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WHEN DOES THE FAMILY
OF SINGULAR COMPACTIFICATIONS

FORM A COMPLETE LATTICE?

ROBERT P. ANDRÉ

ABSTRACT. In this paper we provide a method of recog-
nizing those spaces for which the supremum of all singular
compactifications is βX. We also provide a method of recog-
nizing those spaces for which the family of singular compact-
ifications forms a complete lattice.

1. Introduction. All hypothesized topological spaces will be
assumed to be locally compact and Hausdorff.

Two compactifications αX and γX of a space X are said to be
equivalent if there is a homeomorphism f : αX → γX from αX onto
γX which fixes the points of X. This defines an equivalence relation
on the family of all compactifications of X. When we will speak of a
compactification αX of X it will be understood that we are referring
to the equivalence class of αX. The notation αX ∼= γX will mean that
αX is equivalent to γX. We will say that the compactification αX is
less than or equal to the compactification γX, denoted by αX ≤ γX
if there is a continuous function f : γX → αX of γX onto αX which
acts as the identity on X. This defines a partial order on the family
K(X) of all compactifications of X. It is well known that K(X) is a
complete lattice with respect to the partial order ≤ (see [3, 2.19]). If
αX and γX are compactifications of X such that αX ≤ γX, we will
denote the projection map from γX onto αX which fixes the points of
X by πγα.

The family of compactifications studied here was first defined and
discussed in [6]. We introduce the object of our study in the following
definitions which appear in [6]. A singular compactification induced by
the function f is constructed as follows: Let f : X → K be a continuous
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function from the space X into a compact set K. Let the singular set,
S(f), of f be defined as the set {x ∈ K : for any neighborhood U of x,
clXf←[U ] is not compact}. If S(f) = K, then f is said to be a singular
map. It is easy to verify that S(f) is closed in K and that if f is a
singular map then f [X] is dense in S(f). If f is a singular map the
singular compactification of X induced by f , denoted by X ∪f S(f),
is the set X ∪ S(f) where the basic neighborhoods of the points in
X are the same as in the original space X, and the points of S(f)
have neighborhoods of form U ∪ (f←[U ]\F ) where U is open in S(f)
and F is a compact subset of X. This defines a compact Hausdorff
topology on X ∪f S(f) in which X is a dense subspace. We will say
that a compactification αX of X is a singular compactification if αX
is equivalent to X ∪f S(f) for some singular map f .

An important characterization of a singular compactification is the
following one: The singular compactifications of X are precisely those
compactifications αX of X whose remainder αX\X is a retract of αX.
It is also known that if αX is a singular compactification and γX is
any compactification of X less than αX, then γX is also a singular
compactification. (The reader is referred to [14, 5] and [1] for more
details). Hence the infimum of any family of singular compactifications
is a singular compactification. However the supremum of a family of
singular compactifications need not be a singular compactification. It
is known, for example, that βN is the supremum of singular compact-
ifications but βN is not a singular compactification (see [14, page 20]
or [1]).

If G is contained in C∗(X), the symbol ωGX will denote the smallest
compactification to which all functions in G extend (this notation was
introduced in [11]). If f belongs to C∗(X), ωfX will denote the
smallest compactification of X to which f extends. Let G ⊆ C∗(X).
The evaluation map eG induced by G is the function eG : X → Π{Ig :
g ∈ G} (where, for each g, Ig is a closed interval containing g[X])
defined by eG(x) = 〈g(x)〉g∈G. The set Sγ will denote the set of all
singular maps in Cγ(X) = {f |x : f ∈ C(γX)}. Thus Sβ denotes the
collection of all singular maps in C∗(X). All other notation will be as
described in [1] and [15].

It is known that every compactification αX of X can be expressed
in the form ωGX, where G ⊆ C∗(X), see [11, Theorem 1] or [1, 1.11].
In particular, αX is equivalent to ωCα(X)(X). By Theorem 2.6 of [1],



FAMILY OF SINGULAR COMPACTIFICATIONS 981

we know that if αX is singular, then αX is equivalent to ωSα
X, the

supremum of all singular compactifications less than or equal to αX.
In fact, the following stronger statement is true: A compactification
αX is the supremum of singular compactifications if and only if αX
is equivalent to ωGX for some G ⊆ Sβ , see [1, 2.8]. But this does
not imply that a compactification of form ωGX for some G ⊆ Sβ is
a singular compactification (as witnessed by the example of βN). It
is also known that not all compactifications are of the form ωGX for
some G ⊆ Sβ. (The two-point compactification of R is an example; see
[1, 2.7].)

2. The largest singular compactification. The main objective
of this section is to develop a way of recognizing those locally compact
noncompact Hausdorff spaces X which have a largest singular com-
pactification. We begin by clearly defining the term largest.

Definitions 2.1. We will say that αX is the largest singular com-
pactification of X if αX is a singular compactification and, whenever
γX is a singular compactification of X, then γX ≤ αX, i.e., X has
a largest singular compactification if the supremum in (K(X),≤) of
the set of all singular compactifications of X is a singular compacti-
fication. We say that the compactification γX is a maximal singular
compactification if γX is singular and there does not exist a singular
compactification ζX such that ζX > γX.

Note. Recall that the family of all singular compactifications is a
lower semi-lattice. Thus, to show that a locally compact Hausdorff
space X has a largest singular compactification is equivalent to showing
that the family of all singular compactifications of X is a complete
lattice.

We begin by presenting the following previously proven results.

Proposition 2.2 [11]. Let G ⊆ C∗(X) and αX be a compactification
of X. Then αX ∼= ωGX if and only if each function g in G extends to
gα in C(αX) and Gα separates the points of αX\X.



982 R.P. ANDRÉ

Theorem 2.3 [5]. If αX is a compactification of X and G ⊆ Sα,
then αX = sup{X ∪f S(f) : f ∈ G} if and only if Gα separates the
points of αX\X.

Theorem 2.4 [11]. a) Let f ∈ C∗(X). Then ωfX is equivalent to
X∪∗S(f). In particular, if f is a singular map, then ωfX is a singular
compactification and ωfX is equivalent to X ∪f S(f).

b) If G ⊆ C∗(X) and ωGX is a singular compactification, then
t = eω

G · G ◦ r|X is a singular map, where r : ωGX → ωGX\X is a
retraction map, and ωGX is equivalent to X ∪t S(t).

Theorem 2.5 [1]. If αX is a singular compactification, then αX
is equivalent to ωSα

X. Hence every singular compactification αX of
X is the supremum of the family {X ∪f S(f) : f ∈ Sα} of singular
compactifications.

The following proposition will help us formulate our problem in a
more succinct way.

Proposition 2.6. The compactification αX of X is the largest
singular compactification of X if and only if αX ∼= ωSβ

X and ωSβ
X is

singular.

Proof. ⇒. Suppose αX is the largest singular compactification of
the space X. Then, by 2.5, αX ∼= ωSα

X. Since ωSα
X is the smallest

compactification to which all functions in Sβ ∩ Cα(X) extend, then
ωSα

X ≤ ωSβ
X. Now, if f ∈ Sβ, then, by Theorem 2.4a), ωfX ∼=

X ∪f S(f) ≤ αX (since αX is the largest singular compactification).
Let γX = sup{ωfX : f ∈ Sβ}. Hence, γX ≤ αX. By Theorem 2.3,
Sγ

β separates points of γX\X, consequently γX must be the smallest
compactification to which the set of all functions in Sβ extend, or more
succinctly, γX ∼= ωSβ

X. It must then follow that αX ∼= ωSβ
X.

⇐. Suppose αX ∼= ωSβ
X and that ωSβ

X is a singular compactifi-
cation. By Proposition 2.2, Sα

β separates the points of αX\X and, by
Theorem 2.3, αX = sup{X ∪f S(f) : f ∈ Sβ}. Since every singular
compactification is of the form ωGX for some G ⊆ Sβ , by Theorem 2.5,
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and as

ωGX = sup{X ∪f S(f) : f ∈ G} (by 1.4)
≤ sup{X ∪f S(f) : f ∈ Sβ} (since G ⊆ Sβ)
= αX,

then ωSβ
X is the supremum of all singular compactifications; hence,

αX is the largest singular compactification of X.

