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A CLASS OF CAUCHY PROBLEMS THAT INVOLVE
FACTORABLE DIFFERENTIAL OPERATORS

L.R. BRAGG

ABSTRACT. Let ¢ = (z1,...,%p), D = (D1,...,Dp),
and let P(D) be a linear partial differential operator with
constant coefficients that can be factored over the complex
field into a product of linear combinations of the D;. Using
the simple quasi inner product (qip), we obtain representa-
tions of solutions of a class of Cauchy problems that includes
omw(z, t)/0t™ = P(D)w(z,t), dIw(z,t)/0t |t=0 = ¢;(x) for
j=0,1,...,n—1 as multiple integrals of complex translations
of the data functions. The factor switching property of the qip
plays a central role in constructing these representations and
imposing smoothness restrictions on the data. Examples are
given to illustrate the flexibility that the gip permits in alter-
ing solution forms to fit in with the data or in determining
optimal growth conditions for entire data.

1. Introduction. Let p be a positive integer with p > 2, let
z = (z1,%2,... ,2p), and let D = (Dq, Dy, ... ,D,) in which D, f(z) =
O0f(x)/0x;. Next, let P(D) be a partial differential operator with
constant coefficients which can be factored over the complex field into
a product of linear combinations of the D;. We will be concerned with
a class of higher order Cauchy problems that includes the following

an

8?w(av,t) = P(D)w(z,t),
(1.1) o B

@W(I,O) = ¢j(z),

as well as ones in which the underlying equation is a higher order
generalization of the Euler Poisson Darboux equation. The primary
objectives of this paper are: (a) to develop representations of solutions
of these problems as multiple integrals of complex translations of the
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data functions and (b) to determine optimal analyticity conditions on
the data functions for which these representations are valid. The types
of series that define the formal solution operators for the problems
considered are closely tied to the | F,, hypergeometric functions. We
will use the simple quasi inner product (qip), with binary symbol o,
for constructing these integral representations from the formal solution
operators. At the heart of this is a factor switching property of the
qip which assists in obtaining bounds on solutions and specifying
analyticity requirements on the ¢;(z) needed for the integral solution
forms. This is particularly true when the ¢;(x) must be entire with
growth to be determined. The qip is essentially a function theoretic
tool (see [1, 14] for a general background).

Bounds on solutions obtained in [6] permitted developing expansion
theorems for solutions of problems of type (1.1) when n =2 and p =1
in terms of solution sets corresponding to polynomial data. It would
be useful to investigate expansion results for the cases p > 2 and n > 3
in order to extend work carried out, using other approaches, in [9,
10, 18 and 19]. Because of the numerous details required for such an
expansion theory, we shall defer this study to a future paper.

A general approach for obtaining complex integral representations
of solutions of problems of type (1.1) without the stated factorability
assumption on P(D) was given in [3]. It made use of the generalized
quasi inner product (gqip), with binary operation denoted by .o where
r and s are relatively prime integers with r > 1 (this gqip does not have
a convenient factor switching property). The problem was first reduced
to one of solving a set of “heat” problems of the form

(1.2) %Hi(w’t) = P(D)Hj(,t), t>0;

and then applying appropriate complex integral transformations to
these Hj(z,t). In solving the “heat” problems (1.2), the differential

operator P(D) was expressed as an:l P,,(D) where each P,,(D) was

a constant times a product of powers of the D;. The formal solution
k

for the H;(z,t) was given by H;(z,t) = e’ 2o Pm(D)¢j(m) and the

generalized quasi inner product was applied term by term to each of

the operators e¥m(P) acting on an appropriate data or subsequently



FACTORABLE DIFFERENTIAL OPERATORS 747

constructed function to finally yield H;(z,t). As a general rule, this
method required that the data functions ¢;(x) be entire of growth (p,T)
with p < 1 (see Section 2) even when analyticity would have sufficed for
restricted values of t. One need only examine the classical heat problem
to see that the gqip method does not lead to optimal growth conditions
on the data [19]. Nor does it lead to the standard d’Alembert type
solution form for the classical wave problem. Qips have been used in
constructing ascent type formulas for solutions of partial differential
equations [4].

The method of switching a pair of commutative “derivative” oper-
ators in exponential functions appearing in quasi inner products was
used in [6] to solve several second order Cauchy problems, including
the Yukawa and the Helmholtz problems. The approach used there
suggests that we make the following factorability assumption on the
differential operator P(D) in (1.1), namely

!
(1.3) P(D) =[] (ah, D1+ a2 Dz + -+ ab, Dy, + alF )"

m=1

where the a/, are complex constants for 1 < j < p+1,1 < m <1
and the r,, are positive integers (in most cases of interest, we have
the a2l = 0). An example of one such problem with n = 4 and
P(D) = D} was considered in section 8 of [6]. Depending upon the
choice of n and the factors of P(D), the problem (1.1) may be solvable
or nonsolvable for the given data function(s). By replacing the data
by analytic or entire functions, a previously nonsolvable problem can,
nevertheless, have a solution. In those cases when (1.1) is solvable
and has a fundamental solution, the derivative operators D; may be
replaced by the generators of commutative group operators in some
Banach space along with the corresponding replacements of the data
functions by elements in an appropriate dense subspace of that Banach
space. The solution of (1.1) then can be used to infer a solution of this
abstract problem.

A formal approach to solving (1.1) is to first regard P(D) as a con-
stant and then express the solution of the problem formally as a suitable
linear combination of solution operator series that involve P(D) act-
ing upon the data functions ¢;(x). Various solution operator series
associated with (1.1) can be expressed in terms of the hypergeometric
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function operators gFy—1(—;A1;A2,... ; An—1;TP(D)) in which T is a
simple function of ¢ (see Section 6) and where the \; are constants de-
termined by parameters appearing in the partial differential equation
in (1.1). For the general class of problems considered in this paper
(and including (1.1)), the formal series solution operators can be ex-
pressed as 1 F, type hypergeometric operator. In [6] we made use of a
function Fy . of an operator. By making repeated applications of the
qip, switching first order derivative operator factors in the exponentials
appearing in these qgips and replacing exponentials of higher powers of
first order operators by a multiple integral involving the first power of
that operator, we can reduce the problem of constructing solutions of
(1.1) to successive applications of g, and Fj . type operators to the
data.

