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Q-REFLEXIVE BANACH SPACES

RICHARD M. ARON AND SEÁN DINEEN

Let E be a Banach space. There are several natural ways in which
any polynomial P ∈ P(nE) can be extended to P̃ ∈ P(nE′′), in such
a way that the extension mapping is continuous and linear (see, for
example, [6]). Taking the double transpose of the extension mapping
P → P̃ yields a linear, continuous mapping from P(nE)′′ into P(nE′′)′′.
Further, since P(nE′′) is a dual space, it follows that there is a natural
projection of P(nE′′)′′ onto P(nE′′), and thus we have a mapping of
P(nE)′′ into P(nE′′). If all polynomials on a Banach space E are
weakly continuous on bounded sets, then these mappings from P(nE)′′

into P(nE′′) coincide and have a particularly simple description. We
discuss this in some detail below.

In this article we restrict ourselves to the situation in which all polyno-
mials on E are weakly continuous on bounded sets, and we study when
this mapping is an isomorphism. As we will see, if three “ingredients”
are present, then the mapping will be an isomorphism: (1) E′′ has the
Radon-Nikodym property [18], (2) E′′ has the approximation property
[30], and (3) every polynomial on E is weakly continuous on bounded
sets. In addition, we will construct an example of a quasi-reflexive
(nonreflexive) Banach space E for which the extension mapping is an
isomorphism.

It is well known that P(nE) is isomorphic to (⊕n,sE)′, the dual of
the n-fold symmetric tensor product of E endowed with the projective
topology. In fact, our results carry over to the space (⊗nE)′. However,
since our interest is in polynomials and holomorphic functions on E,
we have preferred to concentrate on symmetric tensor products.

By [9, Theorem 2.9] if all continuous polynomials are weakly contin-
uous on bounded sets, then they are in fact uniformly weakly contin-
uous on bounded sets and so have a unique extension to polynomials
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on E′′ which are weak∗ continuous on bounded sets. The mapping
P ∈ P(nE)→ P̃ (x), where x ∈ E′′ and P̃ is the weak∗ continuous ex-
tension of P , is continuous when spaces of polynomials are given their
norm topology. We define the canonical mapping of the symmetric
tensor product of E′′ into the dual of P(nE) in the following fashion

Jn :
⊗
n,s

E′′ −→ P(nE)′

⊗
n

x −→ [P ∈ P(nE) −→ P̃ (x)].

Since ‖P‖ = ‖P̃‖ it follows that∥∥∥∥Jn

( ⊗
n

x

)∥∥∥∥ = sup
P∈P(nE)
‖P‖≤1

|P̃ (x)|

≤ sup
P∈P(nE)
‖P‖≤1

‖P̃‖ · ‖x‖n

≤ ‖x‖n.

Hence

‖Jn(z)‖ ≤ inf
{ m∑

i=1

‖xi‖n; z =
m∑

i=1

⊗
n

xi

}
= ‖z‖π,

and Jn can be extended in a unique fashion to a continuous linear
mapping

Jn :
⊗̂

n,s,π
E′′ −→ P(nE)′.

The transpose tJn is the required canonical mapping from

P(nE)′′ into P(nE′′) �
( ⊗

n,s,π

E′′
)′

.

Various attempts at defining a canonical mapping from P(nE)′′ into
P(nE′′) have convinced us that the class of Banach spaces we are
considering is the natural class1 for such a mapping. Note that if J
denotes the canonical mapping from E into E′′, then J1 ◦ J = J .
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Definition 1. We shall say that a Banach space E is Q-reflexive
if the canonical mapping tJn is an isomorphism from P(nE)′′ onto
P(nE′′) for all n.

It is easily seen that a reflexive Banach space is Q-reflexive if and
only if P(nE) is reflexive for all n. This collection of spaces has been
studied in [1, 2, 3, 4, 20, 21, 23, 25] and so we confine ourselves
here to nonreflexive Banach spaces which are Q-reflexive. If E is Q-
reflexive, then, since P(nE) is a dual space it follows that P(nE) is
1-complemented in P(nE′′), and we have the decomposition

P(nE′′) = Pω∗(nE′′)⊕ PE⊥(nE′′)

where Pω∗(nE′′) ≈ P(nE) denotes the set of all polynomials on E′′

which are weak∗ continuous on bounded sets and

PE⊥(nE′′) = {P ∈ P(nE′′); P |E ≡ 0}.
The following result of Gutierrez, which improves a result in [7], reduces
the study of Q-reflexive spaces to a more manageable collection of
Banach spaces in which we find a more practical characterization of
polynomials which are weakly continuous on bounded sets.

