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LOGARITHMIC TRANSFORMATIONS INTO /!
MULATU LEMMA

ABSTRACT. Throughout this paper we shall write [ to
denote 1. Let t be a sequence in (0,1) that converges to 1,
and define the logarithmic matrix L¢ by anr = —tht/[(k +
1)log(l — t»)]. The matrix L; determines a sequence-to-
sequence variant of the logarithmic power series method of
summability introduced by Borwein in [1]. The purpose of
this paper is to study these transformations as mappings into
[. A necessary and sufficient condition for L; to be I is
proved. The strength of L; in the I- setting is investigated.
Also it is shown that L; is translative in the [-I sense for
certain sequences.

1. Introduction and background. Since the appearance of the
famous Knopp-Lorentz theorem in [5], there have been many studies
of the general properties of |- summability methods, but still there
are relatively few results about specific [-] methods. The shortage
of examples of [-I methods and the study made by Fridy in [3] have
provided the present study.

The logarithmic power series method of summability [1], denoted by
L, is the following sequence-to-function transformation if

z—1—

then u is L-summable to A. In order to consider this method as
a mapping into I, we must modify it into a sequence-to-sequence
transformation. This is achieved by replacing the continuous parameter
x with a sequence t such that 0 < ¢,, < 1 for all n and lim, ¢, = 1.
Thus, the sequence u is transformed into the sequence L;u whose nth
term is given by

~1 | X
thtt,
log(l—tn)§k+luk n

(Ltu)n =
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This transformation is determined by the matrix L; whose nkth entry
is given by
— -1 1 s

log(1—t,)k+1"
The matrix L, is called a logarithmic matrix. The L; matrix is regular
and, indeed, totally regular.

Ank

2. Basic notations and definitions. Let A = (a,x) be an infinite
matrix defining a sequence-to-sequence summability transformation
given by

(Az)n = anrr,
k=0

where (Ax),, denotes the nth term of the image sequence Az. Let y be
a complex number sequence. Throughout this paper we shall use the
following basic notations and definitions.

l—{y=Z|yk<00}
W(A) ={y: Ay el}

d(A) = {y : Zankyk < oo for each n > 0}
k=0

G = {y : yr = O(rF) for some r € (0,1)}
Gw = {y : yx = O(r*) for some r € (0,w),0 < w < 1}
c(A) = {y : y is summable by A}.

Definition 1. If X and Y are complex number sequences, then
the matrix A is called an X-Y matriz if the image Au of u under the
transformation A is in Y whenever v is in X.

Definition 2. The summability matrix A is said to be [-translative
for a sequence u in [(A) provided that each of the sequences T, and S,
is in I(A), where T,, = {u1,u2,us, ...} and S, = {0, ug, uy,...}.

Definition 3. The matrix A is [-stronger than the matrix B provided
that I[(B) C I(A).
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3. The main results. Our first main result gives a necessary and
sufficient condition for L; to be I-.

Theorem 1. The logarithmic matriz Ly is -l if and only if 1/ log(1—
t)el.

Proof. Since 0 < t,, < 1, it follows that

> 1 ~1
D lankl =57 20 !
v k+1 = log(l —tn)

- -1
< -
- Z log(1 —t,)
for every k. Thus, if 1/log(1 —t) € I, the Knopp-Lorentz theorem [5]

guarantees that L; is an [-l matrix. Conversely, if 1/log(1 —t) ¢ I,
then, considering the sum of the first column of L;, we have

o0 o0 —tn _
ngo‘an,d —nzzom = 00,

so the condition of the Knopp-Lorentz theorem [5] fails to hold, and
hence L; is not an [-] matrix. O

Corollary 1. If0 < t, < w, <1 and L; is an [-l matriz, then L.,
is also an l-l matriz.

Proof. Since the hypothesis implies that

-1 S -1
log(1 —t,) = log(l —wy)’

the assertion easily follows by Theorem 1. u]
Corollary 2. If L; is an l-l matriz, then arcsin(1 —t) € [.

Proof. By Theorem 1 we have 1/log(l — t) € [, and this yields
(1—t) €l using the inequality log(1/1—¢,) < 1/(1 —t,). Now observe
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that, for 0 < t,, < 1, we have
arcsin(1 — t,,) <
and consequently arcsin(1 —t) € [. o

Corollary 3. Suppose a > —1 and Ly is an [-l matriz; then
(11—t el.

Proof. 1t is easy to see that

1
—— < M,y (k—;{:—a>’ for some M; > 0,

and this yields

1 k+a
§ —t +1<M§ thtl
el e = < k >n

k=0
_ Mqt,
(1 —ty)etl”
Now it follows that
My
—log(l —t,) < ————,
Og( ) (1 _ tn)a_._l
and, consequently, we have
-1 (1 —t,)>t!

>
log(1 —ty,) M,y

The hypothesis that L, is I-l implies that 1/log(1—t) € { by Theorem 1,
and hence (1 —t)*Tt e€l. O

The following result gives a relationship between the logarithmic
matrix L; and the zeta matrix Z,, introduced by Chu in [2].
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Theorem 2. Suppose w, = 1/t, and L; is an l-l matriz; then the
zeta matrix Z,, is also an -l matrix.