In Section 2, we recall those notions from quasi inner products, groups
and entire functions that will be needed in the ensuing developments.
We also summarize a number of results from [3] including the definitions
of the functions g, and Fp. along with their integral forms. Of
particular importance will be the property alluded to above on moving
derivative factors around in exponential functions appearing in quasi
inner products. A number of reduction formulas for exponentials
involving products and powers of operators will be obtained. Section 3
will be concerned with the applications of gips to lower order Cauchy
problems. The examples will illustrate the switching of derivative
factors in solving the classical heat equation in two space variables. We
also illustrate how switching constants in a qip can alter the solution
formula for a problem along with the data requirements. Finally,
for a generalized wave problem of type (1.1), i.e., n = 2, we show
how the solution obtained by qips can be constructed by means of a
set of transmutations. A discussion of the ; F,, type hypergeometric
solution operators and their qip reductions to lower order operators
will be carried out in Section 4. The results will play a key role
in solving higher order problems. Some preliminaries on analyticity
requirements on the data will be considered in Section 5. To simplify
the writing of integral solution formulas, we introduce a vector notation
for variables of integration. Finally, in Section 6, we construct integral
representations for a pair of higher order Cauchy problems. The first of
these has the form (1.1) while the second is a third order Euler Poisson
Darboux type problem. Included in this treatment is the imposing of
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restrictions on the underlying data functions.

2. Basic background. For the convenience of the reader, we
summarize the basic notions on quasi inner products, their properties,
and notions related to them. The exponential of an operator is
central to the gip method by (i) defining a complex translation on
a function or (ii) defining the solution of some generalized initial value
heat problem [3]. In case (ii), one must usually select the data on
which this exponential operator acts to be entire of appropriate growth
as was noted in the introduction. The growth bounds on the data
determine bounds on the corresponding “heat” solution as well as
possible limitations on ¢t. We use this in applications in Sections 3
and 6. We also note some results on groups of operators associated
with abstract versions of problem (1.1).

Let us first suppose that f(z) = > .- a,2™ is an analytic function
of z in some region in the complex plane. We say that f(z) is entire of
growth (p, ) with p >0 and 7 > 0 if

lim sup(n/ep)|an|P/™ = 7
n—oo
[2]. This implies the existence of a positive constant M such that
|f(2)| < Mel*” for all complex 2. In the work to follow, we will usually
be working with functions of several complex variables z1, 22,... , 2Zp.
A function may be analytic in a region in a number of these variables
and entire in the others. A simple example of such a function of two
variables is given by f(z1, 22) = Ip(21)/(4—22)? in which Iy(z;) denotes
a modified Bessel function. In this case we have Iy(z;) = e*/2 o e*1/2
and |Ip(z1)| < ell. If we make the restriction |z| < 4 — ¢ with
¢ > 0, then for all z; and the restricted values of 23, we have
|f(21,22)| < el®/e2. A number of the data functions to be used later
will be required to be entire in all of their arguments and of suitable
limited growth in order that improper solution integrals associated with
them converge. For most of these switching factors in the qip, it will
p
permit requiring |f(z1,22,...,2p)| < Mem 2=l ieh 1 <p<2
The reader is referred to [3] for further details on gips and entire
solution functions.

Next, let f;(2;), j = 1,2,3, denote three analytic functions of the
complex variables z; in the disks D; centered at the origin where
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i(z) =Y.°° al2?. For z; € Dj, j = 1,2, we recall the definition of
i\%j n=0 ¥n?; J irJ 14
the standard quasi inner product, namely
2w

(1) o fa(z2) = (2m) fi(z1€) fa(z0e7") dB

0
[
_ 1 2 _n_n
= E a,a,z; 2y .
n=0

When one or both of the functions composed by o depend upon two
or more variables, we use underscores to indicate the variables being
singled out in the functions in forming the qip. For example, we write

(2.1)

2T

(2.2) fi(zy,22)0f2(21,25) = (2m) " fi(z1€", 22) f2(21, z3e ) db.
0

It follows from (2.1) that fi(21) o f2(22) = fa(22) © f1(z1) and f1(z1) o

[f2(22)+ f3(22)] = fi(21)0 fa(z2)+ f1(21)0 f3(22) provided that 25 € Ds.
Further, if z; and Z; € Dj, j = 1,2, or if Z; = c2; and Z = ¢ 'z, for
restricted choices of ¢, then

(2.3) f1(z1) o fa(22) = f1(Z1) o f2(Z2).

This property permits moving a complex factor from the argument
in one of the functions to the argument in the other function to
reformulate the quasi inner product. In particular, if the f;(z;) are
entire functions of the z;, this switching formula can be expressed as

(2.4) filazy) o f2(Bzs) = fi(aBz1) o fa(2s) = fi(z1) © f2(@Bzs)

where o and B are any pair of complex scalars. In applications
of (2.4) to partial differential equations, the scalars o and 8 are
usually replaced, respectively, by partial differential operators P; (D)
and Pz(D) that commute. For such entire functions, a combination of
(2.1) and (2.4) leads to the operator identity

25) Y alaPM(D)R (D)
B = f1(PU(D)t) o f2(Pa(D)t)

= (2n)7! /0 i f1(P1(D)te®) fo( Po(D)te=) db

27 ) )
= (2n)~! /0 f1(PyL(D)Py(D)te®) fo(te=%) db.
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Remark 1. For the Cauchy problems we discuss, the equation and
initial conditions are described in terms of real variables. When we
state that a data function ¢(z) is analytic or entire of growth (p, 7), we
understand this to mean that the extended function ¢(z) in complex p
space (where z = (z1,..., %)) is analytic in a region that includes x or
is entire of growth (p, ) in some or all of the variables.

A. Ezxponential operators. In most of our applications involving
(2.5), the f; are exponential functions. It is therefore useful to note
the essential properties of the operator e!F(P) in those cases when
(a) P(D) = 37_, a;Dj + apy1 and when (b) P(D) = (327_, a;D; +
ap11)™ where m is a positive integer > 2. The formula (2.9) employed
for part (b) can also be used to treat the case when the factors of P(D)

are distinct.

Case a. If t is a real number, the exponential operator e!P* defines a

real translation on the function ¢(z;) that is defined by the formula
(2.6) ePrg(zr) = p(z1 +1),  ¢(x1) € CL.

