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ON PROPERTIES OF MULTIPLIERS
OF CAUCHY TRANSFORMS

D.J. HALLENBECK AND K. SAMOTIJ

ABSTRACT. In this paper we prove that the lengths of
images of certain rectifiable arcs under a multiplier f of
fractional analytic Cauchy-Stieltjes transforms on the disk are
uniformly bounded by a constant depending on the multiplier
norm of f. As a consequence of this result, we also prove that
|f'(2)|2 is integrable with respect to area measure on every
Stolz angle. Finally, we prove that our results are sharp in
two different senses.

1. Introduction. Let A = {z: |2|] <1} and let I" = {z : |2| = 1}.
Let M denote the set of complex-valued Borel measures on I'. For each
a > 0, let F, denote the family of functions f having the property that
there exists a measure p € M such that

1) 1) = [ =g @)

for |z| < 1. In (1) and throughout this paper, each logarithm means
the principal branch. F, is a Banach space with respect to the norm
defined by

(2) 1£ll 7o = inf {lpel}

where p varies over all measures in M for which (1) holds and where
|||l denotes the total variation norm of p. For oo = 0, let Fy denote the
family of functions f having the property that there exists a measure
u € M such that

) 1) = 1)+ [ 108 = duto)
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for |z| < 1. Fp is a Banach space with respect to the norm defined
by [|fllz, = inf{||x||} + |f(0)] where u varies over all measures in M
for which (3) holds. A function f is called a multiplier of F, provided
fg € F, for every g € F,. Let M, denote the set of multipliers of F,.
M, is a Banach space with respect to the norm defined by

(4) £z = supfllfgllr. = 9 € Fa, llgllz, <1}

Some properties of M, were derived in [3]. It was proved that, if
0 < a < B, then M, C Mg [3]. Further, let &« > 0 and let f € M,,
then f € H* and ||f|lu= < |If|ls. [3] Let V(£,0) = [y |f'(re®®)|dr,
the radial variation of f in the direction 6. In [3] it was proved that, if
f € My, a > 0, then there is a constant A depending only on « such
that V(f,0) < Al fllar, - In [2] all of these results were extended to the
case « = 0. When o = 1 and f € M, the uniform boundedness of
V(f,6) was proved in [5]. We prove that these results on the uniform
boundedness of V(f,0) for f € M,, a > 0, are in a certain sense sharp
results that cannot be improved. If &« > 0 and f € M, then it follows
from the previously mentioned fact that the lengths of the images under
f of each diameter are uniformly bounded. In a private conversation,
T.H. MacGregor raised the question with one of the authors, of whether
the lengths of the images of all chords of A of fixed length [ < 2 under
a multiplier would be uniformly bounded.

In this paper we prove a general result for some rectifiable curves
which provides a positive answer for MacGregor’s question. Further-
more, as a consequence of our result, we prove that if f € M,, a > 0,
then |f’(z)|? is integrable with respect to area measure on every Stolz
angle S(0) with vertex at €. Finally, we also generalize the result [3,
5] on radial variation to higher derivatives.

Throughout the paper we use Ay, Asg, etc., to denote certain absolute
constants. Also, we use A, B, C, etc., to denote constants depending
on various parameters or assumptions. The meaning of A, B, C, etc.,
may change within an argument or even within a line.

2. Main results. For each 8 € (0,7/2) and for any real 0, let Sz(f)
denote the convex hull of {z : |z| < sin B} U {e%}.
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Lemma 1. Let
(eia o Z)afl(eiea—: o 1)
(1 —zz)ot!

9(z,z,0) =«

where |x| = 1. Then there exists a constant Cy > 0 depending only on
B and o such that

|e¥ — |
| <Ci——
(5) |g(z,x, )| <Gy |619 — Z|2
and
|€i9 _ z|a—1
©) oter0,0)| < LT

when z € Sg(0).

Proof. We first prove (5). Since z € Sg(f) there exists a positive
constant A such that |e? — z| < A(1 — |z|) and A depends only on j.
We easily infer from this that, for each |z| =1 and each z € Sg(0), we
have

(7) 1 A

[1—Zz| ~ |e® — 2|

The absolute value of the function g may be rewritten as

|et? —z|>°"|r1 1

|ei® — z|2| |

®  laaol=af
Now (7) and (8) give (5) with C; = aA%*1. To prove (6), first suppose
le?? —z| > (1/2)|e® —z| and z € Sg(). This, together with (7), implies
that

9)

We infer from (9) that

|1 — zz|

1 < 2A
1 —Z2| ~ |e? —z|

2a+1Aa+1

l9(z,2,0)] < ae? —z|>! x

0
(10) |ei9—m|°‘+1|ez -
10 :
_ 2a+1aAa+1 |6Z0 B Z‘a71

et — z[*
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Now suppose |ei9 — 2z < (1/2)|€i9 ~ 2| and = € S(). Then
(1) -z =la a2 | —al |z e 2 5l ~al.

