € .

Re (¢). TCoUTand o Ut C (0 U7)* implies 7 C (o0 UT)*, hence
T Ca,|r| <|o] and m < ||

Put z = |5/, then > m. Moreover, z € a by (b), hence z € 3 by
(2.7), i.e., |6| € B. Since o € Py, (v) implies (a) and (c), we conclude
that the finite subsets of v are also g-extendible. a

3. Combinatorial operators.

Proposition P5. Let f be a strictly increasing recursive combina-
torial function, ® any recursive, combinatorial operator which induces
f, and let v be any immune set. Then the set ®(v) is also immune and
its finite subsets are f-extendible.
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Proof. Assume the hypothesis. Let ®* be the normal, recursive,
combinatorial operator which is equivalent to ®. By [3, p. 35] there is
a p.r. bijection g from ®(e) onto ®*(¢) such that g®(c) = ®*(o), for
o C e. Thus ®(v) ~ ®*(v) and, according to P3, the finite subsets of
®(v) are f-extendible if and only if the finite subsets of ®*(v) are f-
extendible. We may therefore assume without loss of generality that ®
is the nmormal, recursive, combinatorial operator which induces f, i.e.,
that

@(V):{j(x,y)Eé“pol/, y<cr(w)}a

n
n
where f, = ; .
=Y e ()
=0
Let the set v be immune. Then v is isolated, hence so is ®(v). Since f
is strictly increasing, we have fy < fi, i.e., ¢o < ¢o + c1, hence ¢; > 0.

Then
{j(z,0)€e|ps Cv, 1. =1, 0 < cpiz)} C 2(v),

where the set on the left is infinite, since it is equivalent to v. Thus
®(v) is infinite, hence immune. Put a = pf and p = ®(v). We claim
that there is an effective procedure II : ¢ — ¢* with Py, (1) C DomII
such that

0€Pain(p)=0Co"Cp and |o*]€a.

We define DomII = Py, (¢). Hence DomlII is the r.e. class @ of all
finite sets. For o € DomII, we define

a0 = {z|(3y)li(z,y) € o]}, o1 = J{p: | = € 00},
o* = ®(0y).

Given any set 0 € DomII, we can compute 0g,0; and ¢*, hence II is
an effective procedure. Now assume o € Pgy, (1). Then we claim that
(a) o C 0%,
(b) o C p,
(c) |o*| € au

Re (a). By the definitions of 0¢, 01 and o*, we have

(3.1) Jj(z,y) € 0 = (z € 00, py C 01) => py C 01.
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Moreover, o C p, where = Q(V) = {j(may) ce | Pz CV, Y< Cr(z)}7
hence j(z,y) € 0 = y < ¢p(z). It now follows from (3.1) that

J(way) €= (pw Co1, ¥ < Cr(z))
= j(z,y) € ®(01) = j(z,y) € 07,

so that o C o*.
Re (b). We wish to prove o* C u, i.e., ®(01) C ®(v). This would
follow from o7 C v. We have

32) o1 =Hre |z € oo} =Hee | Go)lilz,y) € o]}

However, 0 C ®(v), hence

F)li(z,y) € o] = (F)i(z,y) € 2(¥)] = po Cv.

Thus, relation (3.2) implies
o1 € (Jloe | Gy)liz,9) € 2]}, ie, o0 C

Re (c). 0" = @(01) == |o"| = [®(01)| == |07[ = f(|on]) == 07| €
Q. O

Corollary. Let v be an immune set and N = Reqv. Then
(a) N even implies that N is 2n-extendible,
(b) N odd implies that N is 2n + 1-extendible.

Proof. Let ® be a recursive, combinatorial operator which induces the
strictly increasing, recursive, combinatorial function f,, = 2n. Every
even immune set v has the form ®(§), for some immune set . Thus
the finite subsets of v are 2n-extendible, hence so is N. Part (b) can
be proved in a similar manner using the function f, = 2n + 1. ]

We shall see in Section 7 that the converses of (a) and (b) also hold.

4. Regressive sets. We assume that the reader is familiar with the
notions of a regressive function, a regressive set and a regressive isol [4,
Section 3].
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Definition D3. A strictly increasing, recursive function f is trivial, if
fn+1 = fn + 1, for almost all n, or equivalently, if there is a number &
such that f, = n + k, for almost all n.

Definition D4. Let N = Reqv, where v is an isolated set. Then the
set v and the isol N are multiple-free, if

2X < N = X finite, for X € A.

Proposition P6. Let v be an immune, regressive set and f be a
strictly increasing, recursive function. If the finite subsets of v are f-
extendible and the function f is nontrivial, then v is not multiple-free.