We can now reformulate our question as follows:

When is the compactification ωSβ
X a singular compactifica-

tion?

Definition 2.7. The compactification ωSβ
X will be denoted by

µX (whether it is singular or not). When we will speak of the µ-
compactification of X, we will mean µX.

Note that the µ-compactification ofX exists for all completely regular
spaces X. We know that in some cases the µ-compactification of
X is equivalent to βX. (In 2.13 of [1] the author shows that, for a
compactification αX of X, if αX\X is not totally disconnected, then
αX is equivalent to ωSα

X. Also, in 2.14 of the same paper, we have the
following result: IfX is a strongly zero-dimensional not almost compact
space, then βX is the supremum of the family of the two-point singular
compactifications of X, hence βX = ωSβ

X.) We will show that there
is a multitude of spaces X whose µ-compactification µX is neither
the Stone-Čech compactification nor the Freudenthal compactification.
Note, however, that if µX < βX, then βX\X is totally disconnected,
since, by 2.13 of [1] noted above, if βX\X is not totally disconnected,
then βX ∼= ωSβ

X = µX. Hence, if µX < βX, then µX cannot be the
Freudenthal compactification, since if βX\X is totally disconnected
βX is the Freudenthal compactification.

Before we answer the question stated above, we will develop in
2.9 2.12 a characterization of those spacesX such that µX is equivalent
to βX. First we give an example of a space X such that µX is strictly
less than βX.
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Example 2.8. Let x and y be distinct points in βR\R, and let
X = βR\{x, y}, where X is equipped with the subspace topology
inherited from βR. If f ∈ C∗(X), f can be extended to clβRX, via f |R,
hence βR ∼= βX. Clearly X must be connected as R ⊆ X ⊆ clβRR,
and R is connected. It follows that βX\X is not the continuous
image of X. Then the one-point compactification is the only singular
compactification, since βX\X cannot be a retract of βX. Hence, by
Proposition 2.6, the one-point compactification of X is µX. Hence,
µX < βX.

Note that those spaces X such that µX < βX must be amongst those
spaces which are not strongly zero-dimensional and whose outgrowth
βX\X is totally disconnected (see the paragraph following Definition
2.7).

Theorem 2.9. Let X be a topological space. Then µX ∼= βX if
and only if Sβ

β separates the points of D ∩ (βX\X) for each connected
component D of βX.

Proof. ⇒. Suppose X is a space such that βX ∼= µX ∼= ωSβ
X. Then

Sβ
β separates the points of βX\X. Hence Sβ

β separates the points of
D ∩ (βX\X) for each connected component D of βX.

⇐. Suppose Sβ
β separates the points of D ∩ (βX\X) for each

connected componentD of βX. It will suffice to show that Sβ
β separates

points of βX\X, since Proposition 2.2 will imply that µX ∼= βX. Let
x and y be distinct points in βX\X. If x and y belong to distinct
components of βX, then there exists a clopen subset U of βX which
contains x but not y. The restriction of the characteristic function χU

to X is a singular map whose extension to βX separates x and y. This
fact, and our hypothesis, implies that βX ∼= ωSβ

X ∼= µX.

The example of a space X such that µX is not equivalent to βX given
in Example 2.8 is rather trivial. We will now investigate such spaces
in order to construct more complex examples of such spaces. First we
develop some more theory (in Theorem 2.11 and Example 2.13).

The following is Corollary 1.7 of [1].
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Corollary 2.10. Let f : X → K be a continuous map into a compact
Hausdorff space such that f [X] is dense in K. Let Ef (X) denote the
set of all compactifications αX of X such that f : X → K extends to
fα : αX → K. Then f is a singular map if and only if fα[αX\X]
contains f [X] for some (equivalently for all) αX ∈ Ef (X).

Theorem 2.11. If X is a connected noncompact space which is not
almost compact, then the following are equivalent:

1) µX ∼= βX.

2) There is a continuous function from βX\X onto a closed interval
with nonempty interior.

3) The space X has a compactification αX whose outgrowth αX\X
is homeomorphic to a closed interval of real numbers (with nonempty
interior).

4) The space X has a singular compactification which is not the one-
point compactification ωX of X.

5) Sβ contains a nonconstant function.

Proof. We will prove the equivalence of these statements in the
following order: 4 ⇒ 3 ⇒ 2 ⇒ 1 ⇒ 5 ⇒ 4.

4 ⇒ 3. Suppose X has a singular compactification αX such that
αX\X contains more than one point. By Theorem 2.5, αX is equiv-
alent to ωSα

X. Let x and y be distinct points in αX\X. Since Sα
α

separates the points of αX\X, there is a function f in Sα such that
fα(x) is not equal to fα(y). Since f is a singular map, the compact-
ification ωfX is a singular compactification (2.4). Also, since X is
connected, then by 2.15 of [1], ωfX\X is homeomorphic to a closed
interval in R. Now ωfX\X contains more than one point, hence this
interval has nonempty interior.

3 ⇒ 2. If X has a compactification αX such that αX\X is
homeomorphic to a closed interval of R (with nonempty interior), then
the projection map, πβα, maps βX\X onto αX\X. This means βX\X
can be mapped continuously onto a closed interval of R (with nonempty
interior).

2 ⇒ 1. Suppose there is a continuous function f from βX\X onto a
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closed interval [a, b] = I with nonempty interior. We must show that
µX ∼= βX. The reader will note that the connectedness of X does
not play a role in the proof of 2 ⇒ 1. We will suppose that βX\X
is 0-dimensional, since, if βX\X is not 0-dimensional then, by 2.13 of
[1], µX ∼= βX. Let x and y be distinct points in βX\X for which
f(x) = f(y) (since βX\X is 0-dimensional and [a, b] is not this implies
that f cannot be one-to-one; thus such a pair of points can be found).
Let us consider the case where f(x) is a point in (a, b). (The proof
for the case where f(x) is a or b will be similar.) Let M = (c, d) be
an open interval containing f(x) such that c is not a, and d is not b.
Let U and V be disjoint clopen (in βX\X) neighborhoods of x and
y, respectively, such that both U and V are contained in f←(M). Let
f∗ : βX\X → R be a function which agrees with f on (βX\X)\(U∪V )
and which sends U and V to distinct points in [a, b]\M . The function
f∗ is continuous. Let the function h : [a, b] → R be defined as follows:
h(x) = x if x ∈ [a, c], h(x) = c if x ∈ [c, d] and h(x) = x − (d − c)
if x ∈ [d, b]. The function h is continuous and has a range which is a
closed interval. Then the function h ◦ f∗ separates the points x and y
and maps βX\X onto the closed interval [a, b−(d−c)]. Let k : βX → R
be an extension of h ◦ f∗ to all of βX, and let g = (k∧a)∨b− (d− c).
Note that g maps βX into g[βX\X] = [a, b− (d− c)]. Hence g|X is a
singular function which separates the arbitrarily chosen points x and
y in βX\X. We have shown that Sβ

β separates the points of βX\X;
hence βX ∼= ωSβ

X = µX (by Proposition 2.2 and the definition of
µX).

1 ⇒ 5. Suppose every function in Sβ is constant. Then every function
in Sβ extends to ωX, hence µX = ωSβ

X ∼= ωX. As X is not almost
compact and as |ωX\X| = 1, we have µX is not equivalent to βX.

5 ⇒ 4. Suppose Sβ contains a function f which is not a constant
function. Since f is a singular function ωfX is a singular compactifi-
cation and ωfX is equivalent to X ∪f S(f) (by Theorem 2.4). Since f
maps X into S(f) and f [X] contains at least two points, then ωfX is
a singular compactification which is not the one-point compactification
of X.

We now give a general characterization of spaces X such that µX ∼=
βX.
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Theorem 2.12. Let X be a locally compact space. Then the following
are equivalent:

1) µX ∼= βX.

2) At least one of the two following conditions is satisfied:

a) Any two points of βX\X are contained in distinct connected
components of βX.

b) There is a continuous function from βX\X onto a closed interval
with nonempty interior.