Denoting this translated function by u(z1,t), we note that this function
is a solution of the first order Cauchy problem u;(z1,t) = ug, (21,1),
u(z1,0) = ¢(x1). If the ¢ in (2.6) is taken to a nonreal complex number,
then that formula holds only if ¢(z1) is analytic in a convex region that
contains x1 and x1 + t. Similarly, we have
(2.7)

etP(D)qﬁ(ml,xz, ooy Ty) = €PN P(zy gt Ty + oty ..., Ty + apt).

If all of the ; are real, then this formula holds if ¢ € C! in all of the
zj. If one or more of the a; are nonreal complex numbers, then (2.7)
holds only if ¢ is analytic in the corresponding z; variables and C' Lin
the remaining ones.

Case b. As we will see, the choices m = 2 and m > 3 lead to
different integral type formulas of the exponential operator considered.
These values of m along with the realness or nonrealness of the complex
parameters «; dictate the analyticity requirements on the data on
which this operator acts. To handle this case, we must first write a
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reduction formula, on the powers of b, for the exponential function
tbk+1
e

that

where k is a positive integer. From Section 2 of [3], we recall

(2.8) etab — / (e 0 et d¢
0

if |b| < 1. We make use of this when a and b are replaced by differential
operators (in particular, see C' of Section 3 for an example where P (D)
has two distinct factors). For the exponential etbk+1, we get

et [ e et o e g
0
> 1 2 tb 0 bk —1i6
:/ e ¢Q (2m)~ / ettt e ap b dc.
0 0

I. m = 2. Taking k = 1 in (2.9), we observe that the inner integral
in this reduces to e® o e?. By (2.4), this becomes Vit o V1 =

(2m)~! foh e2V/t(cos )b g Inserting this into (2.9) with b replaced by

>P_, a;Dj, we have the formal operator identity

J
etP(D) = /ooe_c{(%r)_l
0

(2.10) U ,,
. / e@p+1/t€ cos 062\/2(005 0) Zj:l a;D; d@} ac
0

where P(D) = (32%_, a;D;j + ap+1)?. We must, of course, justify the
above replacement by restricting the data on which the two members

of this operate.

First, assume that all of the a; in this are real. Let ¢(z1,...,zp)
be continuous and suppose that the derivatives d¢(z1, ... ,x,)/0z; are
continuous for j = 1,...,p. Applying the operators defined by the
two members of (2.10) to this ¢ and making use of (2.7), we define the
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action of the above operator on ¢ by the formula

(211) etP(D)¢(xla v 7xp)
*° 1 m cos P a;Dj+a

:/ GC{_/ e £ e(zjzl iDi+ p+1)¢(m1,... ,xp)de} d¢
0 0

2

oo 2m
:/ eC{i/ 62\/Eap+1 cos 6
0 21 Jo
- p(xy + 2014/t cos b, . .. ,x, + 20,1/t cos B) dﬁ} d¢

In order that this improper integral converge, we must require the data

P
to satisfy a condition of the form |¢(z1,... ,2,)| < Me" Z:‘=1 31" with
0 < p £ 2 where M and 7 are positive constants. If p < 2, the integral
in the second member of (2.11) exists for all choices of the a;. On the
other hand, if p = 2, the integral in the second member of (2.11) exists
only for a restricted set of choices for ¢, 7 and the o;. For example, if

TZP 1:2
we choose @(x1,...,2p) =€ “i=1"7 then

oo 2m p 2
— €7C i €2ap+1\/thosaeT j=1%i
0 27 Jo

P o 2 P 2
'64T thosOijlanJ -e4thos 02j:1a3 dﬂ}d(

P 2 [° P 1 2w
< e‘r =1 I]-/ e*<(174t‘l' Zj:l aJ){i/ eZOcp+1\/tC cos @

0 21 Jo
'64 t(cos@Z:=lajmj dG} dC

This last integral converges only if 1 — 4¢1 Z§:1 ozjz- > 0oritt <
1/[4r ;’:1 04]2-]. A condition analogous to this appears in the study of
expansions of solutions of the heat equation in terms of heat polyno-

mials in one space variable [18].

When the «;’s are nonreal complex numbers, a formula of the
form (2.11) is valid provided that ¢(z1,...,zp) is selected to be en-
tire in the variables z; of growth (p,7) where 0 < p < 2, ie,

lp(z1,... ,zp)| < Me' 2 lesl” 1 ¢ is in this class with p < 2, then
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the integral corresponding to (2.11) converges for all a;’s. If p = 2, a
requirement for the convergence of this integral is easily shown to be
1—4t730_ | Re(a?) > 0.

II. m > 3. The reduction procedure employed to deduce (2.9) can
be reapplied to the term ecbre™™ appearing in the integrand in the last
member of the formula (2.9). By repeating this, one eventually reaches
the point where b appears only to the first power in the exponentials in
the resulting integral. In carrying out this reduction, one should take
into account the possibility of switching factors, including commutative
derivative operators, among the exponentials in the successive qips.
This switching property (2.3) is particularly important in constructing
integral formulas for solution operators of Cauchy problems which
should reasonably suggest that the initial conditions are satisfied.
Moreover, that formula should be valid for the broadest possible class
of data functions. In the following, we construct an integral formula
for the special symbolic expression e*? ?q&(ml) to show how one can use
this factor switching property to advantage.

By (2.9), we have
(2.12)

3 ° 1 2 i6 2 i
et :/ e ¢ —/ etPre™ g Die ™™ g L d¢y
0 2 Jo

00 2
_ 1 1/3,+2/3 if1 2/8,1/3 —if1 2
:/ e CI{E el /761 eI Dy o t7R¢ e Dldel déy.
0 0

Equality of these last integrals follows from the fact that the inside
2
integral in each case defines the qip etP1 o 2P 1t further follows that

) o5} 2 .
0 27 Jo

1/842/3 —i6
Let 176 e 2Dy daZ}dCZ,

by appealing to the case m = 2. Inserting this back into (2.12) and
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simplifying, we get

ont = 1 /Oo/ooef(mcz)
(2m)? Jo 0

2w 27 ) )
{/ [t e oy gy, dal}d<2 dé:.
o Jo

Now formally apply this to an appropriate entire function ¢(z1) to
obtain

(2.13) e Pig(xzy) = #/0 /0 e (FR)D(ay,t,¢1, (o) dla d(y
where

2w p2m
= { [ [ st @ 1 GG 0
0 0
+¢/2e712)) b, db, }

It is not difficult to show, by using the definition of the growth of
an entire function and the inequality |z + y|* < 2*1(|z|* + [y|")
when 1 < A < 2, that the second member of (2.13) is well defined
if ¢(x1) has growth (p, 7) with p < 3/2 (p = 3/2 is the optimal possible
growth of data to go with the operator e!”1). When p = 3/2, we must
restrict the size of t. One should observe that there are other possible
ways of switching factors in the gips, particularly the (;’s that lead
to integral formulas that are different from (2.13) and which require
different growth possibilities for ¢(z1).

