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SPECTRAL DOMAINS
IN SEVERAL COMPLEX VARIABLES

SIQI FU AND BERNARD RUSSO

ABSTRACT. In this paper we study the concepts of spec-
tral domain and complete spectral domain in several complex
variables. For a domain Ω in Cn and an n-tuple T of com-
muting operators on a Hilbert space H such that the Taylor
spectrum of T is a subset of Ω, we introduce the quantities
KΩ(T ) and MΩ(T ). These quantities are related to the quan-
tities KX(T ) and MX(T ) introduced by Paulsen for a compact
subset X. When T is an n-tuple of 2×2 matrices, KΩ(T ) and
MΩ(T ) are expressed in terms of the Carathéodory metric
and the Möbius distance. This in turn answers a question by
Paulsen for tuples of 2×2 matrices. We also establish von Neu-
mann’s inequality for an n-tuple of upper triangular Toeplitz
matrices. We study the regularity of KΩ(T ) and MΩ(T ) and
obtain various comparisons of these two quantities when T is
an n-tuple of Jordan blocks.

1. Introduction. This work is motivated primarily by two papers,
namely, [1] and [23]. The former shows a strong connection between
operator theory and complex geometry by giving an operator theoretic
proof of a fundamental result on invariant metrics for convex domains
in Cn. For an infinitesimal version of that result, see [25]. The second
paper is a survey of results concerning spectral sets and centering
around von Neumann’s inequality.

In this paper we study the concepts of spectral domain and complete
spectral domain in several complex variables. We use some ideas from
complex geometry to obtain some results in multi-variable operator
theory.

Our first group of results consists of improvements of results of several
authors concerning n-tuples of 2 × 2 matrices. This is summarized in
Theorem 1. As a consequence, we answer, in this case, a question of
Paulsen, and we give a new proof of von Neumann’s inequality for any
n-tuple of 2 × 2 matrices.
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Our second group of results is concerned with n-tuples of finite
dimensional operators. We establish two estimates for the quantity
MΩ(T ) in terms of KΩ(T ), one which is general (Proposition 4.1) and
one which is valid for Jordan blocks (Theorem 3). We also prove some
regularity properties for these quantities for Jordan blocks (Proposition
4.2) and establish the von Neumann inequality for n-tuples of upper
triangular Toeplitz matrices (Theorem 2).

We introduce now some basic definitions. Other definitions will be
stated as needed. Let H be a Hilbert space, and let L(H) be the
algebra of all bounded operators on H. Let T = (T1, T2, . . . , Tn) be
a commuting n-tuple of operators in L(H). Let σ(T ), or σT , be the
Taylor spectrum of T . It follows from the work of Taylor [28] that

1) σ(T ) is a compact nonempty subset of Cn.

2) If H(σ(T )) is the algebra of functions holomorphic in a neighbor-
hood of σ(T ), then there is a continuous homomorphism φ : H(σ(T )) →
L(H) such that φ(1) = I and φ(zi) = Ti. φ(f) is denoted by f(T ).

3) If f = (f1, . . . , fm) : U → Cm is a holomorphic mapping from
a neighborhood U of σ(T ) to Cm, then f(σ(T )) = σ(f(T )), where
f(T ) = (f1(T ), . . . , fm(T )).

The following definitions of spectral domain and complete spectral
domain were first introduced by Agler [1]. They are variations of
the concepts of spectral set and complete spectral set, which were
introduced by von Neumann [18] and Arveson [3], respectively.

Let Ω be a domain in Cn containing σ(T ), and let H(Ω, D) be the
set of holomorphic mappings from Ω to the closed unit disk D.

Define

(1.1) KΩ(T ) = sup{‖f(T )‖; f ∈ H(Ω, D)}.

We say that a domain Ω is a spectral domain of T if σT ⊂ Ω
and KΩ(T ) ≤ 1. The domain Ω is called K-spectral domain if
KΩ(T ) ≤ K < +∞.

Let Mm be the algebra of m×m matrices and Bm×m be the unit ball
in Mm (under the matrix norm). For f(·) = (fij(·)) ∈ H∞(Ω)⊗Mm,
let

(1.2) ‖f(·)‖ = sup{‖(fij)(z)‖Mm
; z ∈ Ω}.
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Let ‖f(T )‖ be the norm of the operator f(T ) = [fij(T )] acting on m
copies of H. Let H(Ω, Bm×m) be the set of holomorphic mappings
from Ω to Bm×m. Define

(1.3) Mm
Ω (T ) = sup{‖f(T )‖; f ∈ H(Ω, Bm×m)}

and

(1.4) MΩ(T ) = sup{Mm
Ω (T );m ≥ 1}.

A domain Ω is said to be a complete spectral domain of T if σT ⊂ Ω
and MΩ(T ) ≤ 1. It is called complete K-spectral domain if MΩ(T ) ≤
K < +∞.