Proof. Assume the hypothesis. Let u,, be a regressive function rang-
ing over v. Now suppose that the finite subsets of v are f-extendible
and the function f is nontrivial. Since f is strictly increasing, we have
frn < fox1, e, fo+1 < forq, forall n. If f, +1 = f,4q, for al-
most all n, the function f would be trivial. Thus f, +1 < fut1,
ie., fn+2 < fuy1, for infinitely many n. Hence there is a strictly
increasing, recursive function sy such that f(sg) +2 < f(so + 1),
F(51)+2 < f(s1+1),..., e,

(4.1) f(sk)+2< f(sx+1), fork>0.
Define

(4.2) pr = {uo, ... sufsy}, for k>0,
so that

(4.3) lpk) = f(sk)+1, for k> 0.

Since the finite subsets of v are f-extendible, we can, given any finite
subset o of v, effectively extend o to a finite set o* such that o C ¢* C v
and |o*| € a, hence such that

o Co*Cv and |o*| > the first element > |o| in fo, f1,- ..,
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by formula (1.3). Thus we can effectively extend the finite set o = u
to a finite set o* = &, such that |&| € o and

e C & Cv

and
|ék| > the first element > |ug| in fo, f1,... .

However, |ur| = f(sx) + 1 by (4.3) and the number f(sx)+ 1 does not
occur in the sequence fy, f1,... by (4.1). This implies

(4.4) e C & Cvy €] > flsk) +2.
We define

do = (ufs(O)aufs(l)a v )a 0y = (ufs(0)+17 Ufs(1)+1y - - )

and we claim that

(4.5) Ufps(k) = Ufs(k)+1s
(4.6) do | 61,

(4.7) SoUby | v — (60U BL),
(4.8) v is not multiple-free.

Re (4.5). Let h be the mapping which maps ;) onto wsg)+1, for
k > 0, then h is one-to-one. It therefore suffices to show that both A
and A~! have p.r. extensions. The function A~! has a p.r. extension,
since u,, is a regressive function ranging over v. Now assume that the
number uy k) is given, then we can compute ug, hence also a finite
set & such that (4.4) holds. Since |&x| > p+ 1, for p = fs(k) + 1, we
can from & compute the element u, = uysk)41 in the enumeration
Ug, U1, - - -, of v. Thus the mapping h also has a p.r. extension.

Re (4.6). The functions s, and f are both strictly increasing, hence

Sk < Spp1 = Sk + 1 < spp1 = f(skg +1) < f(sp+1),
for k£ > 0.
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Combining this with (4.1) we get, for k > 0,
flse) +2 < flsk+1) < f(sk+1),

hence f(si)+1 < f(sk+1) and f(s0) < f(s0)+1 < f(s1) < f(s1)+1<
f(s2) < ---. This proves that the sets §, and &; are disjoint. The
function f(s,) is also strictly increasing and recursive. Thus, given
any number u,, € §o U d1, we can compute n and decide whether

n € (fs(0), fs(1),...)

ne (fs(0)+1,fs(1)+1,...),
i.e., determine whether u,, € §y or u,, € §;. Hence &g | d;.

Re (4.7). For an element u, € v,

Up, € §o Uy = n € (fs(0), fs(1),...)
U(fs(0)+1, fs(1)+1,...),

where the sets on the right are recursive and disjoint. Given any
element = of v, we can compute the number n with x = wu,, hence
deciding whether z € 6y U §; or & € v — (09 U &1). This proves (4.7).

Re (4.8). Let N = Reqv and D = Reqdp. Then Req (6o U dy) = 2D
by (4.5) and (4.6), while 2D < N by (4.7). The isol D is infinite, hence
the relation 2D < N implies that N is not multiple-free. ]

Proposition P7. A strictly increasing, recursive function f has the
property that the finite subsets of every immune set are f-extendible if
and only if f is trivial.

Proof. (a) Let f be a strictly increasing, recursive function which
is trivial, and let v be any immune set. Put o = pf. We now show
that the finite subsets of v are f-extendible. Since f is trivial, there
are numbers k and s such that f(n) = n + k&, for n > s. Thus,
(s+k,s+k+1,...)is a subset of « and |B| > s+ k = |B] € «,
for every finite set 8. Taking the contrapositive we get

(4.9) 18] ¢ o = |B| < s+k
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Let a set o € Pgy, (v) be given with |o| ¢ a. Then we have, by (4.9),
(4.10) lo| <s+k and s+k= f(s).

