
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 27, Number 4, Fall 1997

POINT OF CONTINUITY PROPERTY
AND SCHAUDER BASES

GINÉS LÓPEZ AND JUAN F. MENA

ABSTRACT. We get a characterization of point of conti-
nuity property in Banach spaces with a shrinking Schauder
finite-dimensional decomposition. We also prove that a Ba-
nach space with a shrinking Schauder finite-dimensional de-
composition has the point of continuity property if every sub-
space with a shrinking Schauder basis has it.

1. Introduction. We begin by recalling some geometrical properties
in Banach spaces: (see [2, 4 and 6]).

Let X be a Banach space, C a closed, bounded, convex and nonempty
subset of X and τ a topology in X.

C is said to have the point of τ -continuity property (τ -PCP) if for
every closed subset, F , of C the identity map from (F, τ ) into (F, ‖ ‖)
has some point of continuity.

If C satisfies the above definition with τ the weak topology in X,
then C is said to have the point of continuity property (PCP).

C is said to have the Radon-Nikodym property (RNP) if for every
measure space (Ω, Σ, µ) and for every F : Σ → X, µ-continuous vector
measure, such that

F (A)
µ(A)

∈ C ∀A ∈ Σ, µ(A) > 0

there is f : Ω → X Bochner integrable with

F (A) =
∫

A

f dµ ∀A ∈ Σ.

C is said to have the Krein-Milman property (KMP) if each closed,
convex and nonempty subset of C is the closed convex hull of its extreme
points.
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Finally, we will say that X has some of the above properties if BX ,
the closed unit ball of X, has it.

It is known that RNP implies PCP and that the converse is false
(see [5]). RNP implies KMP [9] but whether the converse is true is an
open problem; however, if one supposes PCP, then RNP and KMP are
equivalent [10].

Bourgain [3] showed that RNP is determined by subspaces with a
Schauder finite-dimensional decomposition (FDD). The same is true
for PCP, but it is unknown if RNP (PCP) is determined by subspaces
with a Schauder basis. In this note we will prove that a Banach space
has PCP if every subspace with a Schauder basis has τ -PCP, where τ
is the weak topology of the basis (Corollary 4).

If X is a Banach space with a Schauder basis {en} and associated
functionals {fn}, we call weak topology of the basis in X, w{en}, to the
weak topology σ(X, lin {fn : n ∈ N}).

Now we introduce some notation: (see [11]).

A sequence {Gn} of finite-dimensional subspaces of a Banach space X
with Gn �= {0} for all n ∈ N is said to be a Schauder finite-dimensional
decomposition (FDD) if for every x ∈ X there is a unique sequence
{yn} ⊂ X, with yn ∈ Gn for all n ∈ N such that

x =
+∞∑
i=1

yi = lim
n→+∞

n∑
i=1

yi.

Given {Gn} a Schauder FDD of X, a sequence of subspaces {Fn} of
X is said to be a block Schauder decomposition of X (with respect to
{Gn}), or shortly, a blocking of {Gn}, if it is of the form

Fn = lin {Gi : tn−1 < i ≤ tn}
where {tn} is an increasing sequence of positive integers with t0 = 0.

It is clear that {Fn} is a Schauder FDD of X.

Let ({xn}, {fn}) be a biorthogonal system in X; {xn} is said to be a
basis with parentheses of X if it is complete minimal and there is an
increasing sequence of natural numbers {mn} such that

x = lim
n→+∞

mn∑
i=1

fi(x)xi ∀x ∈ X.
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The basis with parentheses is said to be shrinking if lin {fn : n ∈
N} = X∗.

Finally it is easy to see that a Banach space has a Schauder FDD if
and only if it has a basis with parentheses [11, Proposition 13.11].

In fact, if {Gn} is a Schauder FDD of X and

Gn = lin {ei : mn−1 < i ≤ mn}

where {ei} are linearly independent vectors of norm one and {mn} is
an increasing sequence of integers with m0 = 0, then {en} is a basis
with parentheses with respect to {mn}.

Now we will construct a family of closed and convex subsets in
any Banach space with a Schauder FDD, that is, with a basis with
parentheses, to get a characterization of PCP in Banach spaces with a
shrinking Schauder FDD (Corollary 3).

In the sequel, X will denote a Banach space with a basis with paren-
theses {en} with respect to {mn}, and normalized, with associated
functionals {fn}.

Let Γ = N(N) ∪ {α0}. That is, an element of Γ is a finite sequence of
natural numbers and α0 denotes the empty sequence. |α| will be the
length of α for all α ∈ Γ, and we put |α0| = 0.

