ON THE PROFINITE TOPOLOGY OF THE AUTOMORPHISM GROUP OF A RESIDUALLY TORSION FREE NILPOTENT GROUP

E. RAPTIS AND D. VARSOS

ABSTRACT. Let G be a finitely generated residually torsion-free nilpotent group. Then every polycyclic-by-finite subgroup H of Aut G is closed in the profinite topology on Aut G.

1. It is known that, if G is a finitely generated (f.g.) residually finite (\mathcal{RF}) group, then its automorphism group Aut G is also \mathcal{RF} , cf. [2]. This gives a motive to ask if the subgroup separability of a group implies the subgroup separability of its automorphism group.

Although the automorphism group of a free group is not subgroup separable, see Proposition 1 below, we prove that polycyclic-by-finite groups of automorphisms of a residually torsion-free nilpotent group G are closed in the profinite topology on $\operatorname{Aut} G$.

2. The profinite topology on a group G is the topology in which a base for the open sets is the set of all cosets of normal subgroups of finite index in G.

A group is said to be subgroup separable if all of its f.g. subgroups are closed in the profinite topology on G or, equivalently, if any pair of distinct finitely generated subgroups of G may be mapped to distinct subgroups in some finite quotient of G. Note that G is \mathcal{RF} if and only if the trivial subgroup is closed in the profinite topology on G.

Proposition 1. Let $F = \langle a, b \rangle$ be the free group of rank 2. There exists a subgroup of Aut F which is not closed in the profinite topology on Aut F.

Proof. The group K with presentation $K = \langle t, x, y | t^{-1}xt = 0 \rangle$

Received by the editors on July 11, 1995, and in revised form on August 8, 1996. 1991 AMS $Mathematics\ Subject\ Classification.\ 20F28,\ 20E26.$

Copyright ©1998 Rocky Mountain Mathematics Consortium

 $xy, t^{-1}yt = y\rangle$ is not subgroup separable, cf. [4]. It is not difficult to see that the group K is a subgroup of Aut F by the identification of x with τ_a , the inner automorphism induced by a, y with τ_b and t by the automorphism $\phi: (a \to ab, b \to b)$. But the subgroup separability is inherited by subgroups. Therefore, the Aut F is not subgroup separable.

Lemma 2. Let G be a finitely generated residually torsion-free nilpotent group. Then there exists a central series $G = N_1 \geq N_2 \geq \cdots \geq N_i \geq \cdots$ with torsion-free factors, N_i , $i = 1, 2, \ldots$, characteristic in G and $\bigcap_i N_i = 1$.

Proof. Let $G = G_1 \geq G_2 \geq \cdots \geq G_i \geq \cdots$ be the lower central series of G, for each i define $\mathcal{N}_i = \{R_{ij} \mid R_{ij} \triangleleft G, G_i \triangleleft R_{ij} \text{ and } G/R_{ij} \text{ is torsion free}\}$. Let $N_i = \cap \{R_{ij} \in \mathcal{N}_i\}$. It is easy to see that, for every $i = 1, 2, \ldots$, the subgroups N_i are characteristic in G. Indeed, for $\alpha \in \operatorname{Aut} G$ we have that $G_i = G_i \alpha \leq N_i \alpha$ and $G/N_i \alpha$ is torsion-free. So $N_i \leq N_i \alpha$ and by symmetry $N_i = N_i \alpha$. Also, by the definition of the family \mathcal{N}_i , we have that each factor G/N_i , $i = 1, 2, \ldots$, is torsion-free.

The series $G=N_1\geq N_2\geq \cdots \geq N_i\geq \cdots$ is central. For it, we have $[G_iN_{i+1},G]=[G_i,G][N_{i+1},G]\leq N_{i+1}$. Therefore, $(G_iN_{i+1})/N_{i+1}\leq Z(G/N_{i+1})=Z_i/N_{i+1}$. So $G_i\leq Z_i$. But the group $G/Z_i\approx (G/N_{i+1})/Z(G/N_{i+1})$ is torsion-free, whence by the definition of N_i we have $N_i\leq Z_i$, which means that $[N_i,N_{i+1}]\leq N_{i+1}$. So the series $G=N_1\geq N_2\geq \cdots$ is central. Moreover, since G is residually torsion-free nilpotent, it is clear that $\cap_i N_i=1$.