From this example it is obvious that successive reductions of the
above type quickly lead to complicated integral expressions. This will
show up again in Section 4 when we examine other types of reductions
for solutions operators. At the end of Section 5, we introduce a
vector integral notation that will simplify the writing of solutions of
Cauchy problems. It takes into account the various types of integration
variables and the intervals of integration.

B. The g, function. For immediate and later use, we recall the
definition of the g, function, namely, g.(t) = >°72, t7/(a); [6]. This
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reduces to e if a = 1 and has the integral form (a—1) fol 0% 2et1-9) 4o
if a > 1. If P(D) is the required type of partial differential operator,
we can write

(2.14) 9a(tP(D))p(z) = (a — 1) /0 0?2t PD) (1) do.

The calculation of the integrand of this can now be carried out using
the methods of A above.

C. The Fy . function. Let b > 1 and ¢ > 1, and let P;(D) and P»(D)
be a pair of differential operators. The operator Fy, .(tPi(D)P(D)) is
defined by the infinite series

o~ t"P'(D)Pg(D)
2 () (c)n

for a suitable choice of the function ¢(z). In this we have (b), = 1 if
n=0and (b), =bb+1)---(b+n—1)if n > 1. From [6], we have,
for v and § a pair of complex numbers, the following integral formulas
for Fy .(td):

(2.15)

(b—1)(c— 1)/01 /01 ot 20572

2 . ]
{i/ e\/z(l—o'l)819"/6\/2(1—0'2)87196 de} doy d(fz,
2 0

¢(z)

n=1

b>1,¢>1
1 2T . .
(b—1) / a“{i / e\/t<10>6”7e\/t<10>e"96d9} do,
0 T Jo
b>1,¢c=1

2 . i
1 / eVie revie s dd, b=c=1.
27 0

The reader is referred to [6] for applications of these formulas to second
order Cauchy problems.

3. Some lower order problems. Before discussing problems such
s (1.1) for n > 3, it is useful to re-examine initial value heat and
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wave problems by using the quasi inner product approach. This will
permit us to gain some facility with the method, will illustrate different
approaches for deducing familiar results and will fill in some gaps not
covered in [3] and [6]. At the same time, it will point out some of the
connections between the qip method and the method of transmutations.

A. Classical and abstract heat problem. Let’s first consider the
initial value problem wu;(zy,x2,t) = (D? + D3)u(zy,xs,t), t > 0;

u(zy,22,0) = ¢(x1,22). Its solution can be expressed symbolically
as
(3.1) u(z1,z2,t) = et(D%"'Dg)qﬁ(ml,xz).

By a slight modification of formula (2.8), we have, for ¢ > 0,
0o 2m X )
(3.2) el = / e—C{(27r)—1/ (Ve Nag(y/tce )b da} ¢
0 0

if |[v/tb| < 1. Now we have the factorization D?+ D2 = (D, +iD,)(D,—
iDs). Replace a in (3.2) by Dy + iDs and b by D; — iD, and apply
both sides of the resulting operator identity to the function ¢(zy,z3).
After a rearrangement of terms, we get

[e’s] 27
et(Df+D§)¢(x1,x2):/ ec{%/ o(21/tC cos ) Dy
0 ™ Jo

(3.3) T2V Dz ) ) de} d¢

o] 2
= / eC{ 1 oz + chos 0, x,
0 2 Jo
— 24/t(sinf) dﬂ} dc.

The integral in the third member of this converges for all ¢ > 0 if
¢(z1,22) € C' in both variables and if |p(z, )| < MeT(22l"+lz2l")
with 0 < p < 2 and 7 > 0. If p = 2, one can show that this integral
converges only for restricted values of ¢ > 0 (see the discussion following
(2.11)). Assuming that ¢ satisfies these conditions, we leave it to the
reader to show, making the changes of variables £ = z; + 21/t( cos
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and n = 2o — 2/t sin 6, that the last member of (3.3) can be reduced
to the familiar classical solution formula

) [ [ e g e

Next, let A; and A, generate continuous groups in a Banach space X
and assume that A; A2¢ = A3 A1¢ where ¢ € D(A}N A2) (see [11] and
[13] for a general treatment of groups and semigroups of operators). An
abstract generalization of the above two space variable heat problems
can be written as

(3.4) ug(t) = (AT + AZ)u(t), t>0; u(0) = ¢.

Let G4,(t), i = 1,2, denote the groups generated by the A;. Then,
using (2.14), one can also write the solution of (3.4) in the form

w =Ty, (){T4,(t)d}

3.5 © oo o
(3.5) _ 4%#/,00 [m e GG, (6)){Ca,(E2)0) dEs déy

where T4, (t) denotes the semigroup of operators generated by A2
i=1,2.

B. A pair of “fourth order” heat problems. Let us consider the pair
of initial value problems

(a‘) ut(xlat) = Déllu(xlat)a t> 0; u(xla 0) = ¢7($1)

(3.6)
(b) wi(wy,t)= —Djv(z1,t), t>0; v(x1,0) = ¢(z1)

in which ¢(x1) € (p,7) with p < 2. The solutions of these are given
formally by u(z1,t) = e'Pi¢(z1) and v(zy,t) = e Pig(zy). If we de-
fine H(z1t) = e'Pi¢(z1) to be a solution of the standard heat problem
Hi(z1,t) = D?H(z1,t), t > 0; H(z1,0) = ¢(z1), it follows from the
relation e'Pi¢(z1) = (2r) 1 I 021'r e=Ce(2V/1Ceos)DT (1)) 49 d( that

[eS) 2w
(3.7) u(zy,t) = (271')71/ / e SH(z1,2+/tC cosb) db dC.
o Jo
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In a similar way, one can show that

[eS) 27
(3.8) v(zy,t) = (2m) " * / / e CH(z1,2i\/tC cos 0) db dC.
o Jo

The entireness condition imposed on the data function ensures the
existence of H(z,T) for all complex T and that it has growth p in
x1. Hence, both of the functions u and v exist for all ¢t > 0. With the
familiar changes of variables, the integral form for v can be rewritten
as

u(xy,t) = (4nt) /2 /00 e M H (24, €) dE.