In view of Remark R2, we may assume without loss of generality that
fm < |o| < fm+1, for some number m. Then

(4.11)  fy41 = the first number > |o| in the sequence fo, f1,...,

hence

(4.12) fmt1 = f(n)q).

However, the number f(s) = s+ k is greater than |o| by (4.10), hence
(4.13) f(ns)) <s+k, wheres+k= f(s).

Since |o| ¢ «a, we have |o| < f(n|,). Put e = f(n|,) — |o|, then
e is positive. We may consider as known a finite subset £ of v with
|€] = f(s) = s+ k. Define 7 as the set of the smallest e numbers in
& —o and 0* = o U7. The sets o and 7 are disjoint subsets of v, so
that ¢ C4 o* C v, since e is positive, hence 7 is nonempty. Finally,

0" =lol + 7] = lo|+e=|o] + f(no)) — |o] = F(n)e))-

Since o* can be computed from o, it follows that the finite subsets of
v are f-extendible.

(b) We shall show that, for a strictly increasing, recursive function f,

f nontrivial = there is an immune set v whose

(%)

finite subsets are not f-extendible.

For assume the hypothesis of (). According to [1, Theorem 4.1] there is
an immune, regressive set v which is multiple-free. If the finite subsets
of v were f-extendible, it would follow by Proposition P6 that v is not
multiple-free. Thus the finite subsets of v are not f-extendible. This
completes the proof. O

We know by Proposition P5 that if f is a strictly increasing, recursive
function which is also combinatorial, there is an immune set p such that
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the finite subsets of u are f-extendible. This raises the question whether
the hypothesis that f be combinatorial can be dropped. According to
the next proposition, this is the case.

Proposition P8. Let f be any strictly increasing, recursive function.
Then there ts an immune, regressive set u such that the finite subsets
of u are f-extendible.

Proof. Assume the hypothesis. We shall use the notations

ve={zecle <k},  jx,o)={ilzy)|yeco}
for k, x >0, o Ce.

Thus |vkx| = k and vy is empty if and only if & = 0. Let ¢, be a
regressive function with an immune range. Define

a0:f07 an-l—l:fn-i-l_fna

M = j(tna Va(n))a for n > 0,
then |1, | = [Va(n)| = an so that o is empty if and only if fo = 0, while
7Ny, is nonempty for n > 1. Define p = ngUmn; U- - - ; then we claim that p
satisfies the requirements. For, first of all, 4 is immune and regressive.

Now suppose that a finite subset o of y is given. Then we may assume
without loss of generality that ¢ is nonempty. Define

m = max{n € € | ¢ N7, is nonempty},
m

o* = U M-
n=0

Since the function t,, is regressive and the function a,, is recursive, we
can compute m and ¢* from ¢. Clearly, 0 C ¢* C u. Moreover,

0" = Il =ao+ a1+ +an

n=0

=fo+(fi—fo)+ -+ (fm—fm-1) = fm,

hence |0*| € pf. Thus the finite subsets of y are f-extendible. o
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5. A fundamental lemma. Let f be a strictly increasing, recursive
function with range «, and let v be an infinite set. Suppose that the
finite subsets of v are f-extendible. Then there exists an effective
procedure II with Pg, (v) C DomII such that

(%) TEPy(v)=7CI(r)Cv and [I(7)| € a.

We shall show that, in the special case that v is immune, there also
exists an effective procedure A which shares relation (x) with II, but
which has several additional properties, in particular, Ran A C Dom A,
A? = A and

ocCt and 7€DomA = 0€cDomA and A(c)C A(7).

If S is a class of finite sets, 0.5 denotes the class of all (finite) subsets
of sets in S; thus, S C JS.

Lemma FL. Let f be a strictly increasing, recursive function with
range o, and let v be an immune set. Suppose that the finite subsets
of v are f-extendible. Then there also exists an effective procedure A
with Py (v) C Dom A such that

(a) 7 € Pan (v) = 7 C A(T) Cv and |A(T)] € o

(b) 7 € Dom A = 7 C A(7) and |A(T)| € a,

(c) o C7and T € DomA = o € DomA and A(o) C A(T),
(d) 7 € Dom A = A(7) € Dom A and A2%(1) = A(7),

(e) Ran A = {r € Dom A|A(7) = 7}, hence Ran A C Dom A,

f) the class E = RanA 1is closed under intersection and FE =
Dom A.