This paper is organized as follows. In Section 2 we study the basic
properties of the quantities KΩ(T ) and MΩ(T ) for a general n-tuple T
and a domain Ω ⊃⊃ σ(T ). We prove that if Ω is rationally convex,
then Ω is a spectral domain, respectively complete spectral domain, if
and only if Ω is a spectral set, respectively complete spectral set. In
Section 3 we study the case when T is an n-tuple of 2×2 matrices. We
prove that in this case KΩ(T ) = MΩ(T ). We express KΩ(T ) in terms
of the Carathéodory metric and the Möbius distance. This enables
us to solve (for 2 × 2 matrices) a problem raised by Paulsen, see [23,
Problem 13]: If Ti, i = 1, 2, are commuting 2 × 2 matrices and Xi is a
Ki-spectral set for Ti, then X1×X2 is a K-spectral set for T = (T1, T2)
where K = max{K1,K2}. In Section 4 we study the properties of
KΩ(T ) and MΩ(T ) when T is an n-tuple of commuting finite matrices.
We are especially interested when T is an n-tuple of Jordan blocks.
Since most of the recent work on this subject is concerned with finite
dimensional operators, Jordan blocks are natural objects on which to
study the relation between the quantities KX(T ) and MX(T ).

2. General properties of KΩ(T ) and MΩ(T ). In this section we
study the basic properties of the quantities KΩ(T ) and MΩ(T ). The
following proposition follows directly from the definitions.

Proposition 2.1. Let T be an n-tuple of commuting operators in
L(H). Then

1) for each m, there exists f ∈ H(Ω, Bm×m) so that ‖f(T )‖ =
Mm

Ω (T ).
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2) KΩ(T ) = M1
Ω(T ) and Mm

Ω (T ) ≤Mm+1
Ω (T ).

3) For any domain Ω ⊃⊃ σ(T ), KΩ(T ) < +∞.

4) Mm
Ω (T ) ≤ mKΩ(T ).

5) KΩ, Mm
Ω and MΩ satisfy the decreasing property, i.e., if φ :

Ω1 → Ω2 is a holomorphic mapping from domain Ω1 to domain Ω2

and σ(T ) ⊂⊂ Ω1, then

GΩ1(T ) ≥ GΩ2(φ(T )).

Here and in what follows, G denotes either K,Mm or M . In particular,
if Ω1 ⊂ Ω2, then GΩ1(T ) ≥ GΩ2(T ).

We now recall the concepts of spectral set and complete spectral set.

Let X ⊃ σ(T ) be a compact subset of Cn. Define

KX(T ) = sup{‖f(T )‖; f ∈ R(X,D)}
Mm

X (T ) = sup{‖f(T )‖; f ∈ R(X,Bm×m)}
MX(T ) = sup{Mm

X (T );m ≥ 1},

where R(X,D), respectively R(X,Bm×m), is the set of rational map-
pings r with poles off X such that r(X) ⊂ D, respectively r(X) ⊂
Bm×m. A compact set X is called a spectral set if X ⊃ σ(T ) and
KX(T ) ≤ 1. It is called a K-spectral set if KX(T ) ≤ K < +∞. The
definitions of complete spectral set and complete K-spectral set are ob-
tained by replacing KX by MX . It follows from a theorem of Arveson
[3] that X is a complete spectral set if and only if T has a normal
∂X-dilation. We list some important results in this language:

1) (von Neumann [18]). If T ∈ L(H) and ‖T‖ ≤ 1, then KD(T ) ≤ 1.

2) (Sz-Nagy [17]). If T ∈ L(H) and ‖T‖ ≤ 1, then MD(T ) ≤ 1.

3) (Ando [2]). If T = (T1, T2) is a commuting two tuple of operators in
L(H) such that ‖Ti‖ ≤ 1, i = 1, 2, then M

D
2(T ) ≤ 1. In particular, von

Neumann’s inequality holds for a 2-tuple of commuting contractions.

von Neumann’s inequality does not extend to a tuple of more than
two operators. Such counterexamples have been found by Varopoulos
[29] and others. By the theorem of Arveson mentioned above, and the



SPECTRAL DOMAINS 1099

well-known example of Parrott [19], Ando’s theorem (as stated above)
does not extend to n-tuples, for n ≥ 3.

Proposition 2.2. If X ⊃ σ(T ) is rationally convex, then

(2.1) GX(T ) = sup{GΩ(T ), all domains Ω ⊃⊃ X}

where G is either K, Mm or M . Furthermore, if Ω is a bounded domain
in Cn such that Ω is rationally convex, then

(2.2) GΩ(T ) = GΩ(T ).

Proof. We need only to prove that (2.1) is true for Mm. The proof
is based on a classical theorem of Oka-Weil, see, for example, [10],
which says that if X is a rationally convex set, then any holomorphic
function in a neighborhood of X can be uniformly approximated by
rational functions rj with poles off X.

Let Ω ⊃⊃ X be a domain in Cn, and let f ∈ H(Ω, Bm×m) such
that ‖f(T )‖ = Mm

Ω (T ). For any ε, δ > 0, by Oka-Weil’s theorem, there
are (matrix value) rational functions r(z) such that ‖r(z)− f(z)‖ < δ.
Choosing δ sufficiently small, then ‖f(T ) − r(T )‖ < ε. On the other
hand, ‖r(z)‖X < 1 + δ. Thus

(2.3) Mm
X (T ) ≥ (1 + δ)−1(Mm

Ω (T ) − ε).

Letting δ, ε→ 0, we have Mm
Ω (T ) ≤Mm

X (T ).