— 00

Now the problem (3.6b) has a fundamental solution (see [17]) while
(3.6a) fails to do so in the usual sense of distributions. The growth
properties of that fundamental solution show that the problem (3.6b)
has a solution if ¢(x1) is continuous and |p(z1)| < Meml™** . Upon
applying (2.11) to the functions H in (3.7) and (3.8), it is a straight-
forward calculation to show that both u and v are defined for all ¢ by
the qgip method if ¢(z1) € (p,7) with p < 4/3. The above computa-
tions further show that one cannot construct the fundamental solution
of (3.6b) by a means of a simple integral transformation of a solution
of the initial value heat problem. Viewed in another way, the opera-
tor A = D? generates a semigroup and there is no real transform that

connects the exponential operator e*t4% t0 this semigroup.

C. Altering a solution integral. Consider the Cauchy problem given
by u; = (D1 + D2)(D;1 + 2D2)u, u(z1,z2,0) = ¢(x1,22). A solution
of it can be written symbolically as u = e!(P1+P2)(D1+2D2) g (g ).
Employing (2.8) with a replaced by D+ D5 and b replaced by D;+2Ds,
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and letting a8 =1, a > 0, we find

00 27
w= 1 6_4{ / eV/t¢e™ (D14D2)
2 0 0
VT (D2D2) ) ) ‘”} “
0o 27

21 0 0

. eﬁ\/ie’w(D1+2DZ)¢(x1’ z2) dg} “

oo 27
%/0 efc/(; oz + \/E(aew + ﬁeiie), To
+ V¢ (ae® + 2Be7)) df d¢.

If we select @« = 8 = 1 in the last member of this, the first argument in ¢
in the integrand is real while the second argument is a nonreal complex
number. This last integral exists if ¢(z1,22) is C' and bounded by
Me>et in xz; and entire of growth (p,7) in zy with p < 2. With
the choices @ = +/2 and g =1/ \/§, the analyticity conditions on
the variables in the data ¢ must be interchanged. This shows that
a switching of scalars in the above qip may alter the solution formula
to fit in with the data.

D. Connections with transmutations. The method of transmutations
relates the solution of one initial or boundary value problem in linear
partial differential equations to another such problem by means of a real
integral transformation [7, 8]. One can often relate the solution of one
problem to another by a sequence of transmutations. Here we show how
the integral solution of an abstract wave type problem obtained by the
method of gips can be decomposed into two successive transmutations
acting on the solution of a simple first order Cauchy problem. For
this purpose, let X be a Banach space, and let A be the generator of
a continuous group G(t) with a dense domain D(A2?) C X. Then
consider, for m > —2, the problem

wye(t) — t™A%w(t) =0, t > 0;

(3.9) w(0) =0, w;(0)=¢ where ¢ € D(A?).
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Using the methods of [6] for wave type problems, it is not difficult to
show that

1

w(t) = %/ o (m+1)/(m+2)
m

(3.10) 0

27
) {%/ GA(2tmF2/2\/T -5 cos 0/ (m+2))¢ d9} do.
0

To see how this solution function can be expressed through a set of
transmutations, let u(t) be a solution of the problem w(t) = Au(t),
u(0) = ¢. The solution of this is given by u(t) = G 4(t)¢ as was noted
in Section 2. Next, let v(t) = (27)~! fo% u(t cos @) df. From Section 8
of [3], it follows that v(t) is a solution of the Euler Poisson Darboux
problem v, (t) + t v (t) = A%v(t), v(0) = @, v;(0) = . A comparison
of the formula (3.12) with the definitions of u(¢) and v(t) shows that

t
m—+2

1
w(t) = / o~ (mFID/(m+2) (2 (m+D/2 /T 5 /(m+2)) do.
0
Thus, we solve the first order problem for u(t) and then successively
construct from this, by elementary integral formulas, the functions v(t)

and w(t).

4. Reduction formulas for formal solution operators. Given
a generalized wave problem such as wy(z,t) = P(D)w(z,t), w(z,0) =
do(x), wi(z,0) = ¢1(x), we can write its solution symbolically in the
form

w(z, ) = cosh(ty/P(D))do(x) + % V(I;()D))¢1(x)

(by viewing P(D) a constant and solving it as a problem in ordinary
differential equations). The basic question then becomes one of as-
signing a precise meaning to this symbolic solution as was done for
special choices of P(D) in [6]. The pair of formal solution opera-
tors cosh(ty/P(D)) and sinh(t\/P(D))/+/P(D) have the following re-
spective series expansions (after rewriting certain factorial symbols):
S G (£2P(D)/4)/[j1- (1/2);] and ¢ - (2P(D)/4)/[j!- (3/2);]. Us-
ing the Fj . notation, we can finally rewrite these solution operators
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as cosh(t/P(D)) = Fy5,(t*P(D)/4) and sinh(t\/P(D))/\/P(D) =
t- F13/2(t*P(D)/4). We have already noted that a solution of the
problem u;(z,t) = P(D)u(z,t), u(z,0) = ¢(z) is given symbolically by
u(z,t) = et Plg(z) with etP(P) serving as the formal solution opera-
tor.

In Section 6, we will consider Cauchy problems, including (1.1), in

which the formal solution operators are related to series having the
forms

(41)  O(TP(D),M,-..,\) = i

. P(D))!
Jj=0 )

(T
(A)j(A2)j - (An)j

This can also be written as 1 F,(1;A1,... ,A,; TP(D)), a generalized
hypergeometric type function of TP (D) [16]. In this, T is a parameter
associated with ¢ and the \; are real but none of them is a nonpositive
integer. Closely associated with these excluded values is a class of
exceptional Cauchy problems which must be treated by other methods

[5].