Proof. If Ly is l-1, then by Theorem 1, 1/log(1 —t) € I and this gives
us (1—t) €l. Now (1—t) € l implies that (w—1) € [, and the theorem
follows by Theorem 5 [2]. O

Remark 1. The converse to Theorem 2 is not true. To see this, let
wp,=1/t, and t,=1-(n+ 2)*2.

Then, by Theorem 5 [2], Z,, is I-l, but by Theorem 1, L; is not I-I.

Our next theorem has the form of an extension mapping theorem. It
indicates that a mapping of L; from G, into [ can be extended to a
mapping of [ into [.

Theorem 3. The following statements are equivalent:
(1) Ly is an l-l matriz;

(2) Lt is a G-l matriz

(3) L is a G-l matriz.

Proof. Since G is a subset of [ and G,, is a subset of G, (1) = (2) =
(3) follow easily. The assertion that (3) = (1) follows by Theorem 1.1
[6] and Theorem 1. O

Corollary 4. (1) If L; is a G-G matriz, then Ly is an l-l matriz.
(2) If Ly is a Gy-Gy matriz, then Ly is an l-l matriz.

Proof. Since both G and G,, are subsets of [, the corollary follows
easily by Theorem 3. o

The next result suggests that the logarithmic matrix L; is [-stronger
than the identity matrix. The result indicates that the L; matrix is a
rather strong method in the [-/ setting.
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Theorem 4. If L; is an -l matriz and the series Z;ozo xp has
bounded partial sums, then it follows that x € I(L;).

Proof. Let

k
1
k _ k+1 _
=——t S —E i
Yn E+1m™ 7 b izlx
5’0::170 and |Sk|§M

Then we have

pPRESILI
— k+1

m
_ 2: k
= w,, Tk
k=1

= Zw,’j(Sk — Skfl)
k=1

m—1 m
= Smw,”f—i- E waSk— E waSk,l
k=1 k=1

m—1

= |wS, + Z Sp(wk — wkth)
k=1

< M.

This yields that
Skt <M,
— kE+1

and consequently
-M

|(LtI)n) < m

Thus, if L; is an [-l matrix, then by Theorem 1, 1/log(1 —t) € I, so
T € l(Lt) ]

Remark 2. Theorem 4 indicates that, if L; is I-l, then I(L;) contains
the class of all sequences x such that thio x) is conditionally conver-
gent. This suggests how large the size of I[(L;) is. In fact, we give a
further indication of the size of I(L;) by showing that, if L, is an I-]
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matrix, then [(L;) also contains an unbounded sequence. To see this,
consider the sequence x given by

zp = (—1)*(k +1)%

Then

thtl = ¢, —1)*(k +1)t*
> et =t 3D 1)

Hence,

(Liw)n = — 10g(1 — t) (1 + t,)?

-1
< log(1 —t,)

Thus, if L; is an I-l matrix, then, by Theorem 1, 1/log(1 —t) € I, so

Lemma. The complex number sequence x is in the domain of the
matriz Ly if and only if

lim sup |mk|1/k’ <1.
k

Proof. If x is in the domain of L;, then we have
o0
Zankxk < o0, foreachn >0.
k=0

This yields that

-1
log(1 — t,,)

=1
Z mktﬁ'H < oo, for0<t, <1,
— k+1

and hence the radius of convergence of the power series

— 1 k+1
(%) ,;) P 1mkz
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is at least 1. Consequently, we have

lim sup |wk|1/k <1
k

Conversely, if limsup,, |zx|'/* < 1, then it follows that the radius of
convergence of the power series (x) is at least 1. Since 0 < t,, < 1 for
all n, we have

Zanka:k < oo, foreachn >0.
k=0
Hence, z is in the domain of L;. a

Example 1. The L; matrix is not I-stronger than the familiar Euler-
Knopp matrix E, for r € (0,1). To see this, consider the sequence z
given by

LT = (7Q)k7
r=1/¢ and s=1-1/q,

where ¢ > 1. Then we have
1 Tl
( > —k k( Q)k
+

8

|(E1/q

|
wmg

S

Since ¢ > 1, we have E;/qz € I, and hence z € I(E;) but x ¢ [(L;) by
the above lemma. Thus, L; is not [-stronger than F,..

Our next theorem gives a necessary and sufficient condition for d(L;)
to be equal to I(Ly).

Theorem 5. The following statements are equivalent:
(1) I(Le) = d(Ly);
(2) There exist numbers M and r such that 0 <r < 1 and

[eS)
Z ‘ank| S Mrka
n=0
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for every integer k.

Proof. Suppose (1) is true. By the above lemma, we have
d(Ly) = {x : lim sup \mk|1/k < 1}.
k

The assumption that (1) holds implies that L; maps d(L;) into ! and, by
Corollary 9 of [4], it follows that (2) holds. Conversely, if (2) holds then
by Corollary 9 of [4] L; maps d(L;) into [. This yields d(L;) = I(L:)
and hence (1) holds. O

The next main result suggests that L; is [-translative for certain
sequences in [(L;).