For the inequality in the other direction, let r(z) be a rational function
with poles off X such that ‖r(T )‖ ≥Mm

X (T )− ε (here we assume that
Mm

X (T ) < ∞, the situation for Mm
X (T ) = ∞ is similar, we omit the

details). By choosing domain Ω ⊃⊃ X sufficiently close to X, we have
‖r(z)‖Ω < 1 + ε. Thus,

Mm
Ω (T ) ≥ (1 + ε)−1(Mm

X (T ) − ε).

Therefore,

sup{Mm
Ω (T ),Ω ⊃ X} ≥ (1 + ε)−1(Mm

X (T ) − ε).
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Letting ε→ 0, we then obtain the desired inequality.

Remark. 1) Since every planar compact subset is rationally convex,
the equality (2.2) is true for every planar domain Ω ⊃ σ(T ).

2) A set S ⊂ Cn is called a Reinhardt set if (eiθ1z1, e
iθ2z2, . . . , e

iθnzn)
∈ S whenever (z1, z2, . . . , zn) ∈ S and (θ1, θ2, . . . , θn) ∈ Rn. It follows
from Theorem 3.3 in [10] that if Ω is a pseudoconvex Reinhardt domain
in Cn such that

Ω ∩ {(z1, z2, . . . , zn); zi = 0} �= ∅, i = 1, 2, . . . , n,

whenever Ω∩{(z1, z2, . . . , zn); zi = 0} �= ∅, then Ω is rationally convex.
Thus equality (2.2) holds for any pseudoconvex Reinhardt domain with
a differentiable boundary, see [9] for more details.

Proposition 2.3. If Ω1 ⊂ Ω2 ⊂ Ω3 · · · , ∪Ωj = Ω and Ω ⊃⊃ σ(T ),
then limj→∞Mm

Ωj
(T ) = Mm

Ω (T ).

Proof. First, by the decreasing property, Mm
Ωj

(T ) ≥ Mm
Ωj+1

(T ) ≥
Mm

Ω (T ). Let gj ∈ H(Ωj , Bm×m) be such that Mm
Ωj

(T ) = ‖gj(T )‖.
Since {gj} is a normal family, there exists a subsequence {gj}, for
simplicity we use the same notation, which locally uniformly converges
to some f ∈ H(Ω, Bm×m). Thus

lim
j→∞

Mm
Ωj

(T ) = ‖f(T )‖ ≤Mm
Ω (T ).

For an invertible S ∈ L(H), let c(S) = ‖S‖ · ‖S−1‖ be its condition
number. The proof of the following property follows from the proof of
the main theorem in [22].

Proposition 2.4. For any domain Ω ⊃⊃ σ(T ), GΩ(T ) =
min{c(S), GΩ(S−1TS) = 1}.

3. Two-dimensional case. In this section we study the case when
H is two-dimensional. We show the relationship among the quantities
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KΩ, MΩ and the invariant metric and distance. We answer positively
the following question asked by Paulsen (in slightly different language)
for the two-dimensional case: If Ωi ⊂ C is a Ki-spectral domain of
commuting operators Ti, i = 1, 2, is Ω1 × Ω2 a K1K2-spectral domain
for T = (T1, T2)?

First, we recall some definitions. For ξ = (ξ1, ξ2, . . . , ξn) ∈ Cn, let
Lξ =

∑n
k=1 ξk∂/∂zk. The Carathéodory metric of Ω ⊂ Cn is defined

by

(3.1) FΩ(z, ξ) = sup{|Lξf(z)|; f ∈ H(Ω, D), f(z) = 0}

for z ∈ Ω and ξ ∈ Cn. For z1, z2 ∈ Ω, the Möbius distance is defined
by

(3.2) ρΩ(z1, z2) = sup
{∣∣∣∣ f(z1) − f(z2)

1 − f(z1)f(z2)

∣∣∣∣; f ∈ H(Ω, D)
}
.

Both FΩ and ρΩ are decreasing under holomorphic mappings. In
particular, they are biholomorphic invariants. It was shown by Pflug
and Jarnicki [24] that both FΩ and ρΩ satisfy the product property,
i.e., if Ωi ⊂ Cni , i = 1, 2, then

FΩ1×Ω2((z1, z2), (ξ1, ξ2)) = max{FΩ1(z1, ξ1), FΩ2(z2, ξ2)}
(3.3)

ρΩ1×Ω2((z1, z2), (w1, w2)) = max{ρΩ1(z1, w1), ρΩ2(z2, w2)}
(3.4)

for all zi, wi ∈ Ωi and ξi ∈ Cni , i = 1, 2.

Let T = (T1, T2, . . . , Tn) be an n-tuple of 2× 2 matrices. Then σ(T )
consists of either a single point or two distinct points. We discuss these
two cases separately:

I. The case when σ(T ) = {z}. For this case it is easy to see that T is
unitarily equivalent to T (z, ξ) = zI+ξJ for some ξ ∈ Cn. Here I is the
identity matrix and J is the restriction of the backward shift operator
to C2. Thus we may assume that T = T (z, ξ), and for any (Mm

valued) holomorphic function f near z, f(T ) = f(z)I + Lξf(z)J =
T (f(z), Lξf(z)).
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II. The case when σ(T ) = {z1, z2}. It follows from Proposition 2.1
in [1] that T is unitarily equivalent to

T (z1, z2, c) =
((

z1
1 (z2

1 − z1
1)c

0 z2
1

)
, . . . ,

(
z1
n (z2

n − z1
n)c

0 z2
n

))
,

where c is some nonnegative constant; and for any (Mm valued) holo-
morphic function on a domain Ω ⊃ {z1, z1}, we have f(T (z1, z2, c)) =
T (f(z1), f(z2), c).