Suppose we replace the term T'P(D) in (4.1) by a parameter S. We
wish to develop two types of reduction relations for expressing the
function O(S, Ay, ..., A,), through repeated applications of gips, in
terms of component functions g, and Fp .. The choice of which of these
to use depends upon one’s viewpoint on how best to solve a Cauchy
problem. We also provide a reduction formula when R < n where
R = > 7, see (1.3). For obtaining these, it suffices to assume that
min; \; > 1. For, if —m < min; \; < —m + 1 where m is a nonnegative

integer, we can rewrite O(S, A,..., ;) in the form
(4.2) O(S,A1,-.., ) = —_
jz::() (A)j - (An);
Sm—i—l
+

()\l)m-‘,-l v ()\n)m—i-l
SO(S, A +m+1,... A, +m+1).

It is easy to check that \; + m +1 > 1 for all j in the last term in
this. We shall call upon this formula later for solving Cauchy problems
when one or more of the A; in the solution operator of the form (4.1)
are negative.
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Reductions in terms of the g, functions. From the definition of g, in
Section 2, it follows by (2.1) that if S = 5155, then
(4.3)
O(Sv )‘17 B 7)\n) =9\ (ﬁl) o O(§27 )\27 s 7)‘71)
1 2
= % .
A repetition of this shows that, in general,
(4.4) O(S2k—152k, Ay - s An)
1 2T

% (Sleiel)O(Sze_wl, )\2, cee )\n) de.

= oy | Ik (Szkflewk)O(Sgke_iak,)\k+1, - ,)\n) do
fork=1,2,... ,n—1 where Sor_1Sor = 52’6726—1'91%1 with Sp = S and
0y = 0. One has some flexibility in choosing the S’s to satisfy these
relationships. This will permit writing solutions of Cauchy problems in
a variety of integral forms.

Reductions in terms of the Fy . functions. In view of the formulas
(2.15) for the Fj . type functions, it is useful to express the function
O(S,A1,...,An) directly in terms of them. This is particularly so
when n is even in order to view the separate components as solutions
operators for second order equations in a t-like variable. When n is
odd, we will find it necessary to bring in one of the g, functions.

Case 1. First assume that n = 2¢ with ¢ > 2. Given the forms of
the series for O(S, A1,..., Ayq) and Fyc, it follows from the definition
of the gip o that

1 27

(4.5) O(S,)\l,...,)\zq):% i O(S1€ A1, .., Aag_2)

X F,\2q717)\2q (526—291 ) d91
where §15: =S5. If ¢ =2, then the reduction is complete and we can
then replace O(S1€%1, A1, ..., Aag_2) by Fi, a, (S1€%1). If ¢> 2, we can
repeat the reduction process on the function O(S1e?, Ay, ... s A2g—2)-
For j =2,3,... ,g — 1, we obtain the following set of formulas:

(46) O(ng_geiejfl,kl, e ,qu_2j+2)

1 27

— i0; —i6;
= % O(ng_le J,)\l,.. . ,)\Qq_2j)F)\2q72j+17)‘2q72j+2(S2j€ J)d6’j
0
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in which SZj—l and ng satisfy the relation ng_ngj = ng_gewj_l.

Case 2. Now suppose that n = 2¢ + 1. From the definition of the
function g,(z), we can now write the following first reduction formula,
namely,

(4.7) O(S,A1,... ; A2g41)
1 2 . .
= — O(Slelol,)\l,... 7)‘2(1) 9gx, +1(526_201)d91
2 0 N
where, once again, S1.5; = S. A complete reduction can now be carried
out by the process employed in Case 1.

A reduction formula when R < n. Finally, let us note in applications
of (4.1), the number R = >, of factors of P(D) may be less than
the number n of parameters A;. If so, we can apply (4.1) to a data
function ¢(z) to obtain the quasi inner product formula

_ 1 ZWO(\/Tew,)\l,... An_r)

2w o
. {O(\/TP(D), >\n—R+17 . 7>\n)¢(x)} de
1 2m | '
= % an—R(l;)\l,... ’)\H—R; ﬁele)u(m,ﬁe—w) a0
0

where u(z,t) = O@tP(D), \p—R+1,--- ,An)@(z) and 1 F,_; denotes a
hypergeometric function.

The reduction formulas above as well as those for exponentials in
Section 2 lead us to the following:

Theorem 4.1. Let the differential operator P(D) be given by (1.3).
Then the function defined formally by O(tP(D), A1, ..., n)d(z) can be
expressed as a multiple integral of complex translations of ¢(x) provided
that ¢(x) is analytic in its variables or entire of appropriate exponential
growth in certain of the variables and analytic in the others.

As noted before, one must determine restrictions on the size of t.
In the section to follow, we provided more details about these data
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functions and conditions under which the integrals in the multi-integral
representation can be interchanged.

5. Conditions on data functions. Before treating various higher
order Cauchy problems, it is useful to make some general observations
about symbolic operators acting on data and the corresponding condi-
tions required on that data in the worst possible cases. In constructing
solutions of problems such as (1.1), one must typically assign evalua-
tions to symbolic expressions such as O(tP(D), A1, ..., An)¢(z) with
this O operator as given in the previous section. To do this, one needs
to have sufficient analyticity on the function ¢(z). Using the reduction
formulas of Section 4 and the results from Section 2, the evaluation of
that symbolic expression can be written as a multiple complex integral
of complex translations of the function ¢(x). The individual integrals in
this involve (i) integrations in variables 6; over [0, 2], (ii) integrations
in variables o; over [0,1], and, possibly, (iii) integrations in variables
¢; over [0,00). If only the first two types of integrals appear, it suffices
to select ¢(z) to be analytic in all of its variables in some appropriate
region in p space. If the third type of integral appears, then it is neces-
sary to choose ¢(z) to be entire of appropriate growth in those variables
associated with the improper integration. Whether ¢(z) needs to be
analytic in all variables or analytic in some and entire in the others is
dictated by the number of factors, including repetitions, of P(D) of the
type considered in the introduction. If P(D) has n or fewer such factors,
the switching property for qips permits these to be moved to distinct
exponential functions in the reduction of O(¢t(P(D), Ay, ... , An)o(z) to
a multiple integral form. In summary,

Theorem 5.1. If the number of factors of P(D) of the type given in
(1.3) is < m, then the function O(tP (D), \1,... ,\n)¢(x) is defined for
restricted t if ¢(z) is analytic in a region of p space. If ¢(x) is entire
of exponential growth in all of the x;, then O(tP(D), A1,...,\n)0(x)
1s defined for all t.