Proof. 1 ⇒ 2. Suppose the space X is such that µX ∼= βX and that
βX\X contains a pair of points, say x and y, which both belong to
the same connected component C of βX. Since µX ∼= βX, then βX
is equivalent to ωSβ

X. Hence there is a function f in Sβ such that fβ

separates x and y (2.2). Since f is a singular map, fβ[βX] is contained
in fβ[βX\X] (2.10). Also, since C is connected and fβ separates x and
y, fβ [C] is a closed interval, say [a, b], with nonempty interior, that is,
a is not equal to b. Then fβ [C] = [a, b] is contained in fβ [βX\X]. Let
h = (fβ ∧ a) ∨ b. Since h maps βX\X continuously onto [a, b], we are
done.

2 ⇒ 1. Suppose any two points in βX\X are contained in distinct
connected components of βX. Let x and y be any two points in
βX\X, and let M and L be distinct connected components of βX
such that x is in M and y is in L. Then there exists a clopen (in βX)
subset U of βX which contains M but not L. If f is a characteristic
map which sends U to zero and βX\U to one, then f |X is a singular
function whose extension to βX separates x and y. Since x and y were
arbitrarily chosen in βX\X, Sβ

β separates the points of βX\X, hence
βX is equivalent to µX = ωSβ

X.

We now consider the other hypothesis of 2). Suppose βX\X can be
mapped by a continuous function f onto some closed interval [a, b] of R.
In 2 ⇒ 1 of Theorem 2.11 we have proven that this hypothesis implies
that µX ∼= βX (without using the hypothesis that X is connected).
The theorem follows.

We now provide a method for constructing spaces X such that µX
is not equivalent to βX. Recall that a function f : X → Y is called
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irreducible if f does not map any proper closed subset of X onto Y .
Also recall that a topological space is a scattered space if it contains
no nonempty dense-in-itself subset (see 30E of [25]).

Example 2.13. Let R+ = {x ∈ R : x ≥ 0} and ∞ be a
point in βR+\R+. Let S be an infinite compact scattered space and
Y = βR+\{∞}. Let u and v be distinct points in S, X = S × Y and
X∗ be the quotient space of X obtained by collapsing to a single point
the doubleton {(u, 0), (v, 0)} and fixing all other points of X. Then
µ(X∗) is not equivalent to β(X∗).

Proof. Let S, Y,X and X∗ be as described in the statement of the
theorem. Then βY is βR+, the one-point compactification of Y . Since
Y is pseudocompact, βX = S × βY (see 8.12 and 8.20 of [24]). It
is easily verified that βX∗ = X∗ ∪ {(x,∞) : x ∈ S}. Then βX∗\X∗
is the scattered space S∗ = {(x,∞) : x ∈ S} which is homeomorphic
to S itself. Since the perfect image of a scattered space is scattered,
there is no continuous surjection from S∗ onto a closed interval I
with nonempty interior. We have just produced a completely regular
nonconnected Hausdorff space X∗ whose outgrowth βX∗\X∗ cannot
be mapped continuously onto a closed interval. Note that the points
(u,∞) and (v,∞) are not contained in distinct connected components
of βX∗. Then, by Theorem 2.12 1 ⇒ 2, µX∗ is not equivalent to βX∗.

The rest of this section (2.14 to 2.34) is devoted to solving the question
(stated earlier): When is the supremum, µX (∼= ωSβ

X), of all singular
compactifications a singular compactification?

Recall that a subset B of X is called a P -set if any Gδ containing B
is a neighborhood of B.

Lemma 2.14. If D is a closed C-embedded copy of N in a locally
compact space X, then (clβXD)\D is a P -set of βX\X.

Proof. Let D be a closed C-embedded copy of N in a space X.
It suffices to show that, if (clβXD)\D is contained in a zero-set Z
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in βX\X, then it must be contained in its βX\X-interior. Let
f ∈ C∗(βX\X) be such that (clβXD)\D ⊆ Z(f). Let g be a function
in C(βX) such that g|βX\X = f . Since (clβXD)\D ⊆ Z(g), then if
D = {di : i ∈ N}, {g(di) : i ∈ N} converges to zero. For each i ∈ N,
choose a neighborhood Vi of di such that the closures in X of the
Vi neighborhoods form a pairwise disjoint family of compact sets and
|g(x)−g(di)|, 1/i for all x in Vi. Let h : X → R be a continuous function
such that h[di] = 1 for each i ∈ N and h[X\∪{Vi : i ∈ N}] = {0}. (By
9M1 of [15] such a function exists). Let hβ denote the extension of h
to βX. Since hβ[clβXD] = clRh[D] = {1}, then hβ [clβXD\D] = {1},
hence clβXD\D ⊆ Cz(hβ). Since X\(∪{Vi : i ∈ N}) ⊆ Z(hβ),
clβX(X\(∪{Vi : i ∈ N}) ⊆ Z(hβ). Let p be an arbitrary point in
(βX\X) ∩ Cz(hβ). Then p contains a βX-neighborhood which misses
X\ ∪ {Vi : i ∈ N}. Furthermore, any βX-neighborhood S of p must
meet infinitely many Vi’s since clXVi is compact for all i. Suppose
g(p) �= 0. Observe that limi→∞[sup{|g(x)| : x ∈ Vi}] = 0 (since
|g(x)− g(di)|, 1/i for all x in Vi and {g(di) : i ∈ N} converges to zero).
If g(p) �= 0, then there exists an open interval T (in R) containing
g(p) such that clRT does not contain the point 0. But g←[T ] meets
infinitely many Vis. Since limi→∞[sup{|g(x)| : x ∈ Vi}] = 0, the point
0 must belong to clRT . Since this is a contradiction, g(p) = 0 = f(p)
(since γ|βX\X = f). Hence p ∈ Z(f). Since p was arbitrarily chosen
in βX\X ∩Cz(hβ), βX\X ∩Cz(hβ) ⊆ Z(f). Hence Z(f) is a βX\X-
neighborhood of clβXD\D. Thus clβXD\D is a P -set of βX\X.

In 6.6 of [24], W.W. Comfort shows (by assuming the continuum
hypothesis) that, if βX is a singular compactification, then X must be
pseudocompact. In 2.16 we have a generalization of Comfort’s result.
We prove it in ZFC. (In [12] the author also presents a proof of Lemma
2.15 and Theorem 2.16). We begin by proving the following lemma.

Lemma 2.15. If X contains a C-embedded copy of N, i.e., if X is
not pseudocompact, then µX ∼= βX.

Proof. Suppose X contains a C-embedded copy of N. Let x and
y be distinct points in βX\X. We will show that there exists a
singular function t : X → [0, 1] whose extension to βX separates
x and y. Let u, p and z be distinct points in βD ∩ (βX\X). If x
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belongs to βD\D, let u = x and if y belongs to βD\D, let z = y.
Let U, V and M be pairwise disjoint open subsets of βX such that
u ∈ U , z ∈ V and p ∈ M . Let f : βD → [0, 1] be a continuous
function such that f(u) = 0, f(z) = 1 and f is a bijection from
M ∩ D onto Q ∩ (0, 1). Since the subsets U,M and V are pairwise
disjoint, the subset M ∩D is infinite and C-embedded in X, and the
subset {u} ∪ {z} ∪ clβD(M ∩ D) is compact, then such a function
exists. Note that f [clβD(M ∩ D)] = clRf [M ∩ D] = [0, 1]. Let
h : βD ∪ {x} ∪ {y} → [0, 1] be defined as follows: h = f on βD; if
x does not belong to βD, let h(x) = 0, and if y does not belong to
βD, let h(y) = 1. Observe that βD ∪ {x} ∪ {y} is C-embedded in βX
(since it is compact). Thus, h extends to a function k on βX such that
k|βD = f . Let t = 0 ∨ (k|X ∧ 1); thus, tβ = 0 ∨ (k ∧ 1). Consequently,
tβ maps βX onto [0, 1]. If S is an open subset of [0, 1], clβXt

←[S] will
meet (clβXD)\D = βD\D since tβ |M∩D is a bijection from M ∩D onto
(0, 1)∩Q. Hence t is a singular map. Observe that the extension of the
singular function t to tβ on βX separates x from y. Thus Sβ

β separates
the points of βX\X. By Proposition 2.2, µX is equivalent to βX. This
proves the lemma.