Proposition 2 [25]. If E is a Banach space which contains a copy
of l1, then E admits a C-valued homogeneous polynomial which is not
weakly continuous on bounded sets.

Proposition 3. If E is a Banach space and l1 �↪→E, then the
following are equivalent:

(a) all continuous polynomials on E are weakly continuous on bounded
sets,

(b) all continuous polynomials on E are weakly sequentially continu-
ous at the origin.

Proof. By [9, Proposition 2.12] the continuous polynomials on E
which are weakly sequentially continuous are weakly (uniformly) con-
tinuous on bounded sets. By [3] it is sufficient to check weak sequential
continuity at the origin.
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To obtain examples of nonreflexive Q-reflexive Banach spaces, we
note that the proof of Theorem 1 in [20] does not require reflexivity
and consequently the following is true.

Proposition 4. If E is a Banach space such that no spreading model
built on a normalized weakly null sequence has a lower q-estimate for
any q < ∞, then any continuous polynomial on any subspace of E is
weakly sequentially continuous at the origin.

We recall that a sequence of vectors (uj)j in a Banach space is said
to have a lower q-estimate if there exists c > 0 such that∥∥∥∥

m∑
j=n

aiuj

∥∥∥∥ ≥ c

( m∑
j=n

|aj |q
)1/q

for any positive integers n and m. Also, the dual of a Banach
space E has the Radon-Nikodym property (RNP) if and only if each
separable subspace of E has a separable dual [18]. Such spaces are
also called Asplund spaces. If E is an Asplund space, then l1 �↪→E
since (l1)′ = l∞ is nonseparable. Also, if E′ is an Asplund space, then
l1 �↪→E. Otherwise, the image l∞ of the transpose mapping would be
an Asplund space and this is clearly false. Hence, if either E or E′ is
Asplund, it follows that l1 �↪→E.

Theorem 5. Let E denote a Banach space such that no spreading
model built on a normalized weakly null sequence has a lower q-estimate
for any q <∞.

(a) If E′ has RNP and the approximation property, then P(nE) has
RNP for all n.

(b) If E′′ has RNP and the approximation property, then E is a Q-
reflexive Banach space.

Proof. By the above remarks it follows that in both cases l1 �↪→E.
By Propositions 3 and 4 we see that all continuous polynomials on
any subspace of E are weakly continuous on bounded sets. By [30,
Proposition 1.e.7] and our hypothesis in (a) it follows that E′ has the
approximation property in both cases. By [9, Corollary 2.11] it follows
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that P(nG) � (⊗̂n,s,εG
′), for any subspace G of E such that G′ has

the approximation property. We now complete the proof of (a).

By [18, p. 218], it suffices to show that any separable subspace H of
P(nE) is isomorphic to a subspace of a separable dual space. Suppose
that {φn

j }∞j=1, φj ∈ E′, spans a dense subspace of H. Let F denote the
closed subspace of E′ generated by {φj}∞j=1. By [32, Proposition 2],
there exists a separable subspace E1 of E and a complemented subspace
F1 of E′ such that F ⊂ F1 and E′

1 � F1. Since E′ has the RNP and
the approximation property and F1 is complemented in E′, it follows
that E′

1 � F1 also has both of these properties. Hence,

H ⊂
(⊗̂

n,s,ε
F1

)
�

(⊗̂
n,s,ε

E′
1

)
� P(nE1).

This implies that P(nE1) is a separable dual space and that H is
isomorphic to a subspace of a separable dual space. Thus, P(nE) has
RNP. This completes the proof of (a).

We now complete the proof of (b). By the above, P(nE) = (⊗̂n,ε,sE
′).

Since E′′ has the RNP and the approximation property, we have by [14,
24],

P(nE)′ �
(⊗̂

n,ε,s
E′

)′
�

⊗̂
n,π,s

E′′

where the isomorphism In between these spaces satisfies(
In

( ⊗
n,s

x′′
))

(φn) = (x′′(φ))n

for all x′′ ∈ E′′ and φ ∈ E′.