For special choices of the operator O, the analytic requirement on
#(x) can be replaced by ¢(x) € C! or possibly ¢(z) € C. This is
clearly the case for classical wave type problems. Thus we see that the
theorem gives sufficient conditions on @(z) in a worst case scenario. In
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view of the fact that the individual integrations are over finite intervals
in this case, the analyticity of ¢(z) suffices for interchanges in the orders
of integration.

On the other hand, if P(D) has more than n factors of the type
indicated, the switching property will place a product of two or more
of these factors in a single exponential function in the integrand of the
resulting multiple integral solution. In the case of two such differential
factors, denoted here by A and B, we can write

etAB _ /'00 e—a’{i /’271' eteiQAea'e*iOB dg} do
0 2m Jo

(see Example C of Section 3). The integral form of this has each of
the operators appearing in a different exponential function. In the case
of three or more such factors, this reduction process can be repeated.
From this and a careful analysis, we obtain

Theorem 5.2. If the number of factors m of P(D) of the type given
in (1.3) is greater than n, then the function O(tP(D), A1, ..., An)o(x)
exists if ¢(x) is entire of appropriate exponential growth in one or more
of its variables. In fact, if m = ns + r with r and s integers and with
1<r <n-—1, then ¢(z) must be of growth (p,7) with0 < p < (s+1)/s
in at least one of its variables.

An examination of the classical initial value heat problem again
shows that Theorem 5.2 suffices to handle the worst possible cases
(p = 2 for this one). For the operator e'?, recall that p = 3/2.
The precise variables on which entireness is required depend upon the
particular ways in which the derivative operators D; appear in the
various factors of P(D). The examples in the following section will
provide illustrations of this. Even though improper integrals appear in
these integral representations, the growth of the data in those variables
associated with the improper integrals permits interchanging orders of
integration.

To simplify the writing of multiple integral formulas for solutions
of Cauchy problems in the next section, it is useful to introduce a
vector notation for the integration variables. As was noted earlier,
the various solution operator reduction formulas can lead to a number
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of integrations in variables 6; over [0,27], a number of integrations
in variables o; over [0,1], and a number of integrations in variables
¢; over [0,00). If g of the 6; variables are needed in an integration,
we set ©, = (01,...,0,) and dO, = db;---df,. Similarly, if r
of the variables o; are needed and s of the variables (;, we write
Er = (Ula"' aar)a dET = dUl"'dUTa Zs = (Cla"' aCS)a and dZs =
dCy -+ -d(s. We use the symbol f[0,27r]( ) dO4 to denote the repeated

integration fozw fo% - f027r( ) df - - - df, with similar understandings for
the symbols f[0,1]( )d%, and f[(),oo)( ) dZs. With this notation and the
above comments on the interchange of orders of integration, we will
usually write the multiple integral representations for the solutions u

of Cauchy problems in the abbreviated forms

/ // F(©4, %, Zs,z,t) dO, d%, dZ,
[0,00) J[0,1] /[0,27]

for proper choices of the function F. Thus, for example, the generaliza-
tion of (2.13) to the case of e!PT ¢(x1) can be expressed in this notation

as
n 1 Nt
Wi [ [T
(2m)"1 J10,00) J10,27]

(5.1) T e (U N erie Sl
+ Cg/nc?(’n73)/nei(03702) 4.

e 1) 40,y A2y

This is valid if ¢(z1) is entire of growth p < n/(n — 1).

6. Higher order Cauchy problems. We shall now construct so-
lutions for a pair of Cauchy problems in which the underlying equation
contains time derivatives of order > 3. These will serve to illustrate the
use of the reduction formulas of Sections 2 and 4 for setting up inte-
gral forms for symbolic solution operators. This formalism is validated
when applied to suitable data functions. As noted in Section 5, the
precise conditions on these are determined by the form of the solution
operator obtained. The second problem has an underlying equation
with a regular singular point. We use ordinary differential equation
methods to write its formal solution operator.
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Ezample 1. We first consider the Cauchy problem

o*u(z,t)/0t* = t™D3(D? + D2)u(z,t),

(6.1) u(z,0) = ug(x,0) = uge(2,0) =0, wuy(x,0) = P(x1,z2).

Using series methods from ordinary differential equations, it is not
difficult to show that the function v is defined symbolically by

(6.2)
u(,0) = o Fy( 1 1/ +4), 1+ 2/(m+ 4,1+ 3/(m + 4)
T*P(D))$(x1,z2)

with T = ¢t(m+4/4/(m 4 4) and P(D) = D3}(D? + D2). Theorem 5.2
shows that it is sufficient that ¢(z1, z2) be analytic in x5 and entire of
growth p = 2 in x;. Using the reduction formulas from Section 4, we
can write the solution operator O in (6.2) as

t3

2
/ F1141/(m+a) (T2D§6191)
0
“Fiyo/mia) 143/ (m+a) (T2 (D] + D3)e %) do;.

By taking t = 1, v = T(D; + iDs)e~"1/2 and § = T(D; — iDy)e~ /2
in (2.15), we find

(6:4)  Fiyo/(mia)1ts/(mia)(T°(DF + D3)e")

1 1
__ 6 / / o (mA2)/(m+4) —(m+1)/(m+2)
2r(m+4)% Jo Jo ° °

27

{/ Iy (A=72)(1=a5)e¥1/2¢1% (D, 4iD»)
0

. TV (1=02)(1=03)e™*01/2e™4%3 (D1 ~iD2) d93} doy dos
6 1 1
_ / / o= (m+2)/(m+4)_—(m-+1)/(m+2)

2r(m+4)2 Jo Jo 2 3
2

{/ 6(2T (1—03)(1—03)e *%1/2 cos 03) D,
0

‘e(—2T\/(1—02)(1—03)8*1'91/2 sin 63) D2 d93} dos dos.



