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GLOBAL EXISTENCE FOR THE
CAUCHY PROBLEM FOR THE
VISCOUS SHALLOW WATER EQUATIONS

LINDA SUNDBYE

ABSTRACT. A global existence and uniqueness theorem of
strong solutions for the initial-value problem for the viscous
shallow water equations is established for small initial data
and no forcing. Polynomial L? and L* decay rates are
established and the solution is shown to be classical for ¢t > 0.

1. Introduction. The numerical solutions of the hyperbolic systems
encountered in weather prediction models often develop high-frequency
gravity wave solutions which can seriously distort short-term forecasts
(on the order of hours to days; typically 12 hours). Various initialization
schemes have been studied to control these distortions. The ‘slow
manifold,” proposed by Leith [3], is believed to have an invariance
property such that if one begins with initial data on the slow manifold,
the solution will remain free of gravity waves for all time. Temam [11]
suggests a relationship between the mathematical concept of an inertial
manifold and slow manifolds.

The shallow water equations are the simplest primitive equation
model to exhibit gravity waves. However, before one can study the
issues of global attractors and inertial manifolds, the question of global
existence and uniqueness must be thoroughly addressed.

1.1. Well-posedness. Bui [1] proved local existence and uniqueness
of classical solutions to the Dirichlet problem for the unforced viscous
shallow water equations using Lagrangian coordinates and Hoélder space
estimates. He assumed the initial data hy € C1%(Q) and ug € C**(Q).

Kloeden [2] proved global existence and uniqueness of classical solu-
tions to the forced Dirichlet problem using Sobolev space estimates by
following the energy method of Matsumura and Nishida [5, 6]. In ad-
dition to the assumptions 3-6 (Section 2), Kloeden further assumes the
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solutions are spatially periodic and satisfy Dirichlet boundary condi-
tions; the initial data (ho,uo) € H*(Q2); and ® € H®(Q). The spatially
periodic assumption was made in order to simplify the a priori estimate.
This assumption eliminates the need to compute boundary estimates.

Bui and Kloeden do not include the Coriolis force in their equations,
but both state that the inclusion of this force will not alter the results of
their respective theorems. Indeed the Coriolis force acts perpendicular
to the velocity field and hence does no work. Neither paper establishes
a decay rate of solutions. Both papers assume a positivity constraint,
the fluid height h(t,x) > 0 for all x €  and ¢ > 0.

Sundbye [10] proves global existence of strong solutions for the
forced initial value problem with Dirichlet boundary conditions. An
exponential C° decay rate is established for this Dirichlet problem.
The positivity of the fluid height h is also established for all z € 2 and
t > 0. The solutions are shown to be classical for ¢ > 0.

In this paper we prove global existence of strong solutions for the
unforced initial value problem. Polynomial L? and L> decay rates are
established for the Cauchy problem, and the solutions are shown to be
classical for ¢t > 0.

1.2. Method of proof. The method of proof of the a priori estimate
follows closely the energy method developed by Matsumura [4]. This
technique essentially consists of considering the differential equation for
v* where

(1.1) o*(t,z) = (1+t)*u(t,z), keN,

and then deriving energy estimates for v*. These estimates are weighted
a priori estimates for u (Racke [8]).

Matsumura [4] solved the Cauchy problem for the compressible,
viscous, heat-conducting fluids. Matsumura and Nishida [6,7] further
modified this technique to solve the Dirichlet problem on interior and
exterior domains.

Zheng [12, 13], Zheng and Chen [14] and Zheng and Shen [15] used
this technique to solve nonlinear parabolic equations and coupled quasi-
linear hyperbolic-parabolic systems of a specific form.

For a more complete review of energy methods applied to initial value
problems, see Racke [8].
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2. The viscous shallow water equations. We consider a
uniformly rotating sheet of fluid with constant, uniform density and
unbounded horizontal extent. The height of the fluid surface is given
by h(z,y,t). The bottom topography hp(z,y) is assumed to be zero.
The horizontal velocity vector is assumed to be independent of height
and the vertical velocity is, in turn, determined by mass continuity and
the hydrostatic approximation.

In vector form, the viscous shallow water equations are given by

(2.1) Z—?+(u-V)u+th+kau:um
Oh
(2.2) 5 +V:(hu)=0

with initial conditions
(2.3) u(0,z) = up(x), h(0,z) = ho(z), for z€Q,

where t > 0, z = (x1,72) € Q; u(t,z) = (u!(t,z),u?(t,z)) is the
horizontal velocity field; h(t,z) is the fluid depth, the quantity gh is
the geopotential; v = u/p > 0 is the kinematic viscosity; f is the
Coriolis parameter; and k is the unit vector (0,0,1).