Hence, In = Jn and tJn is an isomorphism, i.e., E is Q-reflexive. This
completes the proof.

Corollary 6. If E is a Banach space such that no spreading model
built on a normalized weakly null sequence has a lower q-estimate for
any q < ∞ and E′ has the approximation property, then ⊗n,π,sE is
Asplund for all n if and only if E is Asplund.

Example 7. Since all spreading models built on a normalized weakly
null sequence in c0 are isomorphic to c0 [9, p. 72] and c′0 = l1 has the
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approximation property and RNP, it follows that P(nc0) has RNP for
all n. This, however, also follows immediately from the fact, proved
in [5], that P(nc0) is separable and thus as a separable dual space
P(nc0) has RNP. We now show that c0 is not Q-reflexive. In this
case the canonical mapping is Jn : PN (nl1) → PI(nl1) where PN (nl1)
and PI(nl1) are respectively the n-homogeneous nuclear and integral
polynomials on l1. There are various ways in which one can show that
Jn is not an isomorphism and hence that c0 is not Q-reflexive. For
instance, (Bl∞ , σ(l∞, l1)) � ∆N where ∆ is the closed unit disc in C.
Let µ denote a Borel probability measure on ∆ such that

∫
∆

z dµ(z) = 0
and

∫
∆

z2 dµ(z) = 1. If v =
∏∞

n=1 µn on ∆N , where µn = µ all n, then
the mapping

(∗)

(xn)n ∈ l1 −→
∫

∆N

[(yn)n((xn)n)]2 dv((yn)n)

=
∑
n,m

xnxm

∫
∆N

ynym dv((yn)n)

=
∞∑

n=1

x2
n

defines an element of P(nc0)′ = PI(nl1). The associated integral
mapping from l1 into l∞ is not compact and hence not nuclear. This
proves our claim.

Remarks. (a) The action of the polynomial represented by (∗) on
P(2c0) is given by

P ∈ P(2c0) −→
∞∑

n=1

P (en)

where (en)n is the standard unit vector basis in c0. Clearly, replacing
µn by a point mass at the origin for all x /∈M , M some subset of N , we
see that

∑
n∈M P (en) < ∞ for all P ∈ P(2c0). This provides another

proof of a result in [8, 13, 34], namely, that
∑∞

n=1 |P (en)| <∞ for all
P ∈ P(2c0).

(b) The above shows that there is a one-to-one correspondence be-
tween PI(2l1) and the covariances of signed Borel measures on ∆N .
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By using Grothendieck’s inequality, it follows that l∞⊗̂πl∞ can be
represented at the set of all functions of the form

f : N ×N → C

where f(n, m) = 〈g(n), h(m)〉 and (g(n))n and (h(m))m are relatively
compact sequences in l2. (See, for example, A. Defant and K. Floret
[15, p. 171].)

The space l1⊗̂εl1 has a representation as the set of all series of the
form

∑∞
n=1 e∗n ⊗ xn where (e∗n)n is the standard unit vector basis in l1

and (xn)n is an unconditionally convergent series in l1 [2, 22].

(c) Example 7 shows that the hypothesis “E′′ has RNP” cannot be
removed in Theorem 5 (b).

Our next step is to produce an example of a nonreflexive Q-reflexive
Banach space. Theorem 5 clearly suggests that we should consider
a space like Tsirelson’s space but not a reflexive space and we were
thus led to the (quasi-reflexive) James space modeled on the original
Tsirelson space. It is clear, however, that this is representative of a class
of examples which can be found using the appropriate properties of the
James and Tsirelson space. We refer to [30] for details concerning the
James spaces and the dual of the original Tsirelson space. Following
standard notation, we let T denote the dual of the original Tsirelson
space normed as in [30, p. 95], and we denote its dual by T ∗. The
James space modelled on T is discussed in [11] and [29].

Let (tn)∞n=1 denote the standard unconditional basis for T ∗ which is
dual to the basis given in [30, p. 95]. The following two properties of T ∗

play an essential role in our construction. For the sake of completeness,
we include a proof of (2).