The following appeared in a different form in [7]. Our method comes
naturally from properties of invariant metrics.

Theorem 1. Let T = (T1, . . . , Tn) be a commuting n-tuple of 2 × 2
matrices, and let Ω be a domain in Cn which contains σ(T ). Then
MΩ(T ) = KΩ(T ). In particular, Ω is a spectral domain of T if and
only if it is a complete spectral domain of T . Furthermore, if σ(T )
consists of a single point {z}, then T is unitarily equivalent to T (z, ξ),
and

(3.5) KΩ(T ) = max{1, FΩ(z, ξ)};

if σ(T ) consists of two points z1, z2, then T is unitarily equivalent to
T (z1, z2, c) and

(3.6) KΩ(T ) = max
{

1;
1 − √

1 − ρ2
Ω(z1, z2)

ρΩ(z1, z2)
((1 + c2)1/2 + c)

}
.

Proof. First we consider Case I. By definition, we have KΩ(T (z, ξ)) ≥
max{1, FΩ(z, ξ)}. Let f ∈ H(Ω, D). Since f(T (z, ξ)) = T (f(z), Lξf(z)),
it follows from direct computation that

‖f(T (z, ξ))‖ =
1
2
(|Lξf(z)| + (4|f(z)|2 + |Lξf(z)|2)1/2).

Therefore,

‖f(T (z, ξ)‖ ≤ |Lξf(z)|
1 − |f(z)|2 if and only if

|Lξf(z)|
1 − |f(z)|2 ≥ 1.
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However, the second inequality of the preceding line is equivalent
to FΩ(z, ξ) ≥ 1. Thus, it follows from the first inequality that
KΩ(T (z, ξ)) ≤ max{1, FΩ(z, ξ)}.

We reduce the proof of MΩ(T ) = KΩ(T ) in this case into two steps.

Step 1. If KΩ(T ) = 1, then MΩ(T ) = 1. Let g ∈ H(Ω, D)
be the extremal function for the Carathéodory metric at (z, ξ), i.e.,
FΩ(z, ξ) = |Lξg(z)|. For any holomorphic mapping Φ ∈ H(Ω, Bm×m),
we have

FΩ(z, ξ) ≥ FBm×m
(Φ(z),Φ∗(ξ)).

It is easy to see that there is a holomorphic mapping h ∈ H(D,Bm×m)
such that

h(0) = Φ(z) and (h ◦ g)∗(ξ) = Φ∗(ξ).

Thus h ◦ g(T ) = Φ(T ). Step 1 now follows from Sz-Nagy’s dilation
theorem.

Step 2. MΩ(T ) = KΩ(T ). Suppose KΩ(T (z, ξ)) ≥ 1. Let c =
KΩ(T (z, ξ)). It follows from (3.5) that c = FΩ(z, ξ). Thus, by
homogeneity of FΩ(z, ξ), we have

FΩ(z, ξ/c) = 1.

By Step 1, MΩ(T (z, ξ/c)) = 1. It follows from the following claim that
MΩ(T (z, ξ)) = c.

Claim. MΩ(T (z, ξ)) ≤ cMΩ(T (z, ξ/c)).

Proof of the Claim. By the definition of Mm
Ω ,

(3.7) cMm
Ω (T (z, ξ/c)) = sup

Φ
sup
X,Y

{∣∣∣∣c
m∑

i,j=1

〈fij(T (z, ξ/c))Xi, Yj〉
∣∣∣∣;

‖X‖ ≤ 1, ‖Y ‖ ≤ 1
}

where the first sup is taken over all Φ = (fij) ∈ H(Ω, Bm×m) and the
second sup is taken over ‖X‖ ≤ 1 and ‖Y ‖ ≤ 1. Here we use notations
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X = (X1, X2, . . . , Xm) and Y = (Y1, Y2, . . . , Ym), where

Xi =
(
x1i

x2i

)
and Yj =

(
yij

y2j

)
.

Note that

(3.8) c
∑

〈fij(T (z, ξ/c))Xi, Yj〉

=
∑ 〈(

cfij(z) Lξfij(z)
0 cfij(z)

)
Xi, Yj

〉

=
∑ 〈(

fij(z) Lξfij(z)
0 fij(z)

) (
cx1i

x2i

)
,

(
y1j

cy2j

) 〉
.

Now let X̂ = (X̂1, X̂2, . . . , X̂m) and Ŷ = (Ŷ1, Ŷ2, . . . , Ŷm) with

X̂i =
(
cx1i

x2i

)
and Ŷj =

(
y1j

cy2j

)
.