The equations form a semi-linear mixed hyperbolic-parabolic system.
For global existence for the Cauchy problem, we assume the following
conditions on equations (2.1)—(2.3):

1. Q@ =R?

2. ho(z) >0 for all z €

3. (ho,UO) S Hg(ﬂ),

4. ||(ho—h, uo)| s is small, i.e., the initial data are smooth functions
close to a constant state (h,0) where h = [, ho(x) dx = [, h(z) dx;

5. |ho — h| < h, i.e., the perturbation is much smaller than the
average height.

The shallow water equations in index notation are:

(2.4) uj + uju;j —v—y 24 gha, + feijekiu® =0
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(2.5) he + (hu?)g; =0

(2.6) u(0, z) = uo(z), h(0,z) = ho(z) for z € R?
where €, is the alternating unit tensor defined by

+1 if 454 = 123, 231, or 312;
(2.7) gije = —1 if 450 = 321, 132, or 213;
0 if any two indices are repeated.

Equations (2.4)—(2.5) are perturbed about the constant steady state
by applying the change of variables (h,u) — (h + h,u).
For Equation (2.5), we have

(2.8) he + ((h+h)w!)z, =0
and for Equation (2.4), we have

2.9 i g ((h + P)ug, )a, h+h kit =0
(2.9)  w+ vluy, S S S +9(h+ h)e, + feijek’u” =

Without loss of generality, we normalize the acceleration of gravity
since it is not a fluid property and rewrite the perturbed problem as
follows:

(2.10) o

LO(h,u) = hy + huj = G°
(2.11) ' ' . ' '

L'(h,u) = uj — vug o + ha, + feijkiu® =G, i=1,2
(2.12)

u(0, z) = up(z), h(0,z) = ho(z) — h

where the terms on the right include all nonlinearities and have the
form

(2.13) G°(h,u) = —(hu?),,

g =

he;u
h+

J

(2.14) G'(h,u) = —ujui]_ +v

>
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fori=1,2.
A solution of (2.10)—(2.12) is sought in the set of functions X (0, co; E)
for some E < Ey, where for 0 <t; <ty < o0,
(2.15)
X(tl,tg;E)
={(h,u):
h € CO(ty,to; H®) N O (ty, to; H?) N L2 (ty, to; H?),
(1+t)12D%h € L2(ty,ty; L), (1 + t)D3h € L3(ty, ta; L?),
u e Co(tl,tg;H3) N Cl(tl,tz; Hl) N L2(t1,t2; H4),
(14 ¢)Y2D%u € L2(t1,t2; L?), (1 + t)D3u € L2 (ty, to; HY),
and N(tl,tg) S E}
where the energy N is defined by

(2.16)
N2(tr,t2) = sup {|(h,w)(t)[|F= + t]| D(h, u) (1)

11 <t<ts
+ 82| D (h, ) (8) 130 }
12
+/t {1R(s) 15 + llu(s)l[7s + sID*(hyu) ()]
+ 8% D*h(s)||* + s*| D u(s)l[3 } ds.
We denote by W*2(Q) = H*(Q) the Sobolev space of functions f

which, along with its mth order generalized spatial derivatives D™ f
for m =1,2,..., k, belong to L?*(£2), with norm given by

1l = (mi_ / D"‘f(x)|2dw>1/2,

by
o\ .. )
Dmf: a. fla \oz|:m, Z:]-a?a"'ana
Or

which is a vector composed of all mth partial derivatives, by || - || =
|- |22, by C*¥(a,b; X) the space of functions f : [a,b] — X, which are
k-times continuously differentiable functions in time and by L*(a, b; X)
the space of functions f : [a,b] — X for which ||f(¢)||x is square
integrable for t € [a, b].
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3. Local and global existence. We prove the following global
existence theorem for the Cauchy problem:

Theorem 3.1 (Global existence and uniqueness for the Cauchy prob-
lem). Consider the initial-value problem (2.1)—(2.3) with the assump-
tions 1-6 and initial data (hg — h,ug) € H3(R?). Then there exists
e >0 and C > 0 such that if

(3.1) 1(ho — Ry uo)ll s <e,

then the problem (2.1)—(2.3) has a unique global solution in time satis-
fying

(3.2) h—h € C°0,00; H*) N C' (0, 00; H?),

(3.3) u € C°(0,00; H*) N C(0,00; HY)

with the following decay rates

(3.4) [(h = h,w)|| < Cll(ho = Ry uo)| s
(3.5) ID(h = h,u)|| < C(1+ 1) ?||(ho — Ry uo)| ms
(3.6) ID*(h = h,uw)|| < C(1+)7"|(ho — b, uo)| s
(3.7) [(h = R, w) ()| 2 < C(1+ )7 2||(ho — h, uo)| z2
(3.8) ) )

ID(h = h,u)(t)||pe < C(1+t)""|(ho — h,uo)| s
(3.9) ID?u(t)|| Lo < C(1+t)7%%[|(ho — h,uo)|| s

Theorem 3.1 is proved by a combination of a local existence result
and an a priori estimate.