Proof. Assume the hypothesis. Then there exists an effective proce-
dure IT with Pg, (v) C DomII such that

(5.1) TEPs(v)=7CIl(r)Cv and |I(7)| € a.
Define Dom (Il as the class of all 7 € Dom II such that

(5.2) VYo,0 CT7= 0 €DomlIl and o CI(s) and |l(o)| € a.
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Then
Pg, (v) C Dom Il C DomIl and DomIl is r.e.

and

FL(1). 7 € Dom Il and o C 7 implies o € Dom (I, by the definition
of Dom gII. We now define

Dom IIy = Dom I, Iy () = U{H(f) |€C T}

For every set 7 € Dom oII, the set IIj(7) is well-defined, since each of
the sets II(¢), for £ C 7 is defined by the definition of Dom (II.

FL(2). 7 € Dom oII implies 7 C (7).
Proof. By the definitions of Dom (II and II,. o

FL(3). Let T € Dom Il and o C 7. Then
(a) 0 € Domll, (b) (o) C (), (c) Hp(o) C Hp(7).

Proof. Assume the hypothesis. Then (a) holds by FL(1) and (b) by
the definition of IIy(7). Also,

oCT={ll(§) | Co} C{II(§) [ C 7} = TIp(0) CIlo(r). O

We define II} = II, and Hg“ = IIHII§ for n > 1, and we call a set
7 € Dom oIl terminal, if there is a positive number & such that

(5.3) 7, o(7), ..., II§(7) € Dom oIl and TIE(7) = IIET (7).

FL(4). Assume o C 7, 7 € Dom Il and IIo(7) € Dom¢II. Then
(a) o € DomII, (b) Iy(c) € Dom oII.

Proof. Under the hypothesis, (a) holds by FL(1). We now prove (b).
By FL(3c) we have IIj(o) C Ip(7). By hypothesis IIp(7) € Dom(lI,
hence IIy(0) € Dom oIl by FL(1). u]

FL(5). Let 7 € Dom Il and 7 be terminal. Then
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o C 7 implies ¢ € Dom yll and o is terminal.

Proof. Assume the hypothesis and ¢ C 7. Then ¢ € Dom Il by
FL(3a). There is a number & such that (5.3) holds, since 7 is terminal.
In view of o C 7 and 7 € Dom ¢II, we know that Ilo(o) C IIy(7) by
FL(3c). Moreover, IIj(7) € Dom ¢II by (5.3), hence in view of FL(3a),

Iy(o) C Mp(7)
and

Ho(T) € Dom Il = Ho(O’) € Dom oIl

using FL(3c). By the same reasoning one obtains I12(o) C II2(7) and
%(o), II3(7) € DomoII. It now follows from (5.3) that

(5.4) Iy (o) C II5(7) and II(c) € Dom,ll, fort > 1.

Using (5.4) and FL(2), we conclude that

(5.5) o C y(o) C M(0) C --- C T¥(7).

Since TI§(7) is a finite set, there is a number s > 0 such that II§(c) =
;" (0) = --- . Combining the last relation with (5.5) and the fact

that ¢ € Dom oll, we conclude that the set ¢ is also terminal. This
completes the proof of FL(5). O

FL(6). Every finite subset of v is terminal.

Proof. Every finite subset of a set in Pg, (v) also belongs to Psj, (v),
hence every finite subset of v belongs to Dom (II. We recall that

Mo (8) = | J{TI(¢) | £ € 6}, for § € DomolL.
Thus,

d € Py (v) = I1y(9) € Pan (v)
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and

HO (6) € Dom OH-

Now assume that 7 € Py, (v). Then 7, IIo(7),I3(7),... all belong to
P, (v), hence also to Dom II. Moreover, by FL(2) we have

T CHy(r) cOE(r) C ---

Since II is an effective procedure and each IT§(7) for s > 1 is a finite
subset of the immune set v which can be computed from 7, there is a
number k such that IT§(7) = IIF*!(7) = --- . Thus 7 is a terminal set.
]

We define

Dom A = {r € Dom(II | T is terminal},
A(r) =1g(r), where II(7) = g+ (7), for 7 € Dom A.

FL(7). A is an effective procedure and Pan (v) C Dom A.

Proof. We know that II is an effective procedure and that Dom II
is an r.e. class. This implies that the subclass Dom A of Dom (Il is
r.e. Also, given any set 7 € Dom A, we can compute the smallest
number & such that T15(7) = I (7), hence TI§(7) = A(7). Thus A is
an effective procedure. Since every set in Py, () is terminal, we have
Pgp (v) C Dom A. o

FL(8). o0 C 7 and 7 € Dom A implies 0 € Dom A and A(c) C A(T).