For any positive integer n, we have

(1)
∥∥∥∥

2n∑
j=n

ajtj

∥∥∥∥
T∗
≤ 2 sup

n≤i≤2n
|ai|

[12, Proposition 1.7].



1016 R.M. ARON AND S. DINEEN

If (kj)∞j=1 is an increasing sequence of integers, k1 = 0, then for any∑∞
j=1 ajtj ∈ T ∗, we have

(2)
∥∥∥∥

∞∑
j=1

ajtj

∥∥∥∥
T∗
≤

∥∥∥∥
∞∑

j=1

∥∥∥∥
kj+1∑

i=kj+1

aiti

∥∥∥∥
T∗

tj

∥∥∥∥
T∗

[12, Lemma II.1 and notes and remarks, p. 24].

Proof of inequality (2). Let

uj =

∑kj+1
i=kj+1 aiti

‖∑kj+1
i=kj+1

aiti‖T∗
.

Then ∥∥∥∥
∞∑

j=1

ajtj

∥∥∥∥
T∗

=
∥∥∥∥

∞∑
j=1

( kj+1∑
i=kj+1

aiti

)∥∥∥∥
T∗

=
∥∥∥∥

∞∑
j=1

∥∥∥∥
kj+1∑

i=kj+1

aiti
∥∥

T∗uj

∥∥∥∥
T∗

≤
∥∥∥∥

∞∑
j=1

∥∥∥∥
kj+1∑

i=kj+1

aiti

∥∥∥∥
T∗

tkj+1

∥∥∥∥
T∗

≤
∥∥∥∥

∞∑
j=1

∥∥∥∥
kj+1∑

i=kj+1

aiti

∥∥∥∥
T∗

tj

∥∥∥∥
T∗

where we use uj to get the normalized sequence in [12] and we have
reversed the inequality since we are dealing with T ∗ in place of T . Since
j ≤ kj +1 and moving the support to the right in T increases the norm
[12, Proposition 1.9(3)], it follows that in T ∗ moving the support to
the left increases the norm and this is what we have done here.

For (an)∞n=1 ∈ c00, the space of all sequences which are eventually
zero, let

(3) ‖(an)∞n=1‖T∗
J

= sup
p1<p2<···<p2k

k

∥∥∥∥
k∑

j=1

(ap2j−1 − ap2j
)tj

∥∥∥∥
T∗

.
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The completion of c00 with respect to the norm ‖ · ‖T∗
J

is denoted by
T ∗

J and is called the Tsirelson∗-James space.

Proposition 8. T ∗
J has a monotone Schauder basis.

Proof. Let (ej)∞j=1 denote the canonical unit vector basis for c00 ⊂ T ∗
J .

By (3) it is clear that∥∥∥∥
n∑

j=1

ajej

∥∥∥∥
T∗

J

≤
∥∥∥∥

n+1∑
j=1

ajej

∥∥∥∥
T∗

J

for any sequence of scalars (aj)n+1
j=1 and hence, by [30, Proposition

1.a.3], the sequence (ej)∞j=1 is a monotone Schauder basis for T ∗
J .

Our next proposition shows that the norms on T ∗ and T ∗
J behave in

the same way with respect to normalized block basic sequences.

Proposition 9. Let (un)∞n=1 denote a normalized block basic se-
quence in T ∗

J . For any sequence of scalars (aj)∞j=1 and for any positive
integer n, we have∥∥∥∥

n∑
j=1

ajuj

∥∥∥∥
T∗

J

≤
∥∥∥∥

n∑
j=1

(|aj |+ |aj+1|)tj
∥∥∥∥

T∗
.