Theorem 3.2 (Local existence). Suppose the problem (2.10)—(2.12)
has a unique solution (h,u) € X (0,T; Ey) for someT > 0, and consider
the problem for t > T. Then there exist positive constants T,e9 and
Co with g9\/1+ C% < Ey, which are independent of T such that, if
N(T,T) < eg, then the problem (2.10)—(2.12) has a unique solution

(3.10) (h,u) € X(T, T + 7;CoN(T, T)).
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Proof. (See Sundbye [9] and Matsumura and Nishida [5].) O

Theorem 3.3 (A priori estimate). Suppose the problem (2.10)—(2.12)
has a solution (h,u) € X(0,T; Ey) for some T > 0. Then there exist
positive constants €1 and Cy with £1 < g9 and 61C; < Ey, which are
independent of T such that, if N(0,T) < €1, then

(3.11) N(0,T) < C1N(0,0).

We will prove Theorem 3.3 in Section 4, but note here the proof of
Theorem 3.1.

Choose the initial data (h,«)(0) sufficiently small in order that

. €1 €1
3.12 N(0,0) < min{eg, =%, —t L
(3.12) (0.0) < min {0, £, = }

NiEze:
Theorem 3.2 with T"= 0 gives a local solution
(3.13) (h,u) € X(0,7;Cy N(0,0)).
Since Cy N(0,0) < g1 < gy, Theorem 3.3 with 7' = 7 implies

(3.14) N(0,7) < C1N(0,0).

Then Theorem 3.2 with 7" = 7 implies there exists an extension to
the solution

(hyu) € X(7,27;Cy N(7,7))

(3.15) e X(0,2r;/1+ C2 N(0,7),

since
N2(0,27') < NZ(O,T) + NZ(T, 27)

(3.16) < N?(0,7) + C3N?*(7,7)
< (1+C3) N*(0,7).
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Therefore, since

(3.17) 1+C2 N(0,7) < C14/1+ C2 N(0,0) < 1,
Theorem 3.3 with T' = 27 yields

(3.18) N(0,27) < Cy N(0,0),

and Theorem 3.2 with T' = 27 gives the extension to the solution

(h,u) € X(271,37;Cy N(27,27))

(3.19)
€ X(0,37;4/14 C2 N(0,27)).

Repetition of this process gives

Proposition 3.4 (Global existence). There ezxist positive constants
e and C with eC < Ey such that if N(0,0) < e, then the initial-value
problem 2.10-2.12 has a unique solution (h,u) € X(0,00; CN(0,0)).

To complete the proof of Theorem 3.1, it remains to show the decay
rate of the solution and to show the solutions are in fact classical
solutions for ¢ > 0.

Since

h(t) € C°(0,T; H*) N C*(0,T; H?)

3.20
(8.20) c C°0,T;CH*)nC(0,T; C**)

for any o € (0,1), h(t) is a classical solution for all ¢ > 0. The reader is
referred to Matsumura and Nishida [5, pp. 101-103] for the proof that
u(t) is a classical solution for ¢ > 0.

The decay rates (3.4)—(3.6) follow directly from Theorem 3.3. The
estimate (3.7) follows from Nirenberg’s inequality,
sup |(h — R, u)(8)] < [|(h = R, u)(8)] Lo
(3:21) I(h = R ) ()/21D° (h = B w) ()]

<C
< C(14t)"Y2||(ho — Ry uo)||-
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Nirenberg’s inequality can be modified to

(3.22) sup|D(h, u)| < C[[D(h,w)[|*/*|D* (h, u)|["/%;

this implies

sup| D(h — F, )(®)] < Dk~ By ) (1)

(3.23) < C||D(h - B,U)(t)Hi/ZHDB(h — h,u)(t)]|"?
< C(1+t)7|(ho — R, uo) |-

See Zheng [12] for proof that
(3.24) ID*u(t) | < O+ t)"*/2|(ho — hyuo)]|-

4. The a priori estimate. The proof of Theorem 3.3 follows from
Proposition 4.3 and Theorem 4.4. Lemmas 4.1 and 4.2 establish bounds
on the derivatives in terms of the nonlinearities. In Proposition 4.3,
these nonlinearities are then related to the energy norm given by
Equation (2.16). Theorem 4.4 is the heart of the proof of the a priori
estimate and shows the nonlinearities and, hence, the norm remains
bounded independently of time. The remainder of Section 4 is the
proof of Theorem 4.4 which follows from Propositions 4.5, 4.6, 4.7, 4.8
and 4.9.