Theorem 2.16. If X has a largest singular compactification µX,
then X does not contain a C-embedded copy of N, i.e., X is pseudo-
compact.

Proof. Suppose µX is singular. We will suppose that X contains a
C-embedded copy D of N and show that this leads to a contradiction.
If D is a C-embedded copy of N in X, then, by 6.9 of [15], clβXD∩βD.
Since D is closed in X, βD\D is contained in βX\X. By Lemma 2.15,
µX is equivalent to βX.

Let r : βX → βX\X be a retraction from βX onto βX\X (the
retraction r will exist by Lemma 2.15). The following construction will
reveal a contradiction. First note that, since r[βD] must be separable
and r[βD\D] = βD\D, then r[D]\r[βD\D] must contain infinitely
many points. By Lemma 2.14, the set V = (βX\X)\(r[D]\(βD\D))
is a neighborhood of βD\D in βX\X. But V contains an open
neighborhood W of βD\D, so r[D]\W has finitely many elements,
thus providing a contradiction.
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The converse of Theorem 2.16 fails. In 8.23 of [24] it is shown that
the product space [0, ω1) × [0, ω1) does not have a largest singular
compactification even though it clearly does not contain a closed C-
embedded copy D of N. Moreover, this illustrates that countably
compact spaces need not have a largest singular compactification. On
the other hand, the Tychonoff plank T is not countably compact and
yet possesses a largest singular compactification βT = (ωT ) induced by
any constant map on T. (Note that T is almost compact noncompact,
hence βT is singular as clearly there is a retraction r : βT → βT\T.)

The following definition leads us to a useful characterization of
pseudocompact spaces.

Definition 2.17. The subset C#(X) of C(X) is the set of all real-
valued functions f such that for every maximal ideal M in C(X) there
exists a real number r such that f − r ∈M .

The following theorem is an easy consequence of Theorem 5.8 (b) in
[15].

Theorem 2.18. The space X is pseudocompact if and only if
C(X) = C#(X).

Theorem 2.19 [2, 1.6]. The following are equivalent for f in C∗(X)

1) f belongs to C#(X).

2) For every open subset U of βXf [U ∩X] = fβ [U ].

3) ClβXZ(f − r) = Z(fβ − r) for any r ∈ R.

4) f maps zero sets to closed sets.

Lemma 2.20. If X is a noncompact pseudocompact space and αX
is a compactification of X then, for each f ∈ Sα, Z(f) is not compact
whenever Z(fα) is nonempty. Furthermore, clαXZ(f) = Z(fα) for all
f ∈ Cα(X) = {f |X : f ∈ C(αX)}.

Proof. Since X is pseudocompact, then clβXZ(f) = Z(fβ) for all f
in C∗(X) (by Theorems 2.18 and 2.19 and also by 8.8 (b) together with
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8A (4) of [15]). Let f ∈ Sα. Then f [X] ⊆ S(f) = fα[αX\X] (2.10).
Hence Z(fα) ∩ (αX\X) is nonempty if Z(f) is nonempty. Note that
Z(fα) = πβα[Z(fβ)] = πβα[clβXZ(f)] = clαXπβα[Z(f)] = clαXZ(f)
for all f ∈ Cα(X). It follows that Z(fα) = clαXZ(f) for all f in
Cα(X). Hence Z(f) is not compact if Z(fα) is nonempty.

Proposition 2.21. If X is pseudocompact and αX = X ∪f S(f)
is a singular compactification of X such that S(f) is homeomorphic
to a subset of R, then f←(x) is noncompact for any x ∈ S(f) and
f [X] = S(f).

Proof. Suppose X is pseudocompact and αX = X ∪f S(f) is a
singular compactification of X such that S(f) is a subset of R. By
the lemma above, Z(fα) = clαXZ(f) for all f in Cα(X). Also Z(f)
is not compact if Z(fα) is nonempty. Hence f←(x) = Z(f − x) is not
compact for any x ∈ S(f) (since f is a singular real-valued function).
By applying Theorem 2.18 and the equivalence of Theorem 2.19 (1)
and (4), we also conclude that f [X] = S(f) (since f [X] is dense in
S(f).

Suppose S(f) is homeomorphic to a subset K of R. Let h : S(f) → K
be a function which maps S(f) homeomorphically onto K. By the
above, (h ◦ f)←(x) is noncompact for all x in K. Hence f←(y) is
noncompact for all y in S(f).

If X is not pseudocompact, then the above proposition may fail as
the following example illustrates.

Example 2.22. Let X∗ = [0, 1] × [0, 1] ∪ {(−2, 0)} viewed as a
subspace of the product space R2. Then X∗ is a compactification of
the space X = X∗\([0, 1] × {1}) and X∗\X is homeomorphic to the
closed interval [0, 1]. Clearly X is not pseudocompact. Let us define
the function r : X∗ → [0, 1] × {1} as follows: r((−2, 0)) = (0, 1) and,
for a ∈ [0, 1], r((a, b)) = ((a − 1)b + 1, 1), i.e., r linearly maps the
closed interval {a} × [0, 1] onto [a, 1] × {1} carrying (a, 1) to (a, 1)
and (a, 0) to (1, 1). Observe that r is a well-defined continuous real-
valued function and that r maps any point of X∗\X to itself; hence,
X∗\X is a retract of X∗ and r|X is singular. Also note that (0, 1)
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and (−2, 0) are the only two points in X∗ which are carried to (0, 1).
Hence, clX∗(X ∩ r←((0, 1)) = clX∗{(−2, 0)} = (−2, 0) = r|←X ((0, 1)).
Thus r|←X ((0, 1)) is compact.

Lemma 2.23. If {fn : n ∈ N} is a sequence of real-valued singular
functions which converges uniformly to a function f in C∗(X), then f
is also a singular function.

Proof. Let x ∈ X, f(x) = r and U be an open interval in R which
contains r. Let ε > 0 such that (r − ε, r + ε) ⊆ U . Since {fn : n ∈ N}
converges uniformly to f , there exists a number N such that, for all
n ≥ N , ‖fn − f‖ < ε/3. It follows that |fN (x) − f(x)| < ε/3. Let
z = fn(x); then z ∈ (r− ε/3, r+ ε/3). Let V be an open neighborhood
of z such that V ⊆ (r−ε/3, r+ε/3). We claim that f←n [V ] ⊆ f←[U ] for
all n ≥ N . Let t ∈ f←m [V ] for some m ≥ N . Then |fm(t)− f(t)| < ε/3;
hence, f(t) ∈ (r − ε, r + ε) ⊆ U . Thus, f |f←m [V ]] ⊆ U . Since
f←[U ] = {x ∈ X : f(x) ∈ U}, f←m [V ] ⊆ f←[U ]. This establishes
the claim. Since fN ∈ Sβ , clXf←N [V ] is not compact. Hence clXf←[U ]
cannot be compact since clXf←N [V ] ⊆ clXf←[U ] (by the above claim).
This implies that f is a singular map.

In Remark 2.9 of [1] the author shows that, for G ⊆ Sβ , “ωGX being
singular does not imply that eG is singular.” In Theorem 2.26 we show
that if G is a subalgebra of C∗(X) which is contained in Sα, then ωGX
is singular and so is eG.

First we require the following results from [1].

Theorem 2.24 [1, 2.11]. Let αX be a singular compactification
of X. Let r : αX → αX\X be a retraction map, and define F
to be {f ◦ r|X : f ∈ C(αX)}. Then F ⊆ Sα, F is a subalgebra
of Cα(X), eF i a singular map, eα

F separates points of αX\X, and
αX ∼= X ∪ eFS(eF ) ∼= ωFX.

In what follows, we will require the following concepts. If B is a
collection of functions in C∗(X), a maximal stationary set of B is a
subset of X maximal with respect to the property that every f in B is
constant on it.
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The maximal stationary sets of a subalgebra are briefly discussed in
16.31 of [15].

Let G ⊆ C∗(X), x a point inX and G+ = {f−r : r ∈ G, r ∈ R}. The
symbol xKG will denote the set ∩{Z(f) : f ∈ G+, x ∈ Z(f)}. Thus,
y ∈ xKG if and only if f(y) = f(x) for each f ∈ G. Suppose αX is a
compactification of X such that G (hence G+) is a subset of Cα(X).
For x ∈ αX, let xK

α
G = ∩{Z(fα) : f ∈ G+, x ∈ Z(fα)}. It is clear that

the subset xKG (xK
α
G) is a maximal stationary set of G (Gα) which

contains the point x. It is easily observed that, given G ⊆ C∗(X), the
collection {xKG : x ∈ X} forms a partition of X.