Since {X; ‖X‖ ≤ 1} ⊃ {X; ‖X̂‖ ≤ 1} and {Y ; ‖Y ‖ ≤ 1} ⊃ {Y ; ‖Ŷ ‖ ≤
1}, it follows from (3.7) and (3.8) that

cMm
Ω (T (z, ξ/c))

≥ sup sup
{∣∣∣∣

∑
〈fij(T (z, ξ))X̂i, Ŷj〉|; ‖X̂‖ ≤ 1, ‖Ŷ ‖ ≤ 1

}

= Mm
Ω (T (z, ξ)).

Thus, we conclude the proof of the claim.

Now we consider Case II. We provide a proof using the decreasing
property of KΩ and the results of Holbrook [12] and Paulsen [21]. Let

AΩ(z1, z2) = sup{|f(z1)|; f ∈ H(Ω, D), f(z1) = −f(z2)}.

By using a Möbius transformation, one obtains that

(3.9) AΩ(z1, z2) =
1 − (1 − ρ2

Ω(z1, z2))1/2

ρΩ(z1, z2)
.
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However,

(3.10)
KΩ(T ) ≥ sup{‖f(T )‖; f ∈ H(Ω, D), f(z1) = −f(z2)}

= AΩ(z1, z2)((1 + c2)1/2 + c)

Combining (3.9) and (3.10), we obtain the inequality “≥” in (3.6).

Now let f ∈ H(Ω, D) be the extremal mapping for KΩ(T ), i.e.,
KΩ(T ) = ‖f(T )‖. Then it follows from the result of Holbrook [12]
(see also Paulsen [21]) that

‖f(T )‖ = KD(T (f(z1), f(z2), c))

= max
{

1 − (1 − ρ2
D(f(z1), f(z2)))1/2

ρD(f(z1), f(z2))
; 1

}

≤ max
{

1 − (1 − ρ2
Ω(z1, z2))1/2

ρΩ(z1, z2)
; 1

}
.

The last inequality follows from the facts that ρΩ(z1, z2) ≥
ρD(f(z1), f(z2)) and the function (1 − (1 − t2)1/2)/t is increasing for
t ∈ (0, 1).

Finally, let φ = (φij) ∈ H(Ω, Bm×m) be an extremal mapping for
Mm

Ω (T ) and f ∈ H(Ω, D) be an extremal mapping for ρΩ(z1, z2). Since

ρD(f(z1), f(z2)) = ρΩ(z1, z2)
≥ ρBm×m

(φ(z1), φ(z2)),

it follows that, see page 493 in [1], that there exists h ∈ H(D,Bm×m)
such that h ◦ f(zi) = φ(zi), i = 1, 2. Therefore, it follows from the
result of Holbrook [12] that

‖φ(T )‖ = ‖h ◦ f(T )‖ = ‖h(f(T ))‖ ≤MD(f(T ))
= KD(f(T )) ≤ KΩ(T ).

Remark 1. It follows from Theorem 1 that the asymptotic behavior of
KΩ(T (z, ξ)) and MΩ(T (z, ξ)) is the same as that of the Carathéodory
metric. When Ω is a strictly pseudoconvex domain in Cn or a pseu-
doconvex domain of finite type in C2, the asymptotic behavior of the
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Carathéodory metric is well known by the work of Graham [11] and
Catlin [6].

2) We have given direct proofs for Case I of Theorem 1 without using
any planar domain results and relied on some planar domain results
in Case II. It is also possible to give a direct proof for Case II, and to
provide a proof for case I by reducing Ω to the unit disk as in the proof
of Case II.

The following answers a spectral domain version of Paulsen’s question
in the case when dimH = 2.

Corollary 1. Let Ti, i = 1, 2, be an ni-tuple of commuting 2 × 2
matrices. If Ωi ⊂ Cni is a Ki-spectral domain for Ti, then Ω1 × Ω2 ⊂
Cn1+n2 is a K-spectral domain for the commuting (n1 + n2)-tuple
(T1, T2) where K = max{K1,K2}.

This follows easily from the product properties (3.3) and (3.4) of the
Carathéodory metric and the Möbius distance [24] and the formulas
(3.5) and (3.6) that express KΩ in terms of FΩ and ρΩ.

We mention the following corollary as a generalization of von Neu-
mann’s inequality to n-tuples of 2 × 2 matrices. See Theorem 2 below
for another case of the validity of von Neumann’s inequality.

Corollary 2. If T is an n-tuple of commuting contractive operators
in L(C2), then

‖p(T )‖ ≤ ‖p‖H∞(Dn)

for all polynomials p in n complex variables.

Remark. It was first proved by Holbrook [12] that KD(T ) = MD(T )
for a 2× 2 matrix. For any compact set X ⊂⊂ C and any 2× 2 matrix
T with a single eigenvalue, Misra [14] proved that KX(T ) ≤ 1 implies
MX(T ) ≤ 1. This result was generalized by Paulsen [21], who proved
that MX(T ) = KX(T ) for any compact set X ⊂⊂ C and any 2 × 2
matrix T . For an n-tuple T of commuting 2×2 matrices and a domain
Ω ⊂ Cn, Agler [1] proved that KΩ(T ) ≤ 1 implies MΩ(T ) ≤ 1, and
Chu [7] proves MX(T ) = KX(T ). In the case when Ki = 1 and σ(T )
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consists of a single point, Corollary 1 was proved in [25]. Drury [8]
first proved von Neumann’s inequality for tuples of 2 × 2 matrices. A
generalization of Drury’s result appears in [13].