Define for £ =0,1,2,3

(4.1) AR (t) = /(DkGO-th—i— hDFG' - D*ut) da
(4.2) Bk(t) = / <Dng_ - DFh,, + R prgi -thml) dz
‘ v

h )
(4.3) C’“(t):/;D’“Ggi-Dku’ dz.

Lemma 4.1. There exists a positive constant C independent of t
such that

(4.4) [ID™ (h, w)(t)|? +V/0 ID™* u(r)||? dr

< oD ol + [ 147 ar
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for 0 <m <3 and

t
(4.5) | D™ (h,u)(®)]]? +V/ D™ u(r)||? dr

0

t

< C/ (D™ (hy w) ()]|* + [T A™(7)]) dr

0

fort=1,2, m=1,2,3.

Proof. Consider the equality
t — . .
(4.6) / 7-£</DmL0-Dmh+thLl-Dmu’ da:) dr
0

t
:/ T A™ (1) dr
0
t p— .
:/ Te/Dm(ht—f-hu;i)Dmh

+ h(D™(uf — vul,, + he, + feijek’u’) D™’ ) dz dr

h o R .

~—(D™h)? 4+ = —(D™u*)? + hD™u’ D™h

/ /26t T g PT) FhD
— hvD™u, , D™u' + hD™h,, D™ u’

+ hD™ut - fEiJ-gijmuZ dx dr.

Integrating by parts and combining, we have

Te m 7 m,,t ¢ ! 7 m i
@0 FUD B+ BDm () + [ oD ar

thf—l 2,0 2 7 i 12
= [ T + D) dr

t
+/ TeAm(T) dr
0

where §%7 is the Kronecker delta.

Equations (4.4) and (4.5) readily follow. O
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Lemma 4.2. There exists a positive constant C independent of t
such that
Bt
(4.8) IID’"h(t)IIer;/0 |[D™R(r)||* dr
< C{ID’”holl2 +[ID™ g |* + | D™ u(t)]?
t
+/0 (D™ u(r)|* + IBM1(T)|+|CMI(T)|)dT}
for1 <m <3 and
Bt
(4.9) télleh(t)HQJr—/ D™ (r)|* dr
viJo

t
go{tfnpmluwu / (¢ LD () |
0
D) 2 4 7 D ()2
BRI + e em () dT}

fort=1,2, m=2,3.

Proof. Consider the equality
t A '

/ #(/D““Lg, D™ Yh, +=D™ LI D™ 1h,, dx) dr
0 ¢ v

t
= / *B™ Y1) dr

(4.10) ’

t
= / Te/Dm_l(htzi + }_Lulzw)Dm_lhwl
0 I
2 y -
+ _Dm_l(u;_yu;jmj +ha; +f€ijfk]u€)Dm_1h“ dzdr

v

! 19 h ;
_ l - Y mp\2 Prym—-1, i ym-1
_/0 T </ <28t(D h)* + VD u; D hg,

+ %eiﬂkﬂ'pm—lu@mh> dz + g||Dmh||2> dr.
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Integrating by parts and combining, we have

t

(4.11) {§||Dmh(7')||2+7'€§/Dmlui(T)Dmh(T)dm}

0

t
+C/ Te/DmfluiDmhdach
0

ho[* 2
+— [ T D™h|*dr
vJo
t B2 l—1
= [ (St + T - sy iomalR ) ar
o \ V 2
ho[? ,
+;/ Ere_l(l—5"}’0)/Dm_1ulehda:dT
0
t
+ / (e B™ (1) + 740 (r)) dr.
0

Equations 4.8 and 4.9 readily follow. u]

Proposition 4.3. There exists a positive constant C' independent of
t such that

3

w20, < il + [ (3 1470

(4.12) "
+72(|A%(7)] + |A%(7)]) + 7| AN(7)]

+ ) @+ ™) (B™7)|+]C™ (7)) dT> }

Proof. For any positive constant ¢ > 0 consider the form

3

(4.13) > (44)k+e > (4.8)m + > (4.5) =1 k=1

k=0 m=1
+3(4.9) =1, me2 + £*(4.5) =2 k=2 + €°(4.9) p—2 m—3
+e%(4.5) g2 =3
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Equation 4.12 follows by taking e sufficiently small. ]

Theorem 4.4. Suppose (h,u) € X(0,T; E) for some E < Ey. Then
there exists a positive constant C which is independent of t such that

(4.14) /0 DA™+ TAN () + (1A% ()] + [4%(7))
+Z (L+7")(|B™ ()| + |C™(7)|) dr
< CN?*(0,t 23:

Proof. The proof follows from Propositions 4.5, 4.6, 4.7, 4.8 and 4.9.
O

Proposition 4.5.

