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CONVEXITY, SCHUR-CONVEXITY AND BOUNDS
FOR THE GAMMA FUNCTION INVOLVING
THE DIGAMMA FUNCTION

MILAN MERKLE

ABSTRACT. We consider inequalities for the ratio I'(z +
B)/T'(z), with bounds expressed in terms of the digamma func-
tion or its derivatives. We show that this type of inequalities
naturally arises from convexity or Schur-convexity of some
functions. As a result, we re-derive, generalize or improve
several inequalities due to Gautschi, Kershaw and Alzer. Also

we present some new inequalities of the type introduced by
Gurland.

1. Introduction. Many authors investigated inequalities for the
ratio

(1) Q(w,ﬁ)ZW, 250,850,

see the bibliography in [2]. In this paper we consider the bounds for

(1) that involve the digamma function ¥ = I''/T" or its derivatives.

The first result in this area is due to Gautschi [5]:

(2) Q(z,B) <exp(f¥(z+pB)), 0<p<1,z>0.

Kershaw [9] improves and complements Gautschi’s bound to

(3) exp(B¥(z+B—1++/1-7)) <Q(z,8) <exp(B¥(z+5/2)),
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1054 M. MERKLE

for 0 < 8 < 1land £ — 1+ B > 0. These inequalities were also
investigated in [3]. Further, a result of Alzer [2] reads

z+B—-1/2
% exp (— B8+ %(\Il'(ac +8) - qﬂ(w»)

(x +18)w+ﬂ71/2

rr—1/2

(4) < Q(z,B) <

exp (<B4 (Ve 540) — Wlo+a))

for s € (0,1),z — 1+ >0and a>1/2.

As we shall show in the subsequent sections, inequalities of this
type can be obtained as a natural consequence of convexity of Schur-
convexity of certain functions. This approach outlines a general method
of producing and sharpening the inequalities of mentioned type. In [11],
we applied a similar method based on convexity for obtaining bounds
for @ in terms of elementary functions.

2. Convexity and bounds for the ratio ). The results in this
section are based on the following key theorem.

Theorem 1. For a > 0, let

(5) F,(z) =logT'(z) — (m — %) logz — %\Il'(w +a).

Then
(i) the function x — Fy(z) is strictly concave on x > 0.

(ii) For a > 1/2, the function x — F,(x) is strictly convex on z > 0.

Proof. Using the expressions for the second derivative of the function
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z +— logI'(z) (see [1], for example), we get

F,,()i’“"" 1 11 ’i’f 1
a \® _k:O (z+k)?2 =z 2x2 k:02(m+k+a)4
X LR S
= \(e+k)? otk z+k+l
R S 1 B 1
20z +k)? 2xz+k+1)2 2x+k+a)
—+o0

B 1 1
- 0(2(x+k)2(x+k:+1)2 ; 2(m+k+a)4>'

>
I

Now from (z+k)%(z+k+1)2 > (z+k)* for z > 0 and k > 0, it follows
that Fj(z) < 0 for z > 0 and (i) is proved. To prove (ii), note that by
log-concavity of the function z — (z + k)2,

(z+ k) (z+k+1) < (z+k+1/2)* z>0k>0,

and therefore F/(z) > Fy)y(x) > 0 for a = 1/2. O

We will now show that both inequalities in (4) can be derived from
Theorem 1, with an expanded domain.

Corollary 1. Inequalities (4) hold for x > 0, 8 >0 and a > 1/2.

Proof. Firstly we note that, for each a > 0,
1 1
12 _ _ _ _ n
F (z) =9(z) —logz + oy 1 —12\11 (z +a)

and, using the asymptotic formula for ¥ and the expression for ¥" [1,
Chapter 6], we find that

lim F.(z)=-1.

r—+ 00

By concavity of Fjy, its first derivative is a decreasing function on
(0,400) and so,

Fi(z) > lm Fj(z)=1, z>0.

r—+00
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By the mean value theorem,

Fo(z + B) — Fo(x)
B

>—-1, >0, 38>0,

which is equivalent to the left inequality in (4).

Similarly, by convexity of F, for a > 1/2 and the mean value theorem,
we have that

Fa($+6) _Fa(w)

3 <-1, 2z>0,86>0,a>1/2,

which is the right inequality in (4). O

In the above proof we used only the fact that F.(z) has an extremum
at x = +00. Using Jensen’s inequality for convex or concave functions,
we can obtain new bounds as in the next corollary.