Proof. Assume the hypothesis. Then 7 € Dom oIl and 7 is terminal.
Also, we see by FL(5) that o C 7 implies 0 € Dom A. To prove that
A(o) C A(r), we note that in the proof of FL(5) relation (5.5) implies

o CHy(o) C (o) C - C A(7).

Since ¢ is terminal, it follows that A(o) C A(7). O
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FL(9). 7 € Dom A implies A(1) € Dom A and A%(1) = A(7).

Proof. Let 7 € Dom A. Then 7 € Domll and 7 is terminal. Let k
be a number such that

7,1o(7), ..., II§() € Dom oII
and
E(r) = M5+ (1) = -
Then A(7) = II%(7) and hence A(7) € Dom (II). Also,

My A(r) = IoII5 (r) = Mg ™ (r) = II5(r) = A()

and we proved that A(7) is terminal. Hence A(7) € Dom A. Moreover,
since A(7) € Dom oIl and IIiA(7) = A(7), it follows that A(A(7)) =
A(1), i.e., that A%2(7) = A(7). This completes the proof of FL(9). O

FL(10). Let 7 € Dom A. Then
(a) 7,Io(7), I3(7),... € DomoIl.
(b) 7 C Up(r) CTB(T) C -+~ .

Proof. The hypothesis 7 € Dom II implies that 7 € Dom Il and that
7 is terminal. Then (a) holds, since 7 is terminal, while (b) holds by
FL(2) and FL(3). O

FL(11). Let 7 € Dom A. Then

(a) 7 C A(7), (b) o CA(r) = (o) C A(r),
(c) o CA(r) =1II(o) C A1), (d) IIA(T) = A(7).

Proof. Let 7 € DomA. Then A(7) € Dom A by FL(9). Then also
7 € Dom Il and A(7) € Dom oII. Suppose A(r) = IT§ () = TIET (7).

Re (a). We have, by FL(10), 7 C IIy(7) and IIy(7) € I (7). Thus
7 C IEY(7), hence 7 C A(7).



EXTENDING FINITE SUBSETS 111

Re (b). o C A(r) implies o C Ik(r). However, o C Uk(7) =
Iy(o) C I (7) by FL(3), hence ITy(a) C A(7).

Re (c). o C A(7) implies ITp(c) C A(7) by (b). The definition of IIj
implies that II(¢o) C IIy(o). Hence II(o) C A(T).

Re (d). The definition of IIy implies HA(7) C IIHA(7). Also,
IHA(r) = OF(r) = A(r). Thus IIA(7) € A(r). Since A(r) €
Dom o1II, it follows by (5.2) that A(r) C IIA(7). We conclude that
ITA(7) = A(7). o

FL(12). 7 € Dom A = |A(7)| € .

Proof. Assume 7 € Dom A. Then A(7) € DomIIy by the definition
of A(7). Moreover,

o € DomIlj = o € Dom (Il = |II(0)| € a
by the definitions of Dom1II, and II, respectively. Thus [IIA(7T)| € a.
However, 7 € DomA implies IIA(7) = A(7) by FL(11ld), hence
|A(T)|€a. O

FL(13). 7 € Dom A and o C A(7) implies A(o) C A(T).

Proof. Assume the hypothesis. Then 7 € Dom A implies A(T) €
Dom A by FL(9), while o C A(7) implies ¢ € Dom A, by FL(8). Since
both ¢ and A(7) belong to Dom A, we can apply FL(8) and FL(9).
Then

o C A1) = A(o) C A*(1) = A(0) C A(7). u]

FL(14). Let 0,7 € Dom A. Then
(a) A(o) N A(T) € Dom A,
(b) A[A(0) NA(T)] = A(o) N A(T).

Proof. Let 0,7 € Dom A. Part (a) then follows by FL(9) and FL(8),
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as
0,7 € DomA = A(0),A(r) € Dom A

= A(0) NA(r) € Dom A.

We claim

Re (ii). By (i) and FL(11a).

Re (iii) and (iv). By FL(13).

Re (v). By (iii) and (iv).

Part (b) now follows from (ii) and (v). o

FL(15). Let 7 € Ps, (v). Then 7 € Dom A and A(T) € Pan (v).

Proof. Assume 7 € Pg,(v). Then 7 is terminal by FL(6), hence
7 € Dom A. We therefore have shown that Pg, (v) C DomA. Now
assume A(7) = II&(7), where k > 0. Then

T Cv=1I(r) = | J{(&) | £ C 7} = Iy(7) C v,

since IT maps Pg, (v) into itself. Repeating this argument we see that

rCv=1I(r)Cv=T3(1) Cv
= ... =Tk(r)cv=A(r)Crv. ©

FL(16). Ran A = {r € Dom A | A(t) = 7}, hence RanA C Dom A.