(4.15) / Z |A™(7)] < ON?(0,t i

Proof. Consider the Coriolis contribution for constant f
(4.16) D™u'(feijok? D™ut).
For m = 0,1, 2,3, we have

(4.17) —fD"uD™v + fD™vD™u = 0.
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We estimate | fot A™(7) dr| as follows:

t t
/ A™(r)dr| = //(D’“GO-DMh+BDMGi-D"‘u")dwdT
0 0
t
— / /Dmh-Dm[*D(hu)]
0
+ hD™qy - D™ _uDu—i-thDfu dz dr
h+h
t
(4.18) < / / D™hD™*! (hu)

0

t
+ l_L/ /Dmqu(uDu)
0

t
f_u// /Dmqu DhD_u
0 h+h

See Sundbye [9, Lemmas 4.2.7-4.2.9] for estimates of these three
integrals. o

+

Proposition 4.6.

(4.19) /tT|A1(T)| < CN¥(0,1).

Proof. We estimate |f0t TAY(7) dr| as follows:

t t
/TAl(T)dT = //(TDGO.DthETDGi-Dui)d:ch
0 0
t —
_ / / +Dh - D[=D(hu)] + hrDu
0
(4.20) -D| —uDu+ I/Dh}:_D]_?} dx dT‘

<

/0 t / TDhD2[hu]-+ ‘h /0 t / 7DuD(uDu)

_ t [ DhDu
h DuD _
1//0/7' U _h+h]

+
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Using Nirenberg’s inequality and Young’s inequality with p = 4/3
and ¢ = 4, the first integral is bounded by

‘ /0 t / TDhD?[hu]| = ‘ /0 t / —7D*hDlhu]

t
= ‘ / / —7D?*h(uDh + hDu)
0

t
<c / (D2l |[u] s | DR
£ D2 A= | Dul)
(4.21) <0 [+ DhE el
0
£ DR D2l 2 )
< 0 [ 2r (PP nl =l 20 )

< (sup HhIIQ)I/“(Sl;}pIIUIIQ)”4

t
[ QDRI+ |D2ul?)
0
< CN3(0,t).

Similar estimates hold for the second and third integral. O

Proposition 4.7.

(4.22) /0 72| 42(7)] < ON2(0,1) S (N (0, 1))

i=1

Proof. We estimate |f0t 72A?(1) dr| as follows:

t
/ T2A2(T) dr
0

t
= ‘ / /(7’2D2G0 - D?h 4 h7?D?G" - D*u') da dr
0

- ‘ /0 t / 72D%h . D2[—D(hu))]
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DhDu
h+h

(4.23) + hr*D?*u - D? [ —uDu+v

t
< ‘ / / 72 D*hD?hu]
0
ot
+ ‘h/ /TQDQuDZ(uDu)
0
¢
+ Bl// /T2D2’U,D2 DhD}L .
0 h+h

See Sundbye [9] for estimates of these three integrals. O

] dx dr

Proposition 4.8.

t 3
(4.24) / 72| A%(r)| < CN?(0,8) Y (N
0 i=1

Proof. We estimate | f 72 A3(7) dr| as follows:
(4.25)

i
/ T2A3(T) dr
0

t
- //(TzD?’GO-D3h+7zr2D3Gi-D3ui)dwdT
0

= /Ot/72D3h-D3[—D(hu)]

+ hr2D3u - D? —uDu—H/DhD_u
h+h
t
/ /72D3hD4[hu]
0
ot
+ h/ /TzDsuDs(uDu)
hI// / 2 3D [DhDu]
h+h

See Sundbye [9] for estimates of these three integrals. O

} dzr dr

IN
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Proposition 4.9.

(4.26)

/ mz_ B (7)) < ON*(0,1) é(zv(o,t»i,
(4.27)

| mZ_ (7)< ON*(0.1),
(4.28) /0 t [rB'(7)| < CN?(0,1),
(4.20) /0 rC(r) < ON*(0, 1),
4w [ B S ON 0000+ N0.0)
(4.31) /0 {202 ()] < ON*(0,)(N(0,£) + N*(0, 1)),

Proof. See Sundbye [9]. u]
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