4. Finite dimensional cases. In this section we study the
properties of KΩ and MΩ when dimH is finite. We are especially
interested in the case when T = T (z, ξ) = zIp + ξJp is the n-tuple of
Jordan blocks, where Ip is the p×p identical matrix and Jp is the p×p
matrix with 1 for all super-diagonal entries and 0 for remaining entries.

Let

(4.1) Cp = max
{∑

k≤l

|albk|; a, b ∈ Cp, ‖a‖ = ‖b‖ = 1
}
.

It is easy to see that (p + 1)/2 < Cp < p and that Cp is the norm of
the p × p upper triangular matrix, all of whose nonzero entries are 1.
The exact value of Cp for p = 2, 3, 4 can be easily calculated.

The following theorem sharpens a result of Smith [20, Exercise 3.11],
[23, Proposition 4.5], and extends it to n-tuples. This result is one of
the few known results which are valid for arbitrary matrices. The only
other result that we know of which is valid for arbitrary matrices is [5,
Theorem 2]: MX(T ) � log p(KX(T ))4.

Proposition 4.1. Let T be an n-tuple of commuting p× p matrices,
and let Ω ⊃ σ(T ) be a domain in Cn. then

(4.2) MΩ(T ) ≤ CpKΩ(T ).

Proof. By a generalized version of Schur’s theorem, there is a unitary
matrix P such that P ∗TP is an n-tuple of upper triangular matrices.
Replacing T by P ∗TP , we may assume that T is an n-tuple of upper
triangular matrices.

Denote f(T ) = (Lkl(f))1≤k,l≤p for f ∈ H∞(Ω). Then each Lkl

is a bounded linear functional on H∞(Ω) and Lkl = 0 when k > l.
Furthermore,

(4.3) |Lkl(f)| ≤ K‖f‖
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for all f ∈ H∞(Ω), where K = KΩ(T ).

Let (fij) ∈ H(Ω, Bm×m), and let

Xi =

⎛
⎝
x1i
...
xpi

⎞
⎠ ∈ Cp and Yj =

⎛
⎜⎝
y1j

...
ypj

⎞
⎟⎠ ∈ Cp

such that
∑m

i=1 ‖Xi‖2 =
∑m

j=1 ‖Yj‖2 = 1. Then

(4.4)

m∑
i,j=1

〈fij(T )Xi, Yj〉 =
m∑

i,j=1

∑
k≤l

Lkl(fij)xliȳkj

=
∑
k≤l

Lkl

( m∑
i,j=1

fijxliȳkj

)
.

Denote

al =
{ m∑

i=1

|xli|2
}1/2

and bk =
{ m∑

j=1

|ykj |2
}1/2

.

Let gkl =
∑m

i,j=1 fijxliȳkj . Then

(4.5) ‖gkl‖ ≤ albk.

It follows from (4.3), (4.4), (4.5) and (4.1) that

∣∣∣∣
m∑

i,j=1

〈fij(T )Xi, Yj〉
∣∣∣∣ =

∣∣∣∣
∑
k≤l

Lkl(gkl)
∣∣∣∣

≤ K
∑
k≤l

|albk|

≤ KCp.

It has been shown by the examples of Varopoulus [29] that von
Neumann’s inequality is not true for 3-tuples of p× p matrices, p ≥ 5.
Here we shall show that von Neumann’s inequality is true for n-tuples
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of upper triangular Toeplitz matrices. Recall that a p × p matrix is
Toeplitz if it has constant diagonals.

Theorem 2. Let T = (T1, T2, . . . , Tn) be an n-tuple of commuting
p× p upper triangular Toeplitz matrices Ti such that ‖Ti‖ ≤ 1, 1 ≤ i ≤
n. Then

‖p(T )‖ ≤ ‖p‖H∞(Dn)

for any polynomial of n variables. Furthermore, MΩ(T ) = 1.

Proof. It follows from a theorem of Carathéodory, see page 186 in
[26], that there exist holomorphic functions fi : D → D such that, for
1 ≤ i ≤ n,

fi(J) =
p−1∑
j=0

1
j!
f

(j)
i (0)Jj = Ti.

Let F (ζ) = (ζ, f1(ζ), . . . , fn(ζ)). Then, by definition, F (J) = (J, T ).
By the decreasing property of MΩ,

MD(J) ≥MD×Dn(I, T )
≥MDn(T ).

The last inequality is obtained by using the projection mapping from
D × Dn to Dn. Also, we used the fact that MD×Dn = MD×D

n

(Proposition 2.2). Now, since MD(J) = 1, we then have MDn(T ) = 1.

We now turn our attention to the case when T = T (z, ξ) is an n-tuple
of p× p Jordan blocks. For f ∈ H∞(Ω), it is easy to see that, see, for
example, [25],

(4.6) f(T (z, ξ)) =
p−1∑
k=0

1
k!
Lk

ξf(z)Jk.