Proof. We claim that
(i) RanA C {r € DomA | A(7) =7},
(ii) {r € DomA | A(T) =7} C RanA.
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However, (ii) is obvious, hence we only have to prove (i). Let o €
Ran A, say ¢ = A(7) and 7 € Dom A. Then
7€ DomA = A(7) € DomA and A?(r) = A(r) by FL(9)
= o €DomA and A(o)=o.

Thus ¢ € RanA = ¢ € Dom A and A(o) = o, and this implies (i).
o

Henceforth, the class Ran A will also be denoted by E. Hence,
E ={r € DomA | A(t) = 7} by FL(16).

FL(17). The class E is closed under intersection.

Proof. Let 8,7 € E, say 8 = A(o), v = A(7), where 0,7 € Dom A.
Then

0,7 € DomA = A(c),A(r) € DomA by FL(9)
= A(o) N A(7) € Dom A
and A[A(c) NA(T)] = A(o) NA(T)
= BN~y &€DomA
and A(BN~v)=BNy= pBNy€E€E. O

FL(18). 6E = DomA.

Proof. We claim
(i) 6E C DomA,
(il) Dom A C JE.

Re (i). Recall that @ is the class of all finite sets. By the definition

of F,
0E ={oc€Q|oC¥, for some £ € E}

={oc€Q|o CA(r), for some 7 € DomA}.
However, by FL(9),

7 € DomA => A(7) € Dom A and o C A(7)
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implies o € Dom A by FL(8). Thus, E C {c € Q | 0 € Dom A}, i.e.,
0FE C Dom A.

Re (ii). Using FL(11a), we see that

o € DomA = ¢ C Ao)
= o0 CA(c) and A(o) € E
= o0 k. O

The different parts of FL have now been proved. For, first of all, A is
an effective procedure with Py, (v) C Dom A by FL(7). Now consider

(a)—(f)-
Re (a). Let 7 € Pg, (v). Then A(r) is defined. Also, 7 C A(7) by
FL(lla) and A(7) C v by FL(15). Finally, |[A(7)| € a by FL(12).

Re (b). By FL(11) and FL(12).
Re (c). By FL(8).

Re (d). By FL(9).

Re (e). By FL

Re (f). By FL

(16).

(17) and FL(18). O

6. Frames. Recall that @ is the class of all finite sets and that
55— {reQ| @l caoesl) forScQ,

so that S C §S. A frame is a class of finite sets which is closed under
intersection. Frames can therefore be finite or denumerable. They
were introduced by Nerode in [8, Section 2]. They formed his basic
tool for extending properties and relations from ¢ to A and Q. A set 8
is attainable from a frame F, if for all sets 7,

T€Q and 7CPB = (F)[rCdCpB,dcF]

We write A(F) for the class of all sets attainable from F'. Every frame
F has the following properties:

QL. F C A(F),
Q2. A finite set is attainable from F' if and only if it belongs to F,
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Q3. 7 is a finite subset of some set in A(F) if and only if 7 € 6F.
If F is a frame, C'r is the mapping defined by

Dom Cp = §F, C’F(T):ﬂ{feF\TCf;“}.

We claim that
Q4. Cp maps 0F onto F, for a frame F'.

For,let T'p(1) = {£ € F | T C &}, then Cp(r) = NI'p(7) for 7 € §F.
Then Q4 would follow from

(a) F c RanCp,
(b) RanCp C F.

Part (a) is true, since Cp(7) = 7 for 7 € F. Now consider (b).
Let 7 € 6F. Then I'p(r) is finite or denumerable. If I'p(7) is
finite, NI'p(7) € F, since F is a frame. Now assume that I'p(7) is
denumerable, say I'p(7) = (&o,&1,-..). Define the sequence po, p1, - . .
of sets by po = o, pnt1 = pin N&nt1 for n > 0. Then po D pg O --- .
The inclusion g, D pp+1 can be proper for at most finitely many values
of n, since pyg is a finite set. Thus there is a number £ such that u, = ux
forn>k. Put T=pg, then T =poNuiN--- =& NE& N---. Thus

(i) rCT,

(i) 7eF,

(iii) (e F,rC¢&=TCE.

Using (i), (ii) and (iii), we see that Cr(7) = 7, hence Cp(7) € F.