Let G be a finitely generated residually torsion-free nilpotent group and $G = N_1 \geq N_2 \geq \cdots$ the central series defined in the previous lemma. Since the terms N_i , $i = 1, 2, \ldots$, are characteristic in G, there exist homomorphisms ϕ_i : Aut $G \to \operatorname{Aut}(G/N_{i+1})$, $i = 1, 2, \ldots$, and f_i : (Aut G) $\phi_i \to \operatorname{Aut}(G/N_i)$ with $(\sigma\phi_i)f_i = \sigma\phi_{i-1}$ for every $\sigma \in \operatorname{Aut} G$. Let K_i be the kernel of ϕ_i , $i = 1, 2, \ldots$. Since $\phi_i \circ f_i = \phi_{i-1}$, it is easy to see that K_{i-1}/K_i is isomorphic to a subgroup of $\operatorname{Ker} f_i$, $i = 1, 2, \ldots$. Let α be an element of $\operatorname{Ker} f_i$. Then, for every $gN_{i+1} \in G/N_{i+1}$, we have $(gN_{i+1})\alpha = gcN_{i+1}$ for some $c = c(g) \in N_i$. Moreover, the group $\operatorname{Ker} f_i$ induces the iden-

tity on $G/N_2 \approx (G/N_{i+1})/(N_2/N_{i+1})$ for $i=2,3,\ldots$. Therefore, by Proposition 3 [5, page 49] Ker f_i induces the identity on every factor $(N_j/N_{i+1})/(N_{j+1}/N_{i+1}) \approx N_j/N_{j+1}, \ j=1,\ldots,i$. Whence the restriction of α on N_i/N_{i+1} is the identity. Consequently, we have, for an element α of Ker f_i , $(gG_{i+1})\alpha^n = g \cdot c^nG_{i+1}$. It gives that the torsion freeness of G_i/G_{i+1} implies the torsion freeness of K_i/K_{i+1} .

Lemma 3. Let G be a finitely generated group. Then, for every soluble subgroup H of Aut G, we have $\bigcap_{N \in \mathcal{N}} HN \leq \bigcap_i HK_i$, where $\mathcal{N} = \{N \mid N \triangleleft \text{Aut } G \text{ with } N \text{ of finite index in Aut } G\}$.

Proof. For every $i=1,2,\ldots$, we have that $H/H\cap K_i\approx HK_i/K_i\leq \operatorname{Aut} G/K_i$. So the group $H/(H\cap K_i)$ is a polycyclic-by-finite subgroup of $\operatorname{Aut} G/K_i\approx (\operatorname{Aut} G)\phi_i\leq \operatorname{Aut} (G/G_{i+1})$. But $\operatorname{Aut} (G/G_{i+1})\leq GL(n,Z)$ for some $n\in Z^+$, cf. [5, Theorem 6, p. 96]. Therefore, HK_i/K_i is closed in the profinite topology on $\operatorname{Aut} G/K_i$, cf. [5, Theorem 5, p. 61]. Namely, $\bigcap_{N\in\mathcal{N}}(HK_i/K_i)\cdot(NK_i/K_i)=HK_i/K_i$, whence $\bigcap_{N\in\mathcal{N}}HN\leq HK_i$ for every $i=1,2,\ldots$, and finally $\bigcap_{N\in\mathcal{N}}HN\leq \bigcap_i HK_i$.

Theorem 4. Let G be a finitely generated residually torsion-free nilpotent group. Then every polycyclic-by-finite subgroup H of $\operatorname{Aut} G$ is closed in the profinite topology on $\operatorname{Aut} G$.