Hence, in this case, (11) gives

_ Z|a—1|ei9 —x

BL
lg(z,2,0)| < a20F! 60— ga+l

(12) ; o
:a2a+1|ea_z| !

e — zlo

Now let C; = max{aA®T! 20F1q Ao+ q22F1} Then (7), (8), (10)
and (12) give (5) and (6). O

We next prove our main results. Corollaries 1 and 2 to Theorem 1
give the positive results mentioned in the introduction.

Theorem 1. Suppose f € M, for a« > 0. Let z(t), 0 <t < n
denote a rectifiable arc v parametrized by arc length, contained in a
Stolz angle S5(0) at € such that 2(0) = €®. Further, suppose there
exists a positive constant a such that at < |z(t) — e'’| for all t € [0, 7).
Then

(13) [ 1@z < €,

where the constant C' depends on o, a and the angular opening (3.

Proof. Since ||f||ar., < A1l flla, for each o > 0, where the constant
A; depends only on « [2], we may and do assume that a > 0. Let
f € M,. For each 0 we can select a measure y € M such that

(14 (€ =2 () = [ (1= 22" du(a)

r

and ||u|| < 2[|f()(€? — )72 £, <2||f|la,- It follows from (14) that

(15) F(z) = / o2 ) du(x),
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where » L
(e —2)* etz — 1)

By (15), we have

/|f ||dz] = /\f )l dt

(16) = g( (t),2,0) du(z)

/(/ 9(:(0) 2,0 ) dl ().

Set I(z) = [, |g(2(t),z,0)|dt. Then, by (16), we have

/7 £ < [ 1) duta)

(17) < sup I(z)||ull

|z[=1

< 2‘s1|1p 1(@)|| £l a,.-
z|=1

dt

To complete this proof it is enough to show that I(z) < Bj, where
Bj depends only on « and the angular opening 3 of the Stolz region.

Let us write
(18) / l9(2(t), 2, 0)| dt = Ly + Lo,

where Ly, = ka lg(2(t),z,0)|dt, k = 1,2, with Ty = {t : |2(t) — €| >
le? — x|}, and Ty = {t : |2(t) — €| < |e*® — z|}. In the case when T}
is nonempty we estimate L; using (5) from Lemma 1, as follows

¢ —af
R L
P e ==

0 _
< Cyle ! z| d_2t
a s t

(19)
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But, recalling that the curve is parametrized by arc length, we have
|2(t) — €| < t and so inf7} = inf{t > 0 : |2(t) — €| > |e¥ — z|} >
inf{t > 0:t>|e?’ — 2|} = |e? — x|. Therefore, by (19), we have

C1|6i9 - I| > dt Cl

. 2
a |ei® —z| t

If T3 is nonempty, to estimate Lo we first note that sup{t > 0 :

|2(t) — €] < |e® — x|} < sup{t > 0:at < |e¥ —z|} = ¢ — z|/a.
Hence, by (6) of Lemma 1, we have in the case, 0 < a < 1,

sup T ) _ eif|a—1
MSQ/ [=(t) — ™"
0

et — g|o
le?® —z|/a a—1pa—1
(21) <c / a g
h 0 |e? — x|
=

In the case of 1 < a < oo, we have by (6)

|ewfz|/a t) — 0 |a—1
hgq/ [=(t) — ™"
0

0 — g|o
|ei9—z|/a tafl
(22) < 01/ T e dt
|e?? — |
Cy
=

Now (13) follows from (17), (18), (20), (21) and (22), and the proof is
complete. u]

Remark. If v is a chord of the unit disk of the length [, 0 < [ < 2,
then each of the halves of v satisfies the assumption of Theorem 1
with 8 = arccos(l/2), a = 1 and ¢ being one of the endpoints of
the chord. Moreover, the constant C; in Lemma 1 can be taken to be
(C/cos B)**!, where C is an absolute constant. Therefore, the proof
of Theorem 1 gives the following corollary.