Corollary 2. Let
(x — 14 B)Pleth=1/2) (g 4 g)(1=F)(e+6-1/2)
A("'I"7B) = $w71/2 Y

_ (2 + B)r+5-1/2
B(z,8) = (z + 1)BGE+1/2)4(1-B)(=—1/2)-5"

Let € (0,1) and a > 1/2. Then, for x > 1 — (3, we have

Ao pexp( 15 (¥ (@ +a -1+ 6)
1B (et atB) - Vet a») < Q(e,B)
< A(z,B) exp (%(B\I/'(a: —14p0)

LA (et B) \If'(x»)-
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Further, for any = > 0, we have

Bl 8)exp (15 (e +6) — (L= B)¥'(a) — 69z + 1)

12
<Q(z,B)
™ < Bl ey ((¥a+atp) - (1-H¥(o+a)

— Y (z+a+ 1))).

For B > 1 all four inequalities hold for all x > 0, with < and >
interchanged.

Proof. Let 8 € (0,1) and > 1 — 8. Starting from

(8) z=p—-1+8)+(1-p)(z+0),

and applying Jensen’s inequality with the convex function F,, a > 1/2,
we find that

(9) Fo(z) < BFa(x — 1+ B) + (1 — B)Fa(z + B).

The left inequality in (6) now follows from (9), (5) and the recurrence
relation I'(z —148) = I'(z+8)/(x— 14 B). The right inequality in (6)
is obtained in the same way with the concave function Fy. Inequalities
in (7) can be derived similarly, replacing (8) with

(10) z+B8=(1-8)z+p(z+1),

where now it suffices to assume that x > 0.

If B > 1, then we start from

x—l+ﬂz%x+%(m+,@’), x>0

and, applying Jensen’s inequality with F,, we get

Fo(z) > BFa(z — 14 B8) + (1 = B)Fa(z + B),



1058 M. MERKLE

which leads to the opposite left inequality in (6). Other inequalities
can be similarly dealt with. ]

Theorem 2 (Comparison of inequalities). For z > 0 and 8 € (0, 1),
each inequality in (7) is sharper than the corresponding inequality in

(4).

Proof. The lower bound in (7) is greater than the lower bound in (4)
if and only if

< . >5(w+1/2) exp (ﬁ(%(‘lﬂ(m) —¥'(z+1))+ 1>> > 1,

z+1

which is, by ¥/(z) — ¥/(z + 1) = 1/2?, equivalent to

1\ #+1/2 ,
- (101 <o

f(z) = <x+%>log<1+§> -1- 121532'

Then we have that

Let

. _ . / _

AR @ =0 Iy S =0,
2z +1

f”(x):_m <0 f0r1‘>0,

and therefore f'(z) < 0 and finally f(z) < 0 for all z > 0, which proves
(11).

The upper bound in (7) is smaller than the upper bound in (4) if and
only if

1 z+1/2 ,
(12) (1 + _> > 61+1/(12($+a) )
X

Obviously, it suffices to prove (12) for a = 1/2. If we define

g(a:)-(x—l—%)log(l—&—%)—l—wllﬂ)z,
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we have that lim,_, 1o g(z) =0, limy 400 ¢'(x) = 0 and

8z2 4+ 8z +1
202(z +1)2(2z + 1)

g"(z) = 7 >0 forz>0,

and we conclude that g(z) > 0 for all > 0, which was to be proved.
]

In passing, let us note that the double inequality
z+1/2
el+1/(12(z+1/2)2) < (1 + _> < el+1/(12z2)’ x>0,
T

is an improvement of a result in [12, Section 3.63].

Numerical results show that, for x > 1 — 8, bounds in (6) are not
comparable with bounds in (4).

An advantage of inequalities based on convexity is that they can be
infinitely sharpened, making so a basis for Euler-like products. This
can be done with all inequalities of Corollary 2, following the pattern
indicated in the next theorem.

Theorem 3. Let A(z,3) be as defined in Corollary 2. Then, for any
z>0,8€(0,1) andn=1,2,...,

z(z+1)---(z+n—-1)A(z+n,B)
(z+B8)z+B8+1)--(z+B+n—-1)

(13) exp (;_2@% fn-145)

Q(z, B) <

L= B+ 1+ 6) - Wlat ) ).
The absolute and relative error in (13) converges to zero as n — +00.

Proof. For any z >0, 8 € (0,1) and n =1,2,..., we have that

z+n=Fz+n—-14+8)+(1-8)(z+n+p).
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An application of Jensen’s inequality with the concave function Fjy
yields

(14)  Fo(z+n) > pBF(z+n—1+p)+ (1-B)Fo(z+n+p).