In the case when p ≥ 3, the relationship between KΩ(T (z, ξ)) and
the (higher order) Carathéodory metric is much more complicated than
the case when p = 2 (Theorem 1). It would be of interest to know the
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boundary asymptotic behavior of KΩ(T (z, ξ)) and MΩ(T (z, ξ)) when Ω
is a strictly pseudoconvex domain. However, by regarding T (z, ξ) as a
compression of an n-tuple of commuting normal operators on H2(∂D)
(as in [25]), one obtains that

MΩ(T (z, ξ)) ≤
(

t

d(z)

)n

where t = max{|ξi|; 1 ≤ i ≤ n} and d(z) is the Euclidean distance of
z ∈ Ω to the boundary ∂Ω of Ω.

Proposition 4.2. Let Ω be a domain in Cn. Then

1) GΩ(T (z, ξ)) is a continuous function for (z, ξ) ∈ Ω × Cn.

2) logGΩ(T (z, ξ)) is a plurisubharmonic function for (z, ξ) ∈ Ω×Cn.

Proof. Again, the proof is based on a normal family argument and
the special formula for f(T (z, ξ)). By Dini’s theorem, we need only to
prove the case when GΩ = Mm

Ω .

1) Fix (z0, ξ0) ∈ Ω × Cn. There exists f ∈ H(Ω, Bm×m) such that

‖f(T (z0, ξ0))‖ = Mm
Ω (T (z0, ξ0)).

Since ‖f(T (z, ξ))‖ → ‖f(T (z, ξ))‖ as (z, ξ) → (z0, ξ0), for ε > 0,

Mm
Ω (T (z, ξ)) ≥ ‖f(T (z, ξ))‖ ≥Mm

Ω (T (z0, ξ0)) − ε

when |(z, ξ) − (z0, ξ0)| < δ for sufficiently small δ. On the other hand,
since the set H(Ω, Bm×m) is a normal family, after possible shrinking
of δ, we have

‖f(T (z, ξ)) − f(T (z0, ξ0))‖ < ε

for all |(z, ξ)−(z0, ξ0)| < δ and f ∈ H(Ω, Bn×n). Thus, Mm
Ω (T (z, ξ)) =

supf∈H(Ω,Bm,m) ‖f(T )‖ ≤Mm
Ω (T (z0, ξ0)) + ε.

2) Fix (z0, ξ0) ∈ Ω × Cn. We only need to prove that, for any
(z, ξ) ∈ Ω × Cn,

logMm
Ω (T (z0, ξ0)) ≤ 1

2πr

∫
|λ|=r

logMm
Ω (T (z0 + λz, ξ0 + λξ))|dλ|
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holds for all sufficiently small r.

Let f = (fij) ∈ H(Ω, Bm×m) be the extremal mapping for
Mm

Ω (T (z0, ξ0)), i.e.,

Mm
Ω (T (z0, ξ0)) = ‖f(T (z0, ξ0))‖.

It is easy to see that log ‖f(T (z, ξ))‖ is a plurisubharmonic function for
(z, ξ) ∈ Ω × Cn. Thus,

logMm
Ω (T (z0, ξ0)) = log ‖f(T (z0, ξ0))‖

≤ 1
2πr

∫
|λ|=r

log ‖f(T (z0 + λz, ξ0 + λξ))‖ |dλ|

≤ 1
2πr

∫
|λ|=r

logMm
Ω (T (z0 + λz, ξ0 + λξ))|dλ|.

Recall that an n-tuple T = (T1, T2, . . . , Tn) of bounded operators is
power bounded by A if ‖Tα‖ ≤ A for any n-tuple α = (α1, α2, . . . , αn)
of nonnegative integers. Here Tα = Tα1

1 ◦ Tα2
2 · · ·Tαn

n . The following
proposition is an application of Grothendieck’s inequality, for which see
[30].

Proposition 4.3. Let T = (T1, T2, . . . , Tn) be an n-tuple of com-
muting bounded operators on a Hilbert space H. If T is power bounded
by A, then there exists a universal constant C such that, for any
Φ = (φjk) ∈ H(Dn, Bm×m) where φjk are polynomials with degree
≤ d,

(4.7) ‖Φ(T )‖ ≤ C(log d)nA2.

Proof. The proof of this proposition is similar to that of Lemma 2 in
[5]. We include it here for the reader’s convenience. Let D(ζ) be the
(analytic part of the) Dirichlet kernel, i.e.,

(4.8) D(ζ) =
p∑

k=0

ζk
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and let D(z) = D(z1)D(z2) · · ·D(zn). It follows that D(z) = f(z)g(z)
for some f, g ∈ H2(Dn) such that ‖D‖L1 = ‖f‖L2‖g‖L2 . Suppose that
the Fourier expansions of f and g are

f(eiθ1 , . . . , eiθn) =
∞∑

|α|=0
α≥0

aαe
iα·θ;

g(eiθ1 , . . . , eiθn) =
∞∑

|α|=0
α≥0

bαe
iα·θ.