Theorem 2.25 [1, 2.12]. Let αX be a compactification of X.
Let G be a subset of Sα such that the evaluation map eα

G : αX →
Πf∈GS(f) separates the points of αX\X. Then αX is equivalent to
ωGX. Furthermore, the following are equivalent:

1) eG is a singular map and ωGX(∼= αX) is equivalent to the singular
compactification X ∪eG

S(eG).

2) eG[X] ⊆ eωG

G [ωGX\X].

3) eG is a singular map.

4) eF is a singular map for every finite subset F of G.

5) xK
ωG

G ∩ (ωGX\X) is a singleton set for every x ∈ X.

Theorem 2.26. A compactification αX of X is singular if and only
if Sα contains a subalgebra G of C∗(X) such that Gα separates the
points of αX\X. Furthermore, if G is a subalgebra of C∗(X) which
is contained in Sα such that Gα separates the points of αX\X, then
eG is a singular map and αX ∼= ωGX ∼= X ∪eG

S(eG) (a singular
compactification).

Proof. ⇒. Suppose αX is a singular compactification. Then,
by Theorem 2.5, αX is equivalent to ωSα

X. By Theorem 2.24,
Sα contains a subalgebra G of C∗(X) such that eG is singular and
αX ∼= X ∪eG

S(eG). Since eGα separates the points of αX\X, then so
does Gα (by 1.10 of [1]).

⇐. Suppose αX is a compactification of X and G is a subalgebra
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of C∗(X) which is contained in Sα such that Gα separates the points
of αX\X. To obtain our result we will show that xKGα ∩ (αX\X)
is a singleton for each x ∈ X and then apply the equivalence of
Theorem 2.25 (1) and (5).

Let k be a point in X, and let H = {Z(fα) ∩ αX\X : f ∈ G+, k ∈
Z(f)}. It is easily seen that ∩H = kKGα ∩ αX\X. We wish to
show that ∩H is nonempty by verifying that H possesses the finite
intersection property. Let M = {Z(fα

i ) ∩ αX\X : i ∈ F} be a
finite subcollection of H. Note that ∩M = Z(

∑
i∈F (fα

i )2) ∩ (αX\X).
Since G is a subalgebra of C∗(X) and each fi belongs to G+, the
function

∑
i∈F (fi)2 belongs to G+; hence, by 1.16 of [1], it belongs to

Sα. Thus, by Corollary 2.10, (
∑

i∈F f
2
i )[X] ⊆ (

∑
i∈F f

2
i )α[αX\X] =

(
∑

i∈F (f2
i )α)[αX]. As k ∈ Z(

∑
i∈F (f2

i )α), it follows that ∩M is
nonempty. Hence, H has the finite intersection property. Since αX\X
is compact, ∩H = kKGα ∩ (αX\X) is nonempty. Since Gα separates
the points of αX\X, kKGα ∩ (αX\X) is a singleton set in αX\X. By
Theorem 2.25 (5) implies Theorem 2.25 (1), eG is a singular map and
αX ∼= ωGX ∼= X ∪eG

S(eG), a singular compactification.

Suppose αX is a singular compactification and r : αX → αX\X is a
retraction map. It is worth noting that the subalgebra G = {f ◦ r|X :
f ∈ C(αX)} (see Theorem 2.24) contains the constant functions, hence
G = G+. This follows from the following fact.

Fact. If g ∈ Sα is so that gα is constant on αX\X, then g is
constant.

Proof. Since g is singular g[X] ⊆ gα[αX\X], by Corollary 2.10. Since
gα[αX\X] is a singleton, g[X] is as well.

Proposition 2.27 [1, 1.6]. If αX is a compactification of X, K is
a compact Hausdorff space and f : X → K is a continuous function
which extends to fα : αX → K then fα[αX\X] = S(f).

Theorem 2.28. Let αX be a compactification of the space X. There
is a one-to-one correspondence between the retraction maps from αX
onto αX\X, and the subalgebras G of Cα(X) such that G ⊆ Sα and
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Gα|αX\X = C(αX\X). If αX is not a singular compactification, then
no such retraction map r or such a subalgebra G exist.

Proof. If αX is not a singular compactification, then there does not
exist a retraction map r : αX → αX\X. Also, by Theorem 2.26,
Sα does not contain a subalgebra G of Cα(X) such that Gα separates
the points of αX\X. Hence, Cα(X) does not contain a subalgebra G
satisfying the properties described in the statement of the theorem.

Suppose αX is a singular compactification. Then there exists a re-
traction map r : αX → αX\X from αX onto αX\X. By Theo-
rem 2.24, the family G = {f ◦ r|X : f ∈ C(αX)} i a subalgebra of
Cα(X), eG is a singular map, eGα separates points of αX\X, and
αX ∼= X ∪ eGS(eG). Observe that Gα = {f ◦ r : f ∈ C(αX\X)} and
that Gα|αX\X = C(αX\X) (since r|αX\X is the identity function on
αX\X). We have shown that we can associate to each retraction map
r : αX → αX\X a subalgebra G = {f ◦ r|X : f ∈ C(αX)} of Cα(X)
which is contained in Sα such that Gα|αX\X = C(αX\X).

Let Fr = {f ◦ r|X : f ∈ C(αX)} and Fs = {f ◦ s|X : f ∈ C(αX)},
where r : αX → αX\X and s : αX → αX\X are retractions. We
want to show that if r �=, then Fr �= Fs, i.e., that the map r| → Fr

is one-to-one. If r �= s, there exists x0 ∈ X such that r(x0) �= s(x0).
As C(αX) separates the points of αX\X, there exists f ∈ Cα(X) such
that fα(r(x0)) �= fα(s(x0)), i.e., (fα|αX\X◦r)(x0) �= (fα|αX\X◦s)(x0).
Now fα|αX\X ◦ r ∈ Fr; we will show that fα|αX\X ◦ r /∈ Fs, thereby
showing that Fr �= Fs. Consequently, if t ∈ αX\X, then s(t) = r(t) = t
(as r and s are retractions) and gα(t) = gα(s(t)) = fα(r(t)) = fα(t).
Hence, in particular, gα(s(x0)) = fα(s(x0)). But, by the above,
fα(s(x0)) �= fα(r(x0)). Thus, (gα|αX\X ◦ s)(x0) �= (fα|αX\X ◦ r)(x0),
in contradiction to the definition of g. Hence fα|aX\X◦r /∈ Fs, Fr �= Fs,
and r| → Fr is a one-to-one map.

We will now show that, for every subalgebra G of Cα(X) such that
G ⊆ Sα and Gα|αX\X = C(αX\X) there exists a retraction map
r : αX → αX\X from αX onto αX\X such that G = {f ◦ r|X :
f ∈ C(αX)}. Let G be a subalgebra of Cα(X) such that G ⊆ Sα

and Gα|αX\X = C(αX\X). We have shown (in Theorem 2.26), that
if G is a subalgebra of Cα(X) such that G ⊆ Sα and Gα separates the
points of αX\X, then eG is a singular map and αX ∼= X ∪eG

S(eG).