Considering the difference between the right and left side in (14), we

find that
rn = Fo(z +n) — BFy(z+n—1+p0)

— (1= B)Fo(z +n+B)
=B(Fo(xr+n) — Fo(x+n—1+0))
+ (1 - B)(Fo(z +n) — Fo(z +n + B))
— 81— B)Fyler) — BL - B)FY(es)
= B(1 = B)(Fy(c1) — Fo(cz))
=B = B)(e1 — e2) Fy (c),
where, by the mean value theorem, ¢; € (z +n — 1+ 5,z + n),
c2 € (x+n,x+n+ ) and ¢ € (¢1,c2). Since |¢; — c2| < 1, we have

that r, < B(1 — B)|F{ (c)|- It is not difficult to see that the function
z — |F{/(z)| is decreasing and lim,_, 1 F{(z) = 0. Therefore,

0<r, <B1-B8)Fj(z+n—-1+B)—0

(15)
as n — +oo.

Now the inequality (13) can be obtained from (14) after successive

applications of the recurrence relation for the gamma function. For a

pair (z,8) being fixed, let R,, denote the righthand side of (13). Then

Q = R, -e~ "™, which implies that lim,,_, ; o, log R,, = log @ and further,

lim (R, —®)=0 and lim B — @

n—-4o0o n—-4o0o

=0. O

Remark. From the proof of Theorem 1 it follows that

Il
(]

i <« 1 1
fa @ o<2(ac+k)2(ﬂc+k:+1)2 2(w+k+a)4>

4 o=
8”

(z +k)3(4a — 2) + (z + k)?(6a® — 1) + 4a®(x + k) + a*
2w+ k)2 (z+k+1)2%(z+k+a) '

x~
Il
o
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From this expression we see that F./(z) < 0 for each a € (0,1/2)
and z large enough, therefore F, is strictly concave on = > =z,
where z, depends on a € (0,1/2) and can be evaluated numerically.
Consequently, we may apply presented methods to obtain further
bounds for Q(z,3) when z is large.

As a prototype of such results, we note that using the method of
proof of Corollary 1, Fy replaced by F, for some a € (0,1/2), we get
the inequality

z+pB—1/2
(16) (wtﬁ)—mexp<—ﬂ+ L@@+ 6+a)

(et a))) < Q. ),

where a € (0,1/2) and © > z,. Since F.)(z) > Fj'(z) for a < 1/2,
it follows from the arguments similar to the proof of Theorem 3 (see
also the proof of Theorem 2 in [11]) that on the domain = > z,, the
inequality (16) is sharper than the left inequality in (4).

A similar idea (sharper inequalities for large x) has been exploited in
[8] for bounds for @ in terms of elementary functions.

3. Schur-convexity and further bounds for ). Let F be a
function of n arguments, defined on I", where [ is an interval. We say
that F is Schur-convex on I™ if

(17) F(z1,...y2n) < F(y1,--- ,Yn)
for each two n-tuples © = (z1,... ,2n), ¥ = (Y1,-.- ,yn) in I", such
that

k k

ZI[Z]SZy[z]a k:]-a"'anf]-a
i=1 i=1

Zw[i] = Zy[i]’

i=1 i=1

where 2[; denotes the ith largest component in z. If (18) holds, we say
that x is majorized by y and write z < y. We say that F' is strictly

(18)
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Schur-convex on [ if a strict inequality holds in (17) whenever z < y and
x is not a permutation of y. For n = 2, a function (z1,22) — F(z1,z2)
is Schur-convex on I? if and only if

F(wl,l'g) < F(ml —&,T2 +6)
for each (x1,x2) € I?, 1 < 72 and each € > 0 such that (71 —¢, z2+¢) €
12
A function F is said to be (strictly) Schur-concave on I™ if the
function —F is (strictly) Schur-convex on I™.
For further details on Schur-convexity, see [10].

The results of this section are based on the following theorem.

Theorem 4. The function (z,y) — F(z,y) defined by

_ logI'(z) — logI'(y)
(19) F(I,y)— CL’—y ’ x#ya

F(z,z) = ¥(x)

is strictly Schur-concave on x > 0, y > 0.