MULTIPLIERS OF CAUCHY TRANSFORMS 229

Corollary 1. Let vy denote a chord of length I <2 in A. If f € M,
for a >0, then

(23) JECLIEE (%)Wnﬂm

where Cs is an absolute constant.

Corollary 2. If f € M, for a > 0, then, for fized 8 € (0,7/2),

24 [, P aAE) < Ol .

where dA(z) denotes area measure and C' depends only on « and (3.

Proof. There is no loss of generality in assuming that 8 = 0.
Integrating in polar coordinates, we obtain

(25) // (2)|? dA(z)
Sp(6
B cos s+14/sin? B—sin? s )
g/ / If'(1 — te') |t dt ds.
-sJo

For each fixed 8 € (0,7/2) there is a constant A depending only on
such that for z € Sg(0) we have |1 — z| < A(1 — |z|). Hence we have

) Ifllo _ Allfllso
(26) ‘fwﬂgl—ﬁdgll—d’
S 55(0).

Now (25) and (26) give

//w ()2 dA(2)

(27) B cos s+14/sin? B—sin? s
< Allfloo/ﬂ/ |F/(1 — te’)| dt ds.
— 0
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Since the curve y(t) = 1 —te’*, 0 < t < cos s+ 1/sin” B — sin® s satisfies
the assumptions of Theorem 1 with a = 1 with each s € (=g, 3);
applying Theorem 1 to the inner integral on the righthand side of (26)
we obtain (24), where the constant C' depends only on a and . |

Remark. Corollary 2 is sharp in the sense that the integrand in (24)
can neither in general be replaced by ¢(|f’(z)|) where ¢(t), 0 < ¢ < co
is a positive nondecreasing function with lim;_,, ¢(¢)/t> = oo nor by
¥(|z])|f'(2)|?, where (t) is a measurable positive function on [0,1]
with lim,_,;- ¥(p) = oo. The proofs of these two assertions are very
similar to the proofs of Theorems 3 and 4 to follow, and we do not give
details in the paper.

Theorem 2 is a technical result needed for the proofs of Theorems 3
and 4. These last mentioned results show that Theorem 1 is a sharp
result in at least two senses.

Theorem 2. (i) Let k(z) = (1 —2)71, and let k,(2) = k(rz). Then,
for each a > 0, there is a constant D1 depending only on o such that

1
(28) ||kTHMa SDI]_ e 0<r<l1.

(i) Let k*(z) = —log(1 — 2), and let kX(z) = k*(rz). Then there is
a constant Dy independent of r such that

1
—<r<l.

. 1
(29) 1Ksllasy < Dalog =,

Proof. To prove (i), note that |[(k.)'[|g1a) < C/(1—7),0 <7 <1,
for some constant C independent of r. Since, by a generalization [3,
Theorem 3.5] of a result of [5], we have

(30) £l < CULF M) + 1£0)]),

with a constant C that does not depend on the function f, part (i)
follows.
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To prove (ii) it is enough to prove that there is a constant C
independent of r € (1/2,1) and of z € T such that

1
(31) Kk (@) 7, < Clog -

‘We observe that

17k (@)l 7 = k7" ()] ll 7,

(32) . .
< ke ()7, + kek™ ()] 7, -

The first term in (32) may be estimated using (30) as follows

(33) Ik k@)l < k2l < R v a) < Clog 37—

Since k.(z) = (1/2m)k % P.(z), where P, denotes the Poisson kernel,
we have ||k||7 = ||k||7, = 1. Using this to estimate the second term,
note first that

[krk™ ()|l 7, < [[Kr (k7 (22) + D7, + (IRl 7,

(34 =l - (R () + 1), 41

The first term following the last inequality sign in (34) can be estimated
as follows

ky
ke + 1

ki
kr+1

o - (k*(2) + D)7, = '

g

Since (33) implies |[(k} + 1)||lpy < Clog(l/(1 — 7)), 0 < r < 1,
to complete the proof it is enough to show that the F; norm of
(kr/(kX+1))(k*(z-)+1) is bounded uniformly with respect to 0 < r < 1,
and |z| = 1. To this end, we will use the following fact [3, 5]

(k" (z-) + 1) (K + 1)‘

(35) i

(ke + Dl aa, -
Fi1

(@) +1)

2m
) Wl s {|5- [ soe e ar]:

0<p<1,he H®(A),|hlw < 1},
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and also the fact [2, Lemma 3.8] that the family