FAMILY OF SINGULAR COMPACTIFICATIONS 997

Since Gα separate the points of αX\X, then eGα is one-to-one on
αX\X; hence, the function (eGα |αX\X)← ◦ eGα : αX → αX\X
is a retraction map (since eG is singular and, by Proposition 2.27,
eα
G[αX\X] = S(eG) = eα

G[αX]; thus, (eα
G|αX\X)← is a well-defined

map whose domain is (eα
G|αX\X)[αX\X]). We claim that Gα =

{fα|αX\X ◦ [(eα
G|αX\X)← ◦ eα

G] : f ∈ Cα(X)}. We begin by proving
that Gα ⊆ {fα|αX\X ◦ [(eα

G|αX\X)← ◦eα
G] : f ∈ Cα(X)}. Let g ∈ G and

x ∈ X. Since g ∈ G ⊆ Sα, g extends to a function gα on αX. Then
eα←
G ◦eα

G(x) is a subset of αX which meets αX\X in a singleton set, say
{y}, (since, by Proposition 2.27 eG[X] ⊆ eα

G[αX\X] and Gα separates
the points of αX\X, hence eGα is one-to-one on αX\X). Hence,
eα
G|←αX\X ◦ eα

G(x) = {y}. Observe that eα←
G (eα

G(x)) ⊆ α←g(gα(x))
(since gα ∈ Gα and eα←

G (eα
G(x) = {y}. Observe that eGα←(eGα(x)) ⊆

gα←(gα(x)) (since gα ∈ Gα and eα←
G (eα

G(x)) = ∩{fα←(f(x)) : f ∈ G}).
Thus, y ∈ gα←(g(x)). Therefore gα(y) = gα(x) = g(x). We have
just shown that gα|αX\X([eα

G|αX\X← ◦ eG](x)) = gα(y) = g(x) for
an arbitrary point x (hence for all x) in X. Thus gα = gα|αX\X ◦
[eα

G|αX\X← ◦ eα
G] ∈ {fα|αX\X ◦ [(eα

G|αX\X)← ◦ eα
G] : f ∈ Cα(X)}. This

proves that Gα ⊆ {fα|αX\X ◦ [(eα
G|αX\X)← ◦ eα

G] : f ∈ Cα(X)}. We
now prove Gα ⊇ {fα|αX\X ◦ [(eα

G|αX\X)← ◦ eα
G] : f ∈ Cα(X)}. Let k ∈

{fα|αX\X ◦[(eα
G|αX\X)←◦eα

G] : f ∈ Cα(X)}. Observe that if t ∈ Cα(X)
such that k = tα|αX\X ◦ [(eα

G|αX\X)← ◦ eα
G], then k|αX\X = tα|αX\X

on αX\X; hence, k = k|αX\X ◦ [(eα
G|αX\X)← ◦ eα

G]. Note that k|αX\X
extends to a function g ∈ Gα (since k|αX\X ∈ C(αX\X) and, by
hypothesis, Gα|αX\X = C(αX\X)). Obviously, k|αX\X = g|αX\X on
αX\X. Let x ∈ X. The argument in the proof above shows that (since
g ∈ Gα) g|αX\X ◦ [eα

G|←αX\X ◦ eG](x) = g(x) (for all x in X). Hence,
k(x) = kα|αX\X◦[eα

G|←αX\X◦eG](x) = g|αX\X◦[eα
G|←αX\X◦eG](x) = g(x)

(for all x in X). Hence, k = gα ∈ Gα. We have shown that
Gα ⊇ {fα|αX\X ◦ [(eα

G|αX\X)← ◦ eα
G] : f ∈ Cα(X)}. We conclude that

Gα = {f◦[(eα
G|αX\X)←◦eα

G] : f ∈ Cα(X)}. Hence, for every subalgebra
G of Cα(X) such that G ⊆ Sα and Gα|αX\X = C(αX\X) there exists
a retraction map r : αX → αX\X from αX onto αX\X (in this case
r = [eα

G]←αX\X ◦ eα
G]) such that G = {fα|αX\X ◦ r|X : f ∈ Cα(X)}.

We have thus shown that there is a one-to-one correspondence be-
tween the retraction maps r from αX onto αX\X and the subalgebras
G of Cα(X) such that G ⊆ Sα and Gα|αX\X = C(αX\X).
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Theorem 2.29. Let αX be a compactification of X. Then the
following are equivalent:

1) αX is a singular compactification.

2) Sα contains a subalgebra G of C∗(X) such that Gα separates the
points of αX\X.

3) Sα contains a closed subalgebra G of Cα(X) such that the mapping
φ : G→ C(αX\X) from G onto C(αX\X) defined by φ(f) = fα|αX\X
is an isomorphism.

Furthermore, the subalgebra described in statement 3) is the closure
(in C∗(X)) of the subalgebra described in statement 2).

Proof. 1 ⇔ 2. This is Theorem 2.26.

2 ⇒ 3. Suppose there exists a subalgebra G of C∗(X) contained
in Sα such that Gα separates the points of αX\X. As Sα ⊆ Cα(X)
clearly {fα|αX\X : f ∈ Sα} is contained in C(αX\X). As αX\X is
compact and Gα separates points of αX\X, the collection Gα|αX\X =
{fα|αX\X : f ∈ G} is a subalgebra of C(αX\X) which separates the
points and closed sets of αX\X. Without loss of generality, we may
suppose that G contains the constant functions since, if k is an number
and f ∈ Sα, f + k and kf are both singular maps. Thus, Gα|αX\X
contains the constant functions and separates points and closed sets of
αX\X.

We claim that C(αX\X) = (clCα(X)G)α|αX\X . By the Stone-
Weirstrass theorem, (clCα(X)G)α|αX\X ⊆ C(αX\X).

Observe that clC(αX\X)(Gα|αX\X) = C(αX\X) (again by the Stone-
Weirstrass theorem). Hence, it will suffice to show that

clC(αX\X)(Gα|αX\X) ⊆ (clCα(X)G)α|αX\X .

Let f ∈ clC(αX\X)(Gα|αX\X). Then we can construct a sequence
C = {fi : i ∈ N} in Gα|αX\X(C(C(αX\X), ‖ ‖)) whose only cluster
point is f .

We wish to show that f ∈ (clCα(X)G)α|αX\X . Now every function fi

in C extends to a function f∗i in Gα. Let C∗ = {f∗i : i ∈ N} ⊆ C(αX).
Let g be a cluster point of C∗. Then g ∈ clC(αX)C

∗ ⊆ clC(αX)(Gα).
We will first show that g|αX\X = f . We can construct a sequence
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D = {fij : j ∈ N} ⊆ C∗ whose only cluster point is g. Then, for every
ε > 0 there exists a number N(ε) such that ‖f∗ij − g‖ < ε for every
j > N(ε). Thus, ‖fij − g|αX\X‖ < ε for every j > N(ε). It follows
that g|αX\X is a cluster point of C. Since C has only one cluster point,
namely f , g|αX\X = f .

We will now show that g|αX\X ∈ (clCα(X)G)α|αX\X . It is eas-
ily seen that g|X ∈ clCα(X){f∗i |x : i ∈ N} ⊆ clCα(X)G. Hence,
g ∈ (clCα(x){f∗i |x : i ∈ N})α ⊆ (clCα(X)G)α. Thus, g|αX\X ∈
(clCα(X)G)α|αX\X . Since g|αX\X = f , f ∈ (clCα(X)G)a|αX\X .
The claim is established, i.e., C(αX\X) = (clCα(X)G)α|αX\X . By
Lemma 2.23, clCα(X)G is contained in Sα.

We now define the function φ : clCα(X)G→ C(αX\X) from clCα(X)G
into C(αX\X) as φ(f) = fα|αX\X . Clearly φ is a homomorphism. By
the above claim φ is onto C(αX\X). We now show that φ is one-to-
one. Let f and g be two functions in clCα(X)G such that fα|αX\X =
gα|αX\X . Since f and g are both singular maps and clCα(X)G is a
subalgebra which is contained in Sα, then f − g is singular. Then
(fα − gα)[X] = (fα − gα)[αX\X] = (fα|αX\X − gα|αX\X)[αX\X] =
{0}, (2.10). Hence, f = g. It follows that the map φ is an isomorphism.

3 ⇒ 2. Suppose Sα contains a closed subalgebra G of Cα(X) such
that the mapping φ : G → C(αX\X) from G onto C(αX\X) defined
by φ(f) = fα|αX\X is an isomorphism. Then clearly Gα separate the
points of αX\X.

Let C∞(X) denote the family of all functions f in C∗(X) for which
the set {x ∈ X : |f(x)| ≥ 1/n} is compact for all n in N. These
functions are said to “vanish at infinity,” (see 7FG of [15]). It is easily
verified that C∞(X) is an ideal in the ring C∗(X).