Proof. Since F' is a continuously differentiable function, by [10,
Chapter 3.A], it suffices to show that

(2—5—2—5)@—@<0 for all z > 0,y > 0,2 # vy,

which is, in our case, equivalent to

¥(z) +¥(y) < log'(y) — logI'(x)

(20) 5 o , 0<z<y.
For a fixed = > 0, let
U(y) + ¥(x
o(y) = ogT(y) ~logT(a) — (y — 2) "L EYD
Then we have
U(y) + ¥(x Yy—x
o' (y) =¥(y) - ()2 ) _ 5 V')
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By the mean value theorem, we have that (U(y)—¥(z))/(y—z) = ¥'(c),
for some ¢ € (x,y). Since ¥’ is decreasing, then ¥'(c) > ¥'(y) and it
follows that ¢'(y) > 0 for all y > z. Therefore, ¢(y) > ¢(z) = 0 and
(20) is proved. O

Corollary 3. For z >0 and 8 > 0, we have

U(z+6) + ¥(z)
2

(21)  exp <B ) < Q(,B) < exp(BU(z + B/2)).

Proof. The left inequality in (21) follows directly from (20) by
replacing y with = + 5. From

(x4 B,z) > (z+ B/2,z + 5/2),

and Schur-convexity of the function F', we get the right inequality in
(21). u]

Theorem 5. (Comparison of inequalities). For 8 € (0,1) and
x > 1— B, the left inequality in (21) is sharper than the left inequality
in (3), i.e.,

YEEDEYD S wo s 51+ /175

(22)

Proof. Since ¥ is an increasing function, it suffices to show that

U(z+ )+ ¥Y(z)

(23) -

>U(z++/1-08), z>0,8>0.
For a fixed z > 0, define
0(B) =T(x+B)+ ¥(z) —2T(x + /1 - P).

Then ¢(0) = 0, ¢'(8) > 0 and therefore ¢(8) > 0 for 8 > 0, which
ends the proof. o
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Let us note that, from Theorem 4, we can produce various inequalities
for the ratio of gamma functions. For example, from

(y,m)%(y—s,m—i—s), $<y,0<€<(y—$)/2

O<z<y, 0<e<(y—=z)/2

we obtain

4. Some inequalities for Q(z + \,3)/Q(z, 3) and inequalities
of Gurland’s type. In this section we consider the ratio Q(z +

X, 0)/Q(z, B) for A € (0,1).

Theorem 6. Let I = (a,+0), a > 0. If for 8 > 0 the function
_ T
(24 F@) = g Glo6)

is strictly log-convex with respect to x € I, then for any A € (0,1) and
x> a+1— X the following holds:

z+8\" Gz + A\, B) Qz + A, B)
(25) ( z ) @t LA @B~ Q@p)

- 14248\ G e —147,8)G"z+A,8)
< z—1+A > Gz —1+X\p)

Proof. By Jensen’s inequality applied to the function z — log F(z),

we have that
F(z+ ) < FY2a)FMz + 1),
ie.,
L(z+ )

———G(z + A,

Tatat g @A)
< LAz MMz + 1)

M-Xz+B8)IMz+B+1)

fﬂ z A 1-X(p A

G Mz, B)GMNz + 1,8)
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and the left inequality in (25) is proved. The right inequality follows
similarly from

Fz) < FMz =1+ NF" "Xz +)). o

In [2, 3] and [7], it is proved that several functions of the form
(24) are completely monotone on x for each fixed 8 € (0,1). Since
each completely monotone function is log-convex (see [4], for example),
Theorem 6 can be applied with these functions. For example, by [3],
the function

I'(z)
F(z) = ————exp(B¥(z + B/2
(5) = o g (P (o + 5/2)
is strictly log-convex on z > 0 for each 8 € (0,1) (in fact, the result in
[3] is stated for x > 1 — 8, but by an inspection of the proof it is easy
to see that it holds for > 0). For £ > 1 — A, Theorem 6 then yields

(ml_ﬁ>)\exp <,8<\I!(x+>\+,8/2)—\1!(x+,3/2)— A >>

z+6/2
Qz+\p) [(z-1+A+8\"
< Q@ B) <( -1+ >
-exp(ﬁ(\ll(x+)\+ﬁ/2)

—V(z+8/2) — #Hﬁ/?»

where the recurrence relation ¥(z + 1) = ¥(z) + 1/2 was used.

In a special case when A\ = 3, we have that

Q+Ap) _ Iz +26)l(x)

Q(,B8) — T*z+p)

This ratio was investigated by Gurland [6] in 1956 and later by many
authors, but it seems that bounds related to the digamma function
have not been observed in the literature so far. Some bounds of this
type can also be obtained from our Theorem 1. For example, from
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Jensen’s inequality applied to concave function Fj, we find that

I(z+28)0(z)  a* V2(x+2p5)°t2F1/2
FQ(I +ﬂ) (I +ﬂ)2z+25—1

exp (5 (¥ (a4 268) + V(o) - 200 4 ),

for z > 0 and 3 € (0,1).
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