By definition, for 7 € §F, Cp(7) is the smallest set in F which
includes 7. The mapping Cr from §F onto F' maps a subclass of @
into @, hence it is a procedure. A frame F' is recursive, if the procedure
CF is effective, i.e., if the mapping cano — canCp(c), for o € 0F, is
pr. If S C @ we write S* for the set of all numbers of the form |o]
for o € S. A frame F' is an a-frame, if F* C q, i.e., if a contains the
cardinality of each set in F'. For more information concerning frames,

see Nerode [8, Section 2], McLaughlin [6, Chapter 11] and Barback and
Jackson [2, Section 3].
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Proposition P9. Let f be a strictly increasing, recursive function
with range o, and let v be an immune set. Then the following two
conditions on f and v are equivalent:

(a) the finite subsets of v are f-extendible,

(b) the set v is attainable from some recursive a-frame.

Proof. Assume (a). According to FL there is an effective procedure
A which satisfies the six conditions FL(a)-FL(f). Consider the class
E = RanA. We claim that

(i) E is an a-frame,
(i) v e A(E),
(iii) FE is a recursive frame.

Re (i). E consists of finite sets and is closed under intersection by
FL(f). Let 0 € E, say 0 = A(7), where 7 € Dom A. Then |o| = |A(7)]
and |o| € a by FL(b). Hence F is an a-frame.

Re (ii). We wish to prove:
(%) €eQ and (Cv= (IN)[(CTCv7€RanAl.

Assume the hypothesis of (x). Then £ € Ps, (v), hence £ € Dom A.
Thus £ C A(§) C v by FL(a). Hence the set 7 = A(&) satisfies
¢ C 7t Cvand 7€ RanA. This proves the conclusion of (x).

Re (iii). Suppose we could prove for 7 € Dom A, i.e., 7 € §E,
(iv) A(r)e{€€eE|TC&},ie, A(r) € Eand 7 C A(7).
(v) (€ Eand T Cé{=¢€FE and A1) C&.

Then (iv) implies Cg(7) C A(7), while (v) implies A(r) C Cg(7), so
that Cg(r) = A(7) for 7 € Dom A, i.e., Cg = A.

Re (iv). Assume 7 € Dom A. Then A(7) € RanA, ie., A(7) € E.
Also, 7 € Dom A implies 7 C A(7) by FL(b).

Re (v). This is true, since 7 C £ implies A(7) C A(€) by FL(c), while
¢ € E implies A(§) = &.

We have now proved that Cr = A. However, A is an effective
procedure, hence the frame E is recursive. We have proved (b).
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Now assume (b), i.e., that the set v is attainable from some recursive
a-frame, say G. Since v € A(G) we know that for all sets T,

(6.1) 7€Q and TCv= (F)[rCdCrdeq.

Put Il = Cg and 7* =1II(7) for 7 € DomII. We claim that

(6.2) I is an effective procedure from JG onto G,
(6.3) Psn (v) C DomlII,

(6.4) TCT"Cv, forTé€ Py, (v),

(6.5) |7*| € @y for T € Pay (v).

Re (6.2). Cg is a mapping from §G onto G by Q4. This mapping is
an effective procedure, since G is a recursive frame.

Re (6.3). Let 7 € Ps,(v). Then 7 is a finite subset of some set
attainable from G, namely of v. This implies 7 € §G, hence 7 € Dom II.

Re (6.4). Let 7 € Pa, (v). Then 7 € DomlII, hence 7 € 6G. Thus
rCnN{€eG|TC€&}, ie, T CT* Moreover, since v € A(G) and
o € Pgy (v), there is according to (6.1) a set 6 € G with 7 C § C v.
Thus, among the (finite) sets in G’ which include 7 there is a subset of
v. Hence, {{ € G| T C &} Cv,ie, 7" Cu.

Re (6.5). Assume 7 € Pgy (v). Then 7 € DomlII by (6.3), hence
7 € 0G. Then

TEG=Cg(r)eG=1"€G@= |T7"| € q,

since G is an a-frame. We have proved (6.2), (6.3), (6.4) and (6.5),
hence that the finite subsets of v are f-extendible. i

7. Representability.

Definition D5. Let f be a recursive combinatorial function, and let
 be an immune set. Then p is f-representable, if there is a recursive,
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combinatorial operator ® and an immune set v such that ® induces f
and p = o(v).
If f is a recursive, combinatorial function, we write fp for Myhill’s

canonical extension of f to a function from A into A; see [4, p. 277].
We define

(7.1) fa(d) ={fa(X) | X € A}.

It follows that if f is a recursive, combinatorial function, then an
immune set u is f-representable if and only if Requ € faA(A). An
isol X is attainable from a frame F', if X contains at least one set of
A(F). Nerode [8, Section 2] associated with every set « a collection
ap of isols, namely

(7.2)  ap ={X € A|X is attainable from some recursive a-frame}.