Proof. We first fix n and let
∞∑

l=1

blel =
n∑

j=1

ajuj where uj =
kj+1∑

i=kj+1

aijei

and (kj)∞j=1 is a strictly increasing sequence of integers with k1 = 0.
Let 1 ≤ p1 < p2 < · · · < p2k ≤ ks+1 denote an increasing sequence of
positive integers. By (2),∥∥∥∥

k∑
j=1

(bp2j−1−bp2j
)tj

∥∥∥∥
T∗
≤

∥∥∥∥
∥∥∥∥ ∑

j
p2j−1≤k2

(bp2j−1−bp2j
)tj

∥∥∥∥
T∗

t1

+
s∑

l=2

∥∥∥∥ ∑
j

kl<p2j−1≤kl+1

(bp2j−1−bp2j
)tj

∥∥∥∥
T∗

tl

∥∥∥∥
T∗

.
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Let a0 = as+1 = 0. Then

∥∥∥∥
k∑

j=1

(bp2j−1 − bp2j
)tj

∥∥∥∥
T∗
≤

∥∥∥∥
s∑

l=1

(‖alul‖T∗
J

+ |al+1|)tl
∥∥∥∥

T∗

≤
∥∥∥∥

s∑
l=1

(|al|+ |al+1|)tl
∥∥∥∥

T∗
.

Hence

sup
p1<···<p2k

k

∥∥∥∥
k∑

j=1

(bp2j−1 − bp2j
)tj

∥∥∥∥
T∗

=
∥∥∥∥

n∑
j=1

ajuj

∥∥∥∥
T∗

J

≤
∥∥∥∥

n∑
j=1

(|aj |+ |aj+1|)tj
∥∥∥∥

T∗
.

Corollary 10. If (uj)∞j=1 is a normalized block basic sequence in T ∗
J

then ∥∥∥∥
2n∑

j=n

ajuj

∥∥∥∥
T∗

j

≤ 4 sup
n≤j≤2n

|aj |.

Proof. It suffices to apply (1) and Proposition 9.

Corollary 11. No normalized block basic sequence in T ∗
j satisfies a

lower q estimate for any q <∞.

Proof. Otherwise, by Corollary 10, there would exist q < ∞ and
c > 0 such that ( 2n∑

j=n

|aj |q
)1/q

≤ c sup
n≤j≤2n

|aj |

for all sequences of scalars (aj)∞j=1.

If n = 2j , m = 2j+1, and aj = 1 for all j, this would imply

2j/q ≤ c
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for all j, and this is impossible.

Corollary 12. The sequence (ej)∞j=1 is a shrinking basis for T ∗
J .

Proof. Otherwise there would exist φ ∈ (T ∗
J )′, (uj)∞j=1 a normalized

block basic sequence in T ∗
J and δ > 0 such that φ(uj) ≥ δ for all j.

Let αj = 1/2n for 2n < j < 2n+1, n = 1, . . . . We have
∑∞

j=1 αj =∞
and αj > 0 for all j. On the other hand, by Corollary 10,

∥∥∥∥
2n+1∑

j=2n+1

αjuj

∥∥∥∥
T∗

J

≤ 4 sup
2n<j≤2n+1

|αj | ≤ 4
2n

and
∞∑

j=1

∥∥∥∥
2n+1∑

j=2n+1

αjuj

∥∥∥∥
T∗

J

≤ 4
∞∑

n=1

sup
2n<j≤2n+1

|αj |

≤ 4
∞∑

n=1

1
2n

<∞.

Hence
∑∞

j=1 αjuj ∈ T ∗
J .

However,

lim
n→∞ φ

( n∑
j=1

αjuj

)
≥ δ lim

n→∞

n∑
j=1

αj =∞.

This is impossible and shows that the basis is shrinking.

By Corollary 12 and [30, Proposition 1.b.1 and 1.b.2] the biorthog-
onal functions (e∗j )

∞
j=1 form a Schauder basis for (T ∗

J )′ and, moreover,
(T ∗

J )′′ can be identified with the space of all sequences (aj)j such that

sup
n

∥∥∥∥
n∑

j=1

ajej

∥∥∥∥
T∗

J

<∞.

The correspondence is given by

x∗∗ ∈ (T ∗
J )′′ ←→ (x∗∗(e∗j ))

∞
j=1
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and we have

‖x∗∗‖ = sup
n

∥∥∥∥
n∑

j=1

x∗∗(e∗j )ej

∥∥∥∥
T∗

J

.

Proposition 13. T ∗
J is not reflexive.