Let I = [0, 2π]. For xj , yk ∈ H, we have

∣∣∣∣
m∑

j,k=1

〈φjk(T )xj , yk〉
∣∣∣∣

=
∣∣∣∣

m∑
j,k=1

∫
In

φjk(eiθ1 , . . . , eiθn)

· 〈D(e−iθ1T1, . . . , e
−iθnTn)xj , yk〉 dθ

(2π)n

∣∣∣∣
=

∣∣∣∣
m∑

j,k=1

∫
In

φjk(eiθ1 , . . . , eiθn)

· 〈f(e−iθ1T1, . . . , e
−iθnTn)xj ,

· ḡ(e−iθ1T ∗
1 , . . . , e

−iθnT ∗
n)yk〉 dθ

(2π)n

∣∣∣∣
=

∣∣∣∣
m∑

j,k=1

∑
α,β

φ̂jk(α+ β)aαbβ〈Tαxj , T
∗βyk〉

∣∣∣∣

� A2 sup
{∣∣∣∣

m∑
j,k=1

∑
α,β

φ̂jk(α+ β)aαbβ‖xj‖ ‖yk‖sjβtαk

∣∣∣∣
}

where the sup is taken over all scalars sjβ, tαk ∈ D. The last inequality
follows from Grothendieck’s theorem. However, the term inside the sup
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sign is

∣∣∣∣
m∑

j,k=1

∫
In

φjk(eiθ1 , . . . , eiθn)‖xj‖
( ∑

β

sjβbβe
−iβ·θ

)

· ‖yk‖
( ∑

α

tαkaαe
−iα·θ

)
dθ

(2π)n

∣∣∣∣

≤ ‖Φ‖
{∫

In

m∑
j=1

‖xj‖2

∣∣∣∣
∑

β

sjβbβe
−iβ·θ

∣∣∣∣
2

dθ

}1/2

·
{∫

In

m∑
k=1

‖yk‖2

∣∣∣∣
∑
α

tαkaαe
−iα·θ

∣∣∣∣
2

dθ

}1/2

≤ ‖f‖L2‖g‖L2

{ m∑
j=1

‖xj‖2

}1/2{ m∑
j=1

‖yk‖2

}1/2

.

We obtain (4.7) by combining the above inequalities and recalling the
known fact that ‖D‖L1 � log d.

Remark. If we use the following kernel

(4.9) Bp(z) =
∑

‖α‖≤p
α≥0

(
1 − ‖α‖2

p2

)(n−1)/2

zα

instead of the Dirichlet kernel D(z), then the term (log p)n in the
inequality (4.7) can be replaced by the L1-norm of Bp. If the sum
in (4.9) is taken over all ‖α‖ ≤ p, then the resulting function is the
Bochner-Riesz kernel. The L1-norm of the Bochner-Riesz kernel is
∼ log p [27, Theorem 4].

In the case when T is n-tuple of Jordan blocks, we have the following
as an application of Proposition 4.3.

Theorem 3. Let z ∈ Dn, and let T = T (z, ξ) be an n-tuple of
commuting p× p Jordan blocks. Then

MDn(T ) ≤ C · (log p)nK2
Dn(T ),
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where C is a constant independent of p.

Proof. Let

ψi(ζ) =
ζ − zi

1 − z̄iζ

and Ψ = (ψ1, . . . , ψn). Then MDn(T (z, ξ)) = MDn(Ψ(T (z, ξ))). If
f, g ∈ H∞(Dn) have the same (p−1)th order Taylor polynomial at the
origin, then f(Ψ(T (z, ξ))) = g(Ψ(T (z, ξ))).

For φ ∈ H∞(Dn), define

L(φ)(z) = φ ∗ D(z)

=
∫

In

φ(z1e−iθ1 , . . . , zne
−iθn)D(eiθ1 , . . . , eiθn)

dθ

(2π)n
.

Then L(φ) is a polynomial of degree pn which agrees with the Taylor
expansion of φ up to pth order. Thus, from the Cauchy estimates,

‖L(φ)‖H∞(Dn) � 2np sup{|φ(z)|; |zj | = 1/2}.
Now let N = 2np, and let h ∈ L1(∂D) be a function such that

1) ‖h‖L2 ≤ 2, ĥ(j) ≥ 0 for all j;

2) ĥ(j) = 1 if |j| < N/2; ĥ(j) = 0, if |j| > N .

Let H(e−iθ1 , . . . , e−iθn) = h(eiθ1) · · ·h(eiθn). For φ ∈ H∞(Dn),
define

E(φ) = φ ∗ F + L(φ− φ ∗H).

Then E(φ) is a polynomial of degree Nn and agrees with φ up to pth
order. Furthermore, we have

‖E(φ)‖H∞(Dn) � 2n‖φ‖H∞(Dn)

+ 2np sup
{ ∑

αi≥N/2

|φ̂(α1 · · ·αn)| |zα|; |zi| = 1/2
}

� ‖φ‖H∞(Dn).

Therefore, for Φ = (φij) ∈ H(Dn, Bm×m), it follows from (4.7) that

‖Φ(Ψ(T (z, ξ)))‖ = ‖(E ◦ Φ)(Ψ(T (z, ξ)))‖
� (log p)n‖E ◦ Φ‖K2

Dn(Ψ(T (z, ξ)))
� (log p)nK2

Dn(T (z, ξ)).



SPECTRAL DOMAINS 1115

This concludes the proof of Theorem 3.

Remarks. Blower, in [4], proves a result similar to Theorem 3 for a
nilpotent matrix. Misra, in [15], respectively, [16], finds necessary and
sufficient conditions for KDn(T ) ≤ 1, respectively MDn(T ) ≤ 1, where

T = (T1, . . . , Tn), Tj =
(
λj vj

0 Ip−1

)
.
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