For some of the basic properties of the mapping a — a,, see [2, Section
3, relations (6)—(10)]. A function f from € into ¢ is said to be linear, if
there are numbers a and b such that f, = an+b; it is eventually linear,
if there are numbers a and b such that f, = an + b, for almost all n.

Proposition P10 (Nerode). Let f be a strictly increasing, recursive,
combinatorial function with range o. Then

(a) fa(A) C oy,
(b) if f is eventually linear, fo(A) = ay,
(c) if f is not eventually linear, fa(A) Cy an.

Proof. [9, Lemmas 5.2, 5.3, 5.4]. mi

Proposition P11. Let f be a strictly increasing, recursive, combi-
natorial function, and let p be an immune set. Then

(a) p f-representable implies the finite subsets of p are f-extendible,

(b) if f is eventually linear, u f-representable if and only if the finite
subsets of u are f-extendible,

(c) if f is not eventually linear, the converse of (a) is false, i.e., there
is an immune set p whose finite subsets are f-extendible, though p is
not f-representable.
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Proof. Assume the hypothesis. Let M = Requ. Then p is f-
representable if and only if M € fy(A), while by P9 the finite subsets
of pu are f-extendible if and only if M € ay. The three parts of P11
now follow from the three parts of P10. |

The following four statements are corollaries of P11:

(1) the finite subsets of an immune set u are 2n-extendible if and only
if u is 2n-representable (i.e., even),

(2) the finite subsets of an immune set p are 2n + 1-extendible if and
only if u is 2n + 1-representable (i.e., odd),

(3) there is an immune set p such that the finite subsets of pu are
n?-extendible, though 1 is not n®-representable,

(4) there is an immune set p such that the finite subsets of p are
2™ -extendible, though p is not 2™-representable.

Remark R3. Let f be a strictly increasing, recursive function with
range «a, and let v be an immune set. In Remark R1 we characterized
the relation “the finite subsets of v are f-extendible” as follows: there
is a p.r. function p such that

(7.3) pnCv and r, ¢ a=ne€dp and p, EV— p,.

According to (3) there is an immune set v which is not n?-representable,
though its finite subsets are n2-extendible. Let N = Reqv. Then
relation (7.3) holds for » and « = (0,1,4,9,...), though N is not a
perfect square, i.e., N # X?2, for every isol X. A similar statement can
be made using (4): there is an immune set v with Reqv = N such that
relation (7.3) holds for v and o = (1,2,4,8,...), though N # 2% for
every isol X.

Let us consider the following two statements from isolic arithmetic:
(7.4) if an isol is divisible by 2 and 3, it is also divisible by 6,
(7.5) if an isol is both a square and a cube, it is also a sixth power.

Re (7.4). This is true. For, let X € A and X = 2Y = 3Z, for
Y,Z € A. Then 2|3Z, hence 2|Z by [5, Theorem 103], say Z = 2U.
Then X = 3Z = 6U, so that 6|X.
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Re (7.5). This is false. See Nerode [9, Section 4].

We would like to find out whether the following two statements are
true:

(7.6) if the finite subsets of an immune set are both 2n-extendible
and 3n-extendible, they are also 6n-extendible,

(7.7) if the finite subsets of an immune set are both nZ-extendible
and n3-extendible, they are also n%-extendible.

Proposition P12. Let s and t be strictly increasing, recursive
functions with ranges o and T, respectively, and let v be an immune
set. Assume that the set « = o N7 is infinite and that u is the strictly
increasing recursive function which ranges over . If the finite subsets
of v are both s-extendible and t-extendible, they are also u-extendible.

Proof. Assume the hypothesis and also that the finite subsets of v
are both s-extendible and t-extendible. Since the finite subsets of v are
s-extendible, we know by P9 that v is attainable from some recursive
o-frame. Put N = Reqv; then N is attainable from some recursive
o-frame, hence N € o by (7.2). Similarly, we see that N € 7,; hence
N € op N7p. However, oy N1p = (0 N7)a by [2, Section 3] so that
N € ap. Hence, the set v is recursively equivalent to a set whose finite
subsets are u-extendible. This implies by P3 that the finite subsets of
v are u-extendible. u]

Corollary 1. If the finite subsets of an immune set are both 2n-
extendible and 3n-extendible, they are also 6n-extendible.

Corollary 2. If the finite subsets of an immune set are both n?-
extendible and n>-extendible, they are also n®-extendible.
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