Proof. Let wn =
∑n

j=1 ej ∈ T ∗
J . Let bj = 1 for j ≤ n and bj = 0 for

j > n. Since

∑
j

p1<p2<···<p2k

(bp2j−1 − b2j)ej =

⎧⎨
⎩

0 if p1 > n or p2k ≤ n

ej if p2j−1 ≤ n ≤ p2j for some j,
0 if p2j ≤ n < p2j+1 for some j,

it follows that ‖wn‖T∗
J

= 1 for all n. If T ∗
J were reflexive, then the

sequence {wn}∞n=1 would contain a subsequence which was weakly
convergent to some w ∈ T ∗

j . Since e∗m(wn) = 1 for all n ≥ m, it
follows that e∗m(w) = 1 for all m. If w =

∑∞
m=1 βmem ∈ T ∗

J , then
‖βmem‖T∗

J
→ 0 and hence |βm| → 0 as m → ∞. Since βm = 1 for all

m, this is impossible and completes the proof.

We now describe (T ∗
J )′′ and in so doing note the analogy of T ∗

J with
the classical James space J [26]. If (aj)∞j=1 is a sequence of scalars
and supn ‖

∑n
j=1 ajej‖T∗

J
= M < ∞, then we claim that limj→∞ aj

exists. Otherwise, there exists δ > 0 and a strictly increasing sequence
of positive integers (pj)j such that |ap2j−1 − ap2j

| ≥ δ > 0 for all j.
Hence,

sup
k

∥∥∥∥
k∑

j=1

(ap2j−1 − ap2j
)tj

∥∥∥∥
T∗
≤M.

Since the basis in T ∗ is 1-unconditional, we have

sup
k

∥∥∥∥
k∑

j=1

δtj

∥∥∥∥ ≤ sup
k

∥∥∥∥
k∑

j=1

|ap2j−1 − ap2j
|tj

∥∥∥∥ ≤M.

Since T ∗ is reflexive, this implies that the sequence {∑k
j=1 tj}∞k=1 has

a weak Cauchy subsequence and the proof of the previous proposition



Q-REFLEXIVE BANACH SPACES 1021

can now be adapted to show that this is impossible. Hence, we have
established our claim.

In proving Proposition 13, we showed that supn ‖
∑n

j=1 ej‖T∗
J

< ∞.
Let x∗∗

0 ∈ (T ∗
J )′′ be given by x∗∗

0 (e∗n) = 1 for all n. If x∗∗ is an
arbitrary vector in (T ∗

J )′′, then limj→∞ x∗∗(e∗j ) = α(x∗∗) exists. Let
y∗∗ = x∗∗−α(x∗∗)x∗∗

0 . It follows that y∗∗ ∈ T ∗
J and (T ∗

J )′′ ∼= T ∗
J⊕Cx∗∗

0 .
Hence (T ∗

J )′′ is separable and, by [30, Theorem 1.c.12], the basis (ej)∞j=1

in T ∗
J is not unconditional. The above also shows that T ∗

J and all
its duals are quasi-reflexive and hence all have the Radon-Nikodym
property [18, p. 219]. Moreover, T ∗

J and all its higher duals have a
basis and hence the approximation property.

The following proposition may also be proved by using the method
used for Tsirelson’s space in [3] and Corollary 10.

Proposition 14. Continuous polynomials on T ∗
J are weakly contin-

uous on bounded sets.

Proof. Since T ∗
J and (T ∗

J )′′ are both separable it follows by [30,
Theorem 2.e.7] that l1 �↪→T ∗

J . Hence by Proposition 3, it suffices to
show that each continuous polynomial on T ∗

J is weakly sequentially
continuous at the origin. By Proposition 4 it suffices to show that no
spreading model built on a normalized weakly null sequence in T ∗

J has
a lower q estimate for any q <∞.

Suppose (uj)j is a normalized weakly null sequence in T ∗
J which has

a spreading model having a lower q estimate for some q < ∞. This
means that there exists a Banach space X with an unconditional basis,
(fj)j , the spreading model, and a subsequence of (uj)j , (unj

)∞j=1, such
that for all ε > 0 and all k there exists N = N(ε, k) such that for all
N < n1 < n2 < · · · < nk and for all scalars with supi |ai| ≤ 1 we have∣∣∣∣

∥∥∥∥
k∑

j=1

ajfj

∥∥∥∥
X

−
∥∥∥∥

k∑
j=1

ajunj

∥∥∥∥
T∗

J

∣∣∣∣ < ε,

see, for instance, [10, 20, 21, 28], and that there exists c > 0 such
that ∥∥∥∥

k∑
j=1

ajfj

∥∥∥∥
X

≥ c

( k∑
j=1

|aj |q
)1/q
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for any sequence of scalars (aj)j and for all k.