Proof. Let H be a polycyclic-by-finite subgroup of Aut G. By the previous lemma it is enough to prove $\cap_i HK_i \leq H$. Since H is polycyclic-by-finite, there exist a normal subgroup N of H of finite index in H and a normal series $N = N_1 \triangleright N_2 \triangleright \cdots \triangleright N_{m+1} = 1$ of N such that N_j/N_{j+1} is an infinite cyclic group for $j=1,\ldots,m$. If $r\cdot N_2$ is a generator of N_1/N_2 , then there exists a term K_i of the normal series Aut $G = K_0 \triangleright K_1 \triangleright K_2 \triangleright \cdots$ such that $r \in K_i$ but $r \notin K_{i+1}$ ($\cap_i K_i = 1$ since $\cap_i G_i = 1$), cf. [1, Theorem 1.2]. Suppose that $i \geq 1$; then the group K_i/K_{i+1} is torsion-free because G_i/G_{i+1} is torsion-free. So $\langle r \rangle \cap K_{i+1} = 1$ and the Hirsch number $h(N_1)$ of N_1 is strictly greater than $h(N_1 \cap K_{i+1})$. Now for the group $\overline{N}_1 = N_1 \cap K_{i+1}$ we can find a term K_{r+1} of the series $K_1 \triangleright K_2 \triangleright \cdots$ such that $h(\overline{N}_1) > h(\overline{N}_1 \cap K_{r+1})$. Therefore, after many finite steps, we can find a subgroup K_n such

that $N \cap K_n$ is finite. This means that $H \cap K_n$ is finite. But then, since K_n/K_{n+1} is torsion-free, we have that $H \cap K_n \leq K_{n+1}$. Whence $H \cap K_n \subseteq \cap_i K_i = 1$. If $r \in K_0$ but $r \notin K_1$, then since K_0/K_1 is torsion-free by finite, we can suppose that $\langle r^m \rangle \cap K_2 = 1$ for some $m \geq 1$. But then $\langle r \rangle \cap K_2 = 1$, since r is of infinite order. So the argument above can be adjusted.

Now let $x \in \cap_i HK_i$. Then, for each $i \in \mathbb{N}$, we have $x = h_i k_i$, $h_i \in H$, $k_i \in K_i$. For $i \geq n$, we have $h_i k_i = h_n k_n$, whence $h_n^{-1}h_i = k_n k_i^{-1} \in H \cap K_n = 1$, namely, $k_n = k_i$ for every $i \geq n$, which means that $k_n \in \cap_i K_i = 1$. So $x = h_n \in H$, and we have finished. \square

Corollary 4.1. Let F be an f.g.-free group. Then every polycyclic-by-finite subgroup H of $\operatorname{Aut} G$ is closed in the profinite topology on $\operatorname{Aut} G$.

Corollary 4.2. Polycyclic-by-finite subgroups of the automorphism group of a surface group G are closed in the profinite topology on Aut G.

Proof. It is known, cf. [3], that a surface group G is residually torsion-free nilpotent. \Box

REFERENCES

- 1. S. Andreadakis, On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. (3) 15 (1965), 239–268.
- 2. G. Baumslag, Automorphism groups of residually finite groups, J. London Math. Soc. (2) 38 (1963), 117–118.
 - 3. ——, Musings on magnus, Contemp. Math. 169 (1994), 99–106.
- 4. R.G. Burns, A. Karrass and D. Solitar, A note on groups with separable finitely generated subgroups, Bull. Austral. Math. Soc. 36 (1987), 153–160.
 - 5. D. Segal, Polycyclic groups, Cambridge University Press, Cambridge, 1983.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ATHENS, PANEPISTEMIOPOLIS 15784, ATHENS, HELLAS

E-mail address: eraptis@atlas.uoa.ariadne-t.gr

Department of Mathematics, University of Athens, Panepistemiopolis 15784, Athens, Hellas

 $E ext{-}mail\ address: dvarsos@atlas.uoa.ariadne-t.gr$