We define an order in Γ by

α ≤ β if |α| ≤ |β|

and
αi = βi, 1 ≤ i ≤ |α|, ∀α, β ∈ Γ\{α0}

and α0 ≤ α for all α ∈ Γ.

Γ is a countable set with a partial order and minimum element, α0,
and there is a bijective order-preserving map, φ, from Γ into N.

For every α ∈ Γ we define xα =
∑

γ≤α eφ(γ) and fα = fφ(α). Then

fγ(xα) = 1, ∀ γ ≤ α

and
fγ(xα) = 0 in other cases.
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Doing Λ = c o {xα : α ∈ Γ} we obtain a closed and convex subset of
X. Furthermore, fα0(x) = 1 and fα(x) ≥ 0 for all x ∈ Λ, α ∈ Γ.

If {vn} is a basic sequence in X, with the same construction we get
a new closed and convex subset of X which we will denote by Λ{vn}.
Then we have a family of convex, closed and nonempty subsets of X.

2. Main results. The following result is a generalization of [1,
Proposition 2.3].

Theorem 1. Let X be a Banach space with a Schauder FDD {Gn},
and let K be a closed, convex, bounded and nonempty subset of X failing
PCP. Then there are {Fn} blocking of {Gn}, {vn} basic sequence of X
with vn ∈ Fn for all n ∈ N, Y a closed subspace of X with basis,
F a subset of K with F ⊂ Y and an isomorphism onto its image,
T : Y → X, such that T (F ) = Λ{vn}.

Proof. As we have said in the introduction, let {en} be the basis
with parentheses with respect to {mn} obtained from {Gn} and with
associated functionals {fn}.

Without loss of generality we can suppose that {Gn} is monotone.
By [5] we can find a nonempty subset A of K and δ > 0 such that
every w-neighborhood of A has diameter at least δ.

Let’s see that there is a subset {an : n ∈ N} of A such that
{uj : j ∈ N} is a basic sequence of X, where

u1 = a1, uj = aj − aφ(φ−1(j)−), ∀ j > 1,

α− = (α1, . . . , αn−1) if α = (α1, . . . , αn) ∈ Γ\{α0}, n > 1, α− = α0

in other cases.

For this, let εj = δ2−(j+1) for all j ∈ N, and we construct, by
induction, k0 = 0 < k1 < · · · < kn < · · · ∈ N, kj ∈ {mn : n ∈ N} for
all j ∈ N and v1, . . . , vn, . . . ∈ X such that

‖uj‖ >
δ

2
, ‖vj − uj‖ < εj ,

vj ∈ lin {ei : kj−1 < i ≤ kj} ∀ j ∈ N.

We know that diam (A) ≥ δ and so there is a1 ∈ A such that
‖a1‖ > δ/2.
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Let mp ∈ N with ‖a1|(mp,+∞)‖ < ε1, where

a1|(mp,+∞) = a1 −
mp∑
j=1

fj(a1)ej .

(This is because a1 = limn→+∞
∑mN

j=1 fj(a1)ej .)

We define k1 = mp and v1 = a1|[1,k1], that is,

v1 =
k1∑

j=1

fj(a1)ej .

Now, we suppose n ≥ 1 and a1, . . . , an and kn have been already
constructed.

We do i = φ(φ−1(n + 1)−), α = φ−1(n + 1)−, β = φ−1(n + 1). Then
α < β and so i < n + 1 because φ is an order-preserving map. So ai

has been already constructed.

Let ε = εn+1/2 and

V = {a ∈ A : |fj(ai − a)| < ε/kn, 1 ≤ j ≤ kn}.

Then V is a w-neighborhood of ai in A and diam (V ) ≥ δ. Then, there
is an+1 ∈ V : ‖an+1 − ai‖ > δ/2 and un+1 = an+1 − ai.

If now mj > kn and ‖un+1|(mj ,+∞)‖ < ε, we put

kn+1 = mj , vn+1 = un+1|(kn,kn+1].

Then ‖un+1‖ > δ/2 and

∥∥∥∥un+1 −
kn+1∑
j=1

fj(un+1)ej

∥∥∥∥

=
∥∥∥∥un+1 −

kn∑
j=1

fj(un+1)ej −
kn+1∑

j=kn+1

fj(un+1)ej

∥∥∥∥

=
∥∥∥∥un+1 − vn+1 −

kn∑
j=1

fj(un+1)ej

∥∥∥∥ < ε.
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But, by definition of V and un+1, ‖
∑kn

j=1 fj(un+1)ej‖ < ε.

So ‖un+1−vn+1‖ < εn+1 and the inductive construction is complete.