By choosing, if necessary, a further subsequence of (nj)j we may
suppose that

unj
= xnj

+ ynj

where (xnj
)j is a block basic sequence in T ∗

J and
∑∞

j=1 ‖ynj
‖T∗

J
≤ 1/4.

Since ‖unj
‖ = 1 for all j this implies that ‖xnj

‖ ≥ 3/4 for all j. By
Corollary 10 we have for k sufficiently large and |aj | ≤ 1.

4 sup
k+1≤j≤2k

|aj | ≥
∥∥∥∥

2k∑
j=k+1

ajxnj

∥∥∥∥
T∗

J

≥
∥∥∥∥

2k∑
j=k+1

ajunj

∥∥∥∥
T∗

J

−
∥∥∥∥

2k∑
j=k+1

ajynj

∥∥∥∥
T∗

J

≥
∥∥∥∥

2k∑
j=k+1

ajfj

∥∥∥∥
X

− sup
1≤j≤k

|aj |
2k∑

j=k+1

‖ynj
‖T∗

J
− ε

≥ c

( 2k∑
j=k+1

|aj |q
)1/q

− 1
4

sup
k+1≤j≤2k

|aj | − ε.

Since ε > 0 was arbitrary this implies that for any k and any sequence
(aj)j with |aj | ≤ 1, we have

c

( k∑
j=1

|aj |q
)1/q

≤ 5 sup
1≤j≤k

|aj |.

Letting aj = 1 for all j this implies ck1/q ≤ 5 for all positive integers
k. This contradiction shows that no normalized weakly null sequence
in T ∗

J has a spreading model with a lower q estimate for some q < ∞
and completes the proof.

Proposition 15. T ∗
J is a Q-reflexive Banach space and P(nT ∗

J ) has
RNP for all n.

Proof. Since T ∗
J is a quasi-reflexive space with basis, it follows

that (T ∗
J )′ and (T ∗

J )′′ have the approximation property and RNP. The
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remaining hypothesis required for the application of Theorem 5 is
satisfied by Proposition 14.

The hypotheses of Theorem 5 are satisfied by any subspace of
(T ∗

J )(2n), the 2nth dual of T ∗
J , which has the approximation property.

The mapping

U : (T ∗
J )′′ −→ T ∗

J

U(x∗∗) = (−λ, x∗∗(e∗1)− λ, x∗∗(e∗2)− λ, . . . )

where λ = α(x∗∗) is a linear isomorphism from (T ∗
J )′′ onto T ∗

J . Conse-
quently, since T ∗

J is Q-reflexive, P(nT ∗
J ) and P(nT ∗

J )′′ are isomorphic
for all n, (but not under the canonical mapping since T ∗

J is not re-
flexive). This property, which is shared by many, but possibly not all,
quasi-reflexive spaces, suggested the terminology Q-reflexive spaces.

If E is a Banach space we let Hb(E) denote the space of C-valued
holomorphic functions on E which are bounded on bounded sets and
endowed with the topology τb of uniform convergence on bounded sets.

Proposition 16. (Hb(T ∗
J ), τb)′′ ∼= (Hb((T ∗

J )′′), τb).

Proof. It suffices to apply Theorem 12 of [31] and Proposition 15.

Further applications to spaces of holomorphic functions are also pos-
sible, and we will discuss these in a further paper. In addition, the
recent book by R. Deville, G. Godefroy and V. Zizler [16, Chapter 4]
contains applications of polynomial techniques to the study of struc-
tural properties of Banach spaces. Finally, we have recently obtained
preprints by J.A. Jaramillo, A. Prieto, I. Zalduendo [27] and by M.
Valdivia [33], in which the bidual of P(nE) is discussed.

Acknowledgments. The authors are grateful to David Yost for
pointing out an error in the proof of their original version of the result
of Theorem 5 and for informing them of reference [32].
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ENDNOTES

1. M. Gonzalez has recently obtained a characterization of Q-reflexive spaces
which justifies our choice.
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