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SPHERE-FOLIATED CONSTANT
MEAN CURVATURE SUBMANIFOLDS

WILLIAM C. JAGY

1. Introduction. In this article we will consider constant mean
curvature submanifolds M of space forms (Rn, Hn and Sn). M will be
of codimension one and will be ‘foliated by spheres,’ in a sense made
precise below.

We begin with a few examples of constant mean curvature surfaces
in R3 that are built up from circles in the sense we will be considering.
The first is the catenoid, which is a minimal surface of revolution, given
by the equation r = cosh z in cylindrical coordinates. The intersection
of the catenoid with a plane z = z0 is a circle with center on the z
axis. The circles in two different such planes, say z = z1 and z = z2,
are coaxial, meaning that the line joining their centers (the z axis) is
orthogonal to both planes.

If we allow nonzero constant mean curvature, there are round spheres,
such as x2+y2+z2 = 1 in rectangular coordinates. Any family of planes
(parallel or not) intersects the sphere in circles.

The well-known example that we shall call the “Riemann staircase”
is also a complete minimal surface in R3. The intersections of a family
of parallel planes (we take the planes z = z0 again) with this surface
are round circles, with the exception of a discrete set of straight lines.
It is not a surface of revolution; if z1 and z2 are close together, the
circles in planes z = z1 and z = z2 are not coaxial. As mentioned, for z
near evenly spaced values zj , the radius r(z) goes to infinity as z → zj ,
and the plane z = zj intersects the surface in a straight line. There
is a detailed discussion of this surface (and some lovely pictures) in an
article by Hoffman and Meeks [1].

We are naturally led to ask whether the Riemann staircase is an iso-
lated example could something similar be found elsewhere, perhaps
by allowing nonzero constant mean curvature, or by considering sub-
manifolds of hyperbolic space?
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In Theorems 1 and 2, and Corollary 1, we consider the possible
extensions of these examples to higher dimensional Euclidean space.
That is, Mn will be a constant mean curvature submanifold of Rn+1,
with n ≥ 3. Mn will be required to be foliated by spheres, meaning
that there is a one-parameter family of hyperplanes which meet Mn in
round (n − 1)-spheres. The hyperplanes are not assumed parallel, and
if two spheres should lie in hyperplanes that happen to be parallel, the
spheres are not assumed coaxial. Mn is not assumed complete. We
do not assume the existence of any group action on Mn. Finally, we
do not require that the spheres themselves be complete; we consider
only a small neighborhood in Mn, so that only ‘pieces of spheres’ are
involved. A priori, an attempt to ‘fill in’ the remainder of each sphere
could introduce self intersections. Our Theorem 1 states simply that the
hyperplanes of the family are parallel unless Mn is itself a subset of a
round n-sphere. Theorem 2 continues with the case of parallel planes;
the conclusion is that the spheres of the foliation must be coaxial,
meaning that M is a subset of a hypersurface of revolution. Taken
together, these two results give Corollary 1, which gives the complete
answer to our main question in Euclidean space. Theorem 2 shows a
striking contrast to the situation in R3, where there is the Riemann
example. The case of surfaces in R3 was finished by Nitsche [5]. The
case of minimal submanifolds in Rn+1, for n ≥ 3, was considered by
the present author [2].

There is ongoing work on submanifolds with boundary that relate to
the present investigation. Max Shiffman [7] showed that an annular
minimal surface R3 bounded by two circles in parallel planes must be
a part of either a catenoid or a staircase. This is quite remarkable:
the results of [2] show that Shiffman’s result fails for Rn+1, n ≥ 3.
Shiffman also showed the analogous result for convexity: an annular
minimal surface with boundary made up of two convex curves in parallel
planes meets intermediate parallel planes in convex curves. Meeks [4]
has conjectured that the topological hypothesis of annularity is not
necessary. Schoen [6] developed a version of Alexandrov reflection for
minimal submanifolds with boundary. His method shows quickly that
a connected minimal submanifold Mn in Rn+1, for which the boundary
consists of two coaxial (n− 1)-spheres in parallel hyperplanes, must be
a catenoid. No additional topological assumption on Mn is required in
Schoen’s results.
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The remainder of this article gives partial results for the other space
forms. Theorem 3 considers submanifolds of hyperbolic space Hn+1,
in this case allowing surfaces, i.e., n ≥ 2. There is a restriction on the
family of hyperplanes analogous to that