FACTORABLE DIFFERENTIAL OPERATORS 769

On the other hand, we can write
(6.5)

i 1 ! —(m—+3)/(m+4
Fi141/(mra)(T?Die) = m/o oy O

2T
2/3 i01/3 ,ifo 4/3 12,2101 /3, —ibg
/ eT Die e ecrlT Die e d92 d0'1
0

by taking t = 1, v = T?/3De/3 and § = T*/3D3?e%91/3 in (2.15).
Using (2.8) along with the switching property, we have further that

(6 6) 601T4/3D562i91/3e—i92

2
= 1 /Oo 67(1/ 7r6(2\/0141T2/38i91/36_i92/2 cos82)D1 gg, d¢, .
27 0 0

Insert (6.6) into (6.5), then insert (6.5) and (6.4) into (6.3) and apply
the resultant multiple integral operator to ¢(z1,z2). We finally obtain
the following solution of the altered problem:

(6.7)

t3
u(z,t) =

(2m)*(m +4)°

“ / / / 661 (3 (k) —(m+2) (m+3) (1) (m-+3)
[0,00)J[0,1]/[0,27]

X @(m,t, (‘)4, 23, Zl) d®4 d23 le

with ® = ¢(X1, X2) where X; and X, are given by

X =z + T2/3ei01/3(ei02 + 2\/?4‘1671.92/2)
+2T/(1 — 03)(1 — 03)e" /2 cos 03
X2 = T2 — 2T\/ (1 — 0'2)(]. — U3)67i01/2 sin93.

Now X, involves the term 1/(; but X is independent of ¢;. This makes
it clear that we must choose ¢(z1,x2) to be analytic in z2 and entire
of growth (p,7) in x; with 0 < p < 2. If p = 2, then it is necessary to
require that T%/3 < 1/(47) when 7 > 0. For a specific case, suppose we
select ¢(z1,22) = f(z1)/(a—z2) where f(z1) is entire of growth (2, 7),
7 > 0 with a > 0. Let us restrict the choices of 3 in this problem
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so that |z2| < b < a and then determine conditions under which the
integrand in (6.7) is well defined. We have the inequality

1277/(1 — 02)(1 — 03)e /2 sin b
< |127v/(1 = 02)(1 — o3)e /2 sin 0y — zo| + |2

<a-+b.

Since this must hold for all possible values of the variables o2, 03,6
and 63, it follows that we must require 7' < (a + b)/2. But from the
entireness argument on the x; variable above, we must also require that
T < 1/(47)3/%. From this, we see that (6.7) is a well defined solution
function if we take T less than the minimum of these bounds. Had we
selected the growth p of f(z1) to be less than 2, then (6.7) is valid for
T < (a+ b)/2. These bounds on T define bounds on ¢.

Ezxample 2. Finally, we consider the following third order time
derivative generalization of the Euler Poisson Darboux (EPD) problem

upre (2, 1) — t%ut(xat) = P(D)u(z,t), t>0
U(I,O) = ¢(I)7 ut(:c,O) = utt(xvo) =0

(6.8)

where P(D) = (D? + D3)D3 (see [12] for a detailed study of the
classical abstract EPD problem). Closely associated with this problem
is the ordinary differential equation problem t2y"'(t) —ay’(t) = Mt2y(t),
y(0) = K, y'(0) = y”(0) = 0. The equation in this has a regular
singular point at ¢ = 0 with indices 0, (3 + v/1+4a)/2 and (3 —
v/1+4a)/2. Assuming that these last two indices are not integers,
we can show that the solution of this associated problem is given by

(& () .
y(t) = < Z 3mm!(1 — 41/3)m(1 — 72/3)m> B

m=0

Upon replacing the parameter A by P(D) and K by ¢(x), the symbolic
solution of (6.8) is given by the formula

(6.9) u(z,t) = oFo( ;1 —71/3,1 —42/3;t* P(D)/27)é().

With a little work, it can be shown that neither 1 — v, /3 nor 1 — v2/3
are negative integers or 0 if 273,92 < a < 203441, k = 1,2,..., where
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T; denotes the jth triangular number. If we choose a in one of these
intervals, it follows that —k < 1 —v;/3 < —k + 1. We then appeal to
(4.2) to rewrite the formal solution (6.9) in the form

k t*™P(D)™¢(x)
(6.10) u(z,t) = mXZIO 33 ml(L —71/3)m(1 — 72/3)m

t3k+3
T B+ DI —/Bea (1 - /B
x P(D)***O(tP(D),k +2,T1,Ts)é()

where I'; = k42 —v;/3, j = 1,2, and where the operator O is given
by the series

> t3P )/27)
o 0= mTon i

Theorem 5.1 shows that it suffices that ¢(x) = ¢(x1,z2,23) be
analytic in the three variables z1, x5 and z3. Our task now is to express
this operator O as a multiple integral and then apply it to the data
function. But, by (4.7), we can write this operator in the form

1 2w

(6.12) 0:% i gk2(Ter D3) Fr, 1, (T?%e " (D? + D32)) df,

where T' = t/3. From Section 2, we have

1 .
grt2(Te o Dy) = (k+1) / UfeT(1*01)6191D3 doy
0

and

FF17F2 (T2 i (D2 + Dg))

= (T, -1) F2—1// 11 2gn2 2

X{ 1 / (2T\/(1 o2)(1—03)e *%1/2 cos 03) Dy

27

x 2T/ (1=032)(1=og)e™*1/% sin62) Dy d92} dos dos.
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Inserting these into (6.12) and applying the resulting operator to
¢(z1, 2, 3), we find

(6.13)
(k+1)(T1—1)(T2-1)
Od(z1, 2, 23) = @)
X/ / O'fO'gl 2 FZ Z(I)(I t @2,23)d@2d23
0,1] /[0,27]
where

® = ¢z, +2T+/(1 — 02)(1 — 03)e” /2 cos By,
Ty 4+ 2T/ (1 — 02)(1 — 03)e~ /% 5in 6,

xr3 + T(l — Ul)eiel).

The solution of (6.8) now follows by inserting (6.13) back into (6.10).
We must, of course, restrict the value of t so that each of the three
coordinates in ¢ that define the function ® lie within the region of
analyticity of ¢. For example, if we choose ¢(z) = z1/(100 — x5 — z3),
then we see from the definition of ® that we must restrict 7" so that
100 — 2 — x3 — 3T is bounded away from 0. If ¢ is entire in all three
variables, the solution function (6.10) is valid for all .
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