We now know that if αX is a singular compactification of X then Sα

contains a closed subalgebra G of C∗(X) such that Gα separates the
points of αX\X. The following theorem tells us that such a subalgebra
G of Cα(X) is isomorphic to the quotient ring Cα(X)/C∞(X) under
the canonical homomorphism σ : G → Cα(X)/C∞(X) defined by
σ(f) = C∞(X) + f .

Theorem 2.30. Let αX be a compactification of X. then αX is
a singular compactification of X if and only if Cα(X)/C∞(X) is the



1000 R.P. ANDRÉ

isomorphic image of a closed subring F (of Cα(X)) ⊆ Sα under the
homomorphism σ : F → Cα(X)/C∞(X) defined by σ(f) = C∞(X)+f .

Proof. ⇒. Suppose αX is a singular compactification. Then, by
Theorem 2.26, there exists a subalgebra F of C∗(X) which is contained
in Sα such that Fα separates the points of αX\X and such that αX
is equivalent to X ∪eF

S(eF ). By Theorem 2.29, the homomorphism
φ : clCα(X)F → C(αX\X) defined by φ(f) = fα|αX\X is a ring
isomorphism. Let τ : Cα(X) → C(αX\X) be the homomorphism
from Cα(X) onto C(αX\X) defined by τ (f) = fα|αX\X . We now
define the mapping ψ : Cα(X) → clCα(X)F as ψ = φ← ◦ τ . (Note
that ψ(f) is the unique g ∈ clCα(X)F for which gα|αX\X = fα|αX\X).
Observe that the kernel of ψ is ψ←(0) = (φ← ◦ τ )←(0) = τ← ◦ φ(0) =
τ←(0α|αX\X) = C∞(X). Hence, by the fundamental theorem of
homomorphisms, the function ζ : Cα(X)/C∞(X) → clCα(X)F defined
by ζ(C∞(X)+f) = ψ(f) maps Cα(X)/C∞(X) isomorphically onto the
image clCα(X)F of Cα(X) under ψ. Observe that, if g ∈ clCα(X)F , then
ψ(g) = φ← ◦ τ (g) = φ←(gα|αX\X) = g (since φ is one-to-one and onto
C(αX\X)). Hence, for g ∈ clCα(X)F , ζ(C∞(X) + g) = ψ(g) = g.
It then follows that the canonical homomorphism σ : clCα(X)F →
Cα(X)/C∞(X) defined by σ(f) = C∞(X) + f is onto Cα(X)/C∞(X)
(since, if g ∈ Cα(X), then C∞(X) + g = ζ←(ψ(g)) = ζ←(ψ(ψ(g)) =
C∞(X)+ψ(g); hence, σ(ψ(g)) = C∞(X)+ψ(g) = C∞(X)+g). Hence,
the canonical homomorphism σ maps clCα(X)F isomorphically onto
Cα(X)/C∞(X).

⇐. Suppose now that Cα(X)/C∞(X) is the isomorphic image
of a closed subring F (of Cα(X)) ⊆ Sα under the homomorphism
σ : F → Cα(X)/C∞(X) defined by σ(f) = C∞(X) + f . We claim
that Fα separates the points of αX\X. For any g ∈ Cα(X) there is a
function f ∈ F such that C∞(X)+f = C∞(X)+g (since σ maps F onto
Cα(X)/C∞(X)). It follows that, for every function g in Cα(X), there
is a function fg in F and a function hg in C∞(X) such that g = fg +hg.
Observe that the function hα

g is zero on αX\X for each g in Cα(X).
Since the collection {gα : g ∈ Cα(X)} separate the points of αX\X,
then the subset {fα

g : g ∈ Cα(X)} of Fα must separate the points of
αX\X. Then, by Theorem 2.26, αX is a singular compactification.
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Theorem 2.31. Let αX be a compactification of X. then αX is a
singular compactification if and only if Cα(X) = C∞(X)⊕G (the vector
space direct sum) for some closed subalgebra G of C∗(X) contained in
Sα.

Proof. ⇒. Suppose αX is a singular compactification. We proceed
as in the first half of the proof of Theorem 2.30. By Theorem 2.29,
Sα contains a closed subalgebra F of Cα(X) such that the mapping
φ : F → C(αX\X) from F onto C(αX\X) defined by φ(f) = fα|αX\X
is an isomorphism. Let τ : CαX) → C(αX\X) be the homomorphism
from Cα(X) onto C(αX\X) defined by τ (f) = fα|αX\X . We now
define the mapping ψ : Cα(X) → F as ψ = φ← ◦ τ . The kernel of
ψ is ψ←(0) = (φ← ◦ τ )←(0) = τ← ◦ φ(0) = τ←(0α|αX\X) = C∞(X).
Observe that, for every f in Cα(X), f − ψ(f) = f∞ for some f∞
in C∞(X). Also if h ∈ F ∩ C∞(X), then τ (h) = hα|αX\X = 0
(as h ∈ C∞(X)). But τ (h) = φ(h) = hα|αX\X . Consequently
φ(h) = 0. As φ is one-to-one, h = 0. Hence, F ∩ C∞(X) = {0}.
Thus, Cα(X) = C∞(X) ⊕ F .

⇐. Suppose αX is a compactification of X such that Cα(X) =
C∞(X)⊕G, where G is a closed subalgebra of C∗(X) which is contained
in Sα. Since f [αX\X] = {0} for every function f in C∞(X), then Gα

must separate the points of αX\X. It follows that αX is equivalent to
ωGX, (by 2.2), and that eGα : αX → ∏

f∈G S(f) separates the points
of αX\X.

Let x be a point in X. Recall that the set xKG = ∩{Z(f) : f ∈
G+, x ∈ Z(f)} is the maximal stationary set of G which contains the
point x (see the paragraph preceding Theorem 2.25). Let xKGα =
∩{Z(fα) : f ∈ G+;x ∈ Z(f)} be the maximal stationary set of Gα

which contains the point x. Let Hx = {Z(fα)∩ (αX\X) : f ∈ G+, x ∈
Z(f)}. Then ∩Hx = xKGα ∩ αX\X.

We wish to show that ∩Hx is a singleton set and then apply 5 ⇒ 1
of Theorem 2.25 to obtain our result. Since gα separates the points
of αX\X, it will suffice to show that ∩Hx is nonempty. In fact, since
every element of Hx is compact, it will suffice to show that Hx possesses
the finite intersection property. Let M = {Z(fα

i ) ∩ αX\X : i ∈ F} be
a finite subcollection of Hx. Note that ∩M = Z(

∑
i∈F (fα

i )2)∩αX\X.
Since G+ is a subalgebra,

∑
i∈F (fα

i )2 is an element of G+ ⊆ Sβ .
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Since (
∑

i∈F (fα
i )2)[X] ⊆ [

∑
i∈F (fα

i )2][αX\X] (by Corollary 2.10),
then Z(

∑
i∈F (fα

i )2) ∩ αX\X is nonempty. Thus, Hx possesses the
finite intersection property. It follows that ∩Hx = xKGα ∩ αX\X is
a singleton set. By 5 ⇒ 1, eG is a singular map and αX(∼= ωGX, by
Proposition 2.2) is the singular compactification X ∪eG

S(eG) induced
by eG.

Recall that an upward directed partially ordered set (X,≤) must
satisfy the following condition: If a and b are elements of X, then there
exists an element c of X such that c is greater than or equal to both
a and b. We now present an example of an upward directed family
A of singular compactifications whose supremum is not a singular
compactification.

Example 2.32. Let ω1 denote the first uncountable ordinal and
[0, ω1) be the space of all ordinals less than ω1. Let X = [0, ω1)× [0, ω1)
(equipped with the product topology). The space X is pseudocompact
(see 8.21 of [24]). In 8.23 of [24], it is shown that βX = [0, ω1] ×
[0, ω1] and that βX is not a singular compactification. We will show
that the lattice of all compactifications of X contains a subfamily
A of singular compactifications which is totally ordered and whose
supremum is βX. Since a totally ordered family is clearly upward
directed, we will have shown that an upward directed family of singular
compactifications does not necessarily have a supremum which is a
singular compactification.

Let λ be a nonlimit ordinal such that λ is less than ω1. Let αλX
be the decomposition space obtained by collapsing to a point the
subset ([λ, ω1] × {ω1}) ∪ ({ω1} × [λ, ω1]) of βX and fixing all other
points of βX. Clearly αλX is a compactification of X. Note that,
if κ is a nonlimit ordinal such that λ < κ < ω1, then αλX <
ακX < βX. Hence the family A = {ακX : 0 ≤ κ < ω1, κ a
nonlimit ordinal} is a totally ordered collection of compactifications
of X whose supremum is βX. We now claim that every member of
A is a singular compactification. Let αλX be a member of A. Let us
denote by [ω1] the point of αλX which is formed by collapsing to a
single point the subset [λ, ω1] × {ω1} ∪ {ω1} × [λ, ω1] of βX. If κ < λ,
let Fκ = {κ} × [0, ω1), and Hκ = [λ, ω1) × {κ} (both subsets of X).
Let K = [λ, ω1) × [λ, ω1). Observe that the elements of the collection
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D = {Fκ : κ < λ} ∪ {Hκ : κ < λ} ∪ {K} of subsets are pairwise
disjoint. Consider the function r : αλX → αλX\X defined as follows:
r[Fκ] = (κ, ω1) if κ < λ, r[Hκ] = (ω1, κ) if κ < λ, and r[K] = [ω1]. It is
easily verified that r is continuous and is a retraction map. Hence, αλX
is a singular compactification. Then A is an upward directed family of
singular compactifications whose supremum is βX, a compactification
of X which is not singular.

We summarize the main result of this section in the following theorem.

Theorem 2.33. If X is a locally compact and Hausdorff space, then
the following are equivalent:

1) The space X has a largest singular compactification, i.e., µX is a
singular compactification.

2) The set Sµ contains a subalgebra G of Cµ(X) such that Gµ

separates the points of µX\X.

3) The set Sµ contains a closed subalgebra G of Cµ(X) such that
the mapping φ : G → C(µX\X) from G onto C(µX\X) defined by
φ(f) = fµ|µX\X is an isomorphism.

4) The quotient ring Cµ(X)/C∞(X) is the isomorphic image of a
closed subring F (of Cµ(X)) ⊆ Sµ under the homomorphism σ : F →
Cα(X)/C∞(X) defined by σ(f) = C∞(X) + f .

5) The set Cµ(X) = C∞(X) ⊕ G (the vector space direct sum) for
some closed subalgebra G of C∗(X) contained in Sµ.

Proof. 1 ⇔ 2. This is Theorem 2.26.

1 ⇔ 3. This is Theorem 2.29.

1 ⇔ 4. This is Theorem 2.30.

1 ⇔ 5. This is Theorem 2.31.

By Theorem 2.16, any one of the above five conditions on µX implies
that X is pseudocompact.

Recall that a space X is said to be retractive if βX\X is a retract of
βX, i.e., βX is a singular compactification. W.W. Comfort has shown
using CH that retractive spaces are locally compact and pseudocompact
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(see 6.6 of [24]). A precise characterization of retractive spaces can now
be given.

Corollary 2.34. For a locally compact Hausdorff space X the
following are equivalent:

1) The space X is retractive, i.e., βX is a singular compactification.

2) The set Sβ contains a subalgebra G of C∗(X) such that Gβ

separates the points of βX\X.

3) The set Sβ contains a closed subalgebra G of C∗(X) such that
the mapping φ : G → C(βX\X) from G onto C(βX\X) defined by
φ(f) = fβ|βX\X is an isomorphism.

4) The quotient ring C∗(X)/C∞(X) is the isomorphic image of a
closed subring F (of Cµ(X)) ⊆ Sµ under the homomorphism σ : F →
C∗(X)/C∞(X) defined by σ(f) = C∞(X) + f .

5) The set C∗(X) = C∞(X) ⊕ G (the vector space direct sum) for
some closed subalgebra G of C∗(X) contained in Sβ.

Proof. The equivalence of the statements 1 to 5 follow directly from
Theorem 2.33.

In the introductory paragraph of [7] the authors make the following
conjecture.

Conjecture. The singular compactifications of a space X forms a
lattice if and only if βX is singular.

We will show that this conjecture fails by constructing a space X
whose family of singular compactifications forms a (complete) lattice
even though βX is not singular.

Example 2.35. Let Y be a locally compact connected space
such that βY \Y is finite and has more than one point. (The space
Y = (βR)\F where F is a finite subset of βR\R is an example of
such a space). Let N denote the natural numbers and ωN denote
its one-point compactification. Let X = ωN × Y (with the product
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topology). By 9D 3) of [15], Y is pseudocompact. By 8.12 and 8.20
of [24], βX = ωN × βY . We claim that µX = ωN × ωY (where ωY
denotes the one-point compactification of Y ). Let u and v be distinct
points in βY \Y . Let f ∈ Sβ and x0 be a point in ωN. Then f extends
to the function fβ : βX → R. Let x0 ∈ ωN and suppose fβ separates
the points (x0, u) and (x0, v). Since f is singular, fβ [βX] = fβ [βX\X]
(by Corollary 2.10) and fβ [{x0}×βY ] ⊆ fβ [βX\X], which is a totally
disconnected set (since it is countable). Since fβ separates (x0, u) and
(x0, v), then fβ [{x0} × βY ] is not a singleton, hence is not connected.
This contradicts the fact that fβ [{x0} × βY ] is connected (being the
continuous image of the connected set {x0} × βY ). Hence, for any
x ∈ ωN, every singular function f in Sβ has an extension fβ which
is constant on (clβX({x} × Y ))\({x} × Y ). Thus, for each x in ωN,
(clµX({x}×Y ))\({x}×Y ) is a singleton set, (this follows from the facts
that (clµX({x}×Y ))\({x}×Y ) is either a singleton or contains finitely
many elements, and the collection Sβµ separates the points of µX\X).
Let x0 and y0 be distinct points in ωN. Since {x0}×βY and {y0}×βY
are distinct connected components of βX, then there exists a clopen
subset U of βX such that {x0} × βY ⊆ U and {y0} × βY ⊆ βX\U .
Let g : βX → {0, 1} denote the characteristic function with respect to
U . Then the function g|X is a singular function whose extension to βX
separates {x0}×βY and {y0}×βY . Hence Sβ

β separates the connected
components {{x} × βY : x ∈ ωN} of βX. This implies that µX is
the union of the disjoint collection {clµX({x} × βY ) : x ∈ ωN}. The
map r defined by r[clµX({x} × βY )] = clµX({x} × βY )\({x} × βY )
(where x ∈ ωN) is easily seen to be a retraction map from µX onto
µX\X. Thus we conclude that µX is a singular compactification. Since
µX is the supremum of all singular compactifications, the collection of
all singular compactifications forms a (complete) lattice (see the note
following Definition 2.1). Since (clµX({x}×Y ))\({x}×Y ) is a singleton
for each x ∈ ωN, then µX is strictly less than βX. Hence βX is not a
singular compactification.

In [5] the authors wonder whether the following statement is true:
“If the set of singular compactifications of a space X forms a lattice,
then it forms a complete lattice.” The truth or falsity of this statement
remains an open question.

We consider a simple problem. In the following example, we show
that a subfamily F of the family of all singular compactifications of a
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space X may form a lattice which is not complete.

Example 2.36. A lattice of singular compactifications of a space X
is not necessarily a complete lattice.

Proof. In Example 2.32, we have shown that the family of all singular
compactifications of the space X = [0, ω1) × {0, ω1) contains a totally
ordered lattice A = {ακX : 0 ≤ κ < ω1, κ a nonlimit ordinal} of
singular compactifications whose supremum is βX, a compactification
which is not singular.

Observe that the family of all singular compactifications of the space
X = [0, ω1) × {0, ω1) does not form a lattice. To see this, let αX be
the decomposition space obtained by collapsing to a point the subset
{ω1} × [0, ω1] of µX = [0, ω1] × [0, ω1] (and fixing all other points).
Clearly αX is a compactification of X. Let γX be the decomposition
space obtained by collapsing to a point the subset [0, ω1] × {ω1} of
βX = µX = [0, ω1] × [0, ω1] (and fixing all other points). It is easy to
verify that both αX and γX are singular compactifications. Note that
the supremum of αX and γX is µX, a nonsingular compactification
(since [0, ω1] × [0, ω1] is not singular).
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