W) +n p=1)

is bounded in F;. In particular, there is a constant C' independent of
z, || = 1, such that for every h € H*(A) and for every p, 0 < p <1,
we have

2m
ity 1 1T dt| <
(37) / = pelt +1[k(mpe ) + 1]h(e) dt| < C||h]|co-
Let P.(t) = (1-7r2)/|1—re'|? denote the Poisson kernel for A. Since the

function k/(k* 4+ 1) is harmonic in A, we may write for each r € [0, 1),
each p € [0,1), each z € T, and each h € H*®(A),

2m
pre it —
1 @t
‘/ k.* pre’t + 1 [k(xpe )+ ]h(e )dt‘

‘ / N B —kfp(p " 9))) n.0) ]

- [k(zpet) + 1]mdt‘

1 27 27 i(t—e)
_/ pT(g)/ _ k(pe™™7)
27 Jo o k*(peillt=9) +1

- [k(xpe'™) + 1]h(et) dt df

27
‘/ k* pezr + 1

- [k(zpe®®e'™) + 1]h(etfei™) dr

do

1 27
< —
27
= C|Aloo,

P, (0)C||h(e”-)| db

where (37) was used to obtain the last inequality. Since (38) holds for
each p € [0,1), and each h € H*(A), we conclude, by (36), that the
Fi norm of (k,./(kX+1))(k*(z-) +1) is bounded uniformly with respect
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to 0 <r < 1and |z| =1. As explained above, this completes the proof
of (29). o

< o0, be a positive

Theorem 3. Let a > 0, and let ¢(t), 0 < ¢t
) = oo. Then there is an

nondecreasing function with lim;_, . (¢(t)/t
analytic function f € M, such that

(39) / o(11'()]) dp = oo.

Proof. Since My C M, [2], a > 0, it is enough to prove this theorem
for « = 0. Let

(40) on(z) = 08/ (1= T2)) ki

log(1/(1=7))  log(1/(1—r))’

Note that, by our assumption on ¢, and an easy computation, we have

1
tim [ g(127"gL(p))) dp = oo

r—1 0

for each integer n. In particular, for each positive integer n, we can
choose a number 7, € (1/2,1) such that fol #(127"g,. (p)])dp > n.
Since, by Theorem 2(ii), the family g,, 1/2 < r < 1, is bounded in My,
the series EZOZI 27"g,  is convergent in My, and almost uniformly in
A to a function f € My. Since g..(p) is positive for p € (0,1), and since
the function ¢ is nondecreasing, we have for each positive integer n,

(41) | o1s@nde=> [ o2, ) dp > n.
Clearly (41) implies (39). O

Corollary 3. For each nonnegative number o and each p > 1 there
is a function f € M, such that fol | (p)|P dp = oo.

Theorem 4. Let o > 0, and let ¢ be a measurable positive function
with lim,_,,- ¢ (p) = co. Then there exists a function f € My such

that [y $(p)|f'(p)| dp = oo.
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Proof. As in the proof of Theorem 2, we may and do assume that
a = 0. Let g, be the function from the proof of Theorem 3. Then again
an easy computation using our assumption on ¥ gives

(42) lim | ¥(p)lg(p)] dp = oo.

r—1-

In particular, for each positive integer n, there is a number r,, € (1/2,1)
with

1
(43) | o0, 0l dp = 2.
Let f =Y 77 ,27"g, . The function f is in My. Since g.(p) > 0 for

0 < p < 1, we have |f'(p)| > [27"g,. (p)], 0 < p < 1. And, hence, for
each positive integer n, we have

1 1
[ oo\ ldo> [ vl )l do>n
0 0
Therefore, [, 4(p)|f'(p)|dp = 00. O

Remark. It is known [1, 5] that there are multipliers f such that
[ 1f'(2)]? dA(z) = +oc. Our final theorem is known when n = 0 [3].

Theorem 5. If f € M, for a > 0, then there ezists a constant C
depending only on a such that

1
/ (1~ )" FD (rei®)  dr < Al flas,
0

forall @ andn=20,1,2,... .

Proof. This can be proved with the same technique as in the case
n = 0 [3]. It is only necessary to make careful use of the Leibnitz
formula for the nth derivative of a product. We do not give the details.
mi

Remark. The previous result shows that, when an analytic function
f is a multiplier of F,, a > 0, there are strong restrictions on the
behavior of all derivatives f(™, n=1,2,....
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