Now it is clear that Fn = lin {ei : kn−1 < i ≤ kn} is a blocking of
{Gn}.

By [11, Theorem 15.21], {vn} is a basic sequence and by [8, Propo-
sition 1.a.9], {un} is a basic sequence equivalent to {vn}.

Let’s define F = co {an : n ∈ N}, Y = lin {un : n ∈ N} and

ūα = uφ(α), āα = aφ(α), v̄α = vφ(α), ∀α ∈ Γ.

By the above construction there is an isomorphism onto its image
T : Y → X such that T (ūα) = v̄α for all α ∈ Γ.

By definition, ūα0 = āα0 and ūα = āα − āα− for all α �= α0.

Then āα =
∑

γ<α ūγ for all α ∈ Γ and F ⊂ Y .

Furthermore, T (āα) =
∑

γ≤α T (ūγ) =
∑

γ≤α v̄γ .

But we have constructed Λ{vn} and, by definition, T (F ) = Λ{vn} and
F ⊂ c o (A) ⊂ K. So the proof is complete.

Corollary 2. With the same hypotheses and notations of Theorem 1,
if we suppose that the Schauder FDD is shrinking, then Λ{vn} fails
PCP.

Proof. In Theorem 1 we obtain

|fj(un+1)| < εn+1/(2kn), 1 ≤ j ≤ kn,

and {un} is bounded, so {un} → 0 weakly because the Schauder FDD
is shrinking.

But x(α,i) = xα + v(α,i) for all α ∈ Γ for all i ∈ N, then

ā(α,i) = āα + ū(α,i) ∀α ∈ Γ, ∀ i ∈ N,

and {ā(α,i)} converges weakly to āα when i → +∞ for all α ∈ Γ.

Furthermore, ‖ā(α,i) − āα‖ = ‖ū(α,i)‖ ≥ δ/2 for all α ∈ Γ, i ∈ N,
and we obtain that {āα : α ∈ Γ} is a nonempty, closed and bounded
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subset without points of (w − ‖ ‖)-continuity. Then {xα : α ∈ Γ}
is a nonempty, closed and bounded subset of Λ{vn} without points of
(w − ‖ ‖)-continuity and Λ{vn} fails PCP.

The following consequence is a characterization of PCP in Banach
spaces with a shrinking Schauder FDD.

Corollary 3. i) Let X be a Banach space with a Schauder FDD. If
X fails PCP, then there is {vn} basic sequence of X such that Λ{vn} is
bounded.

ii) Let X be a Banach space with a shrinking Schauder FDD {Gn}.
If there exists {Fn} blocking of {Gn} and {vn} seminormalized basic
sequence with vn ∈ Fn for all n ∈ N such that Λ{vn} is bounded, then
X fails PCP.

Proof. i) It is a very easy consequence of Theorem 1.

ii) x(α,i) = xα + v(α,i) for all α ∈ Γ, i ∈ N, then {x(α,i)} converges
weakly to xα when i → +∞ for all α ∈ Γ because the Schauder FDD
is shrinking.

Now we take the basic sequence normalized and we obtain a subset
without PCP isomorphic to Λ{vn}.

Corollary 4. Let X be a Banach space such that every subspace of
X with a Schauder basis, {vn}, has w{vn}-PCP. Then X has PCP.

Proof. Let’s suppose that X fails PCP. By [3] there is a Z subspace of
X with a Schauder FDD failing PCP. Now Theorem 1 says that there
is a basic sequence {vn} of Z such that Λ{vn} fails PCP with the weak
topology of the basis, and the proof is complete.

It was proved in [7, Theorem IV.6] that PCP, for Banach spaces not
containing l1, is determined by the subspaces with a Schauder basis.
As a consequence of our results we get, in a particular case, that in fact
PCP is determined by the subspaces with a shrinking Schauder basis.
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Corollary 5. Let X be a Banach space with a shrinking Schauder
FDD. Then the following are equivalent:

i) X has PCP.

ii) Every subspace of X with a Schauder basis has PCP.

iii) Every subspace of X with a shrinking Schauder basis has PCP.

Proof. i) ⇒ ii) and ii) ⇒ iii) are evident.

iii) ⇒ i). We assume that X fails PCP. By Theorem 1 we obtain a
subspace of X with a Schauder basis. By Corollary 2, this subspace
fails PCP and by [11, Remark 15.9] the basis is shrinking.

It is clear that the hypotheses on X in the above corollary imply that
X does not contain l1. So the equivalence between i) and ii) can be
obtained from the aforementioned result by Ghoussoub and Maurey [7,
Theorem IV.6].
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