Theorem 6. Fveryl-l L; matriz is l-translative for each L-summable
sequence in [(Ly).

Proof. Let x € ¢(L) NI(L;). Then we will show that
(1) T, € I(L¢) and
(2) S; € l(Ly),

where T, and S, are as in Definition 2. Let us first show that (1) holds.
Note that

(LeTe)n| = 5 g(l_i - kijo k—li-lmk+1tfl+l
- log(;i tn) g%w’“tﬁ
- log(l_i tn) kZ:l <k i 1 %k 1)>“’”’“th
= log(l_i tn) kZ=1 2 _1+_ lmktfl
1
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The use of the triangle inequality is legitimate as the radii of conver-
gence of the two power series is at least 1. Now let us define

o0

-1 1
A, = tk
log(1 —t,) ;k—i—lxk "
and
-1 S |
B, = 1.
log(1 ) ; k(k+1) Fm
So we have

and if we show that both A and B are in [, then (1) holds. The
condition A € [ follows from the hypothesis that € (L) and B € [
will be shown as follows. Observe that
_ -1
~ log(1 —t,)
—leltn a2t}
~ 2log(1 —t,) 6log(l—ty)
1 oo
log(L —tn) | = k(k +1)

n

1 1 = 1
—xit, + —xot? — itk
571 +6I2"+;k(k+1)xk"

xktﬁ

Next define
o - e oty
" 2log(l—t,) 6log(l—t,)

and

-1 > 1
D, = tk
log(1 — t) I;) k(k+ 1) Fn

By Theorem 1, the hypothesis that L; is I-l implies that C' € [, and
hence there remains only to show that D € [. Note that

X Gt D </ tk_ldt)‘

D, =
log(1 — t,) =

/ dt<i T 1)””’“tk_1> ‘

k=3

_ -1
~ log(1 —t,)
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The interchanging of the integral and the summation is legitimate as
the radius of convergence of the power series

G 1 k—1
pPREE.
= kE+1

is at least 1 by the above lemma, and hence the power series converges
absolutely and uniformly for 0 < t < ¢,.

Now we let
=1
F(t) = § ot
®) K1k
k=3
Then we have
F(t) -1 — k-1
= t
—log(1—t) log(l—t) ; kr1k ’

and the hypothesis that z € ¢(L) implies that

. F(¢) .
1 lim ——~—— = A (finit for 0 <t < 1.
() t1- —log(1—1t) (finite), for 0 <t <
We also have

. F(t)
) }I—I}(l) —log(1l —1t)

Now (1) and (2) yield that
F(t)
—log(1 —1t)

=0.

‘gM, for some M > 0,

and hence

So we have

|F(t)| < —Mlog(1l —t).
-1
D,= —"——
" log(l —ty,)

/t" F(t) dt‘
1 :

tn
< — F(t)|dt
e d 0]
M tn
< —/ —log(1 —t)dt
log(1 —t,) Jo
o Mt
log(1 —t,)

= M1 t,)
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The hypothesis that L; is Il implies that both 1/log(1 —t) and (1 — )
are in [, and hence D € [.

Next we will show that (2) holds. We have

(LeSelnl = 1 (: t) ]i kil“‘ltﬁﬂ
(%) 1og(1_i £n) k; K+ 29““’5]6+2
log(l_it ) kz:% <k+1 k+1)1(k+2)>‘”’“tﬁ+2
<E,+F,
where
- log(;i tn) kzo k i pokin’
log(l_it i "7 1)1(1~c+2)”“"’“tk+2

k:O

The use of the triangle inequality in (x) is justified as above. The
hypothesis that € I(L;) implies that E € [, and we can show that
F €[ as follows. Note that

-1 xot%

> 1

F,= + zptht?
oali—t)| 2 " Er G
< G, + Hy,
where
_ —lxolth
" 2log(1 — ty,)
and

tk+2

-1 = 1
H, = k
log(1 — t,,) kz::l E+1)(k+2)""
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By Theorem 1, the hypothesis that L; is I-l implies that G € [, and
hence there remains only to show that H € [. Observe that

> g ([ )

k=1

[ (X )|

k=1

—1
H, =
log(1 —t,)

- -1
~ log(l —t,)

The interchanging of the integral and the summation is justified as
above. Now, proceeding as in the proof of (1) above, we can easily
show that H € [ and consequently our assertion follows. ]

Corollary 5. FEwvery l-l L; matriz is [-translative for the sequence x
such that > p- | x has bounded partial sums.

Proof. By Theorem 4, x € I(L;) and also it is easy to see that
x € ¢(L). Thus, by Theorem 6, the assertion follows. u]

Example 2. Every [-l L, matrix is [-translative for the unbounded

sequence x given by
zp = (—1)*(k +1)%

Since z € I(L;), by Remark 2, and also z is L-summable to 0, the
assertion follows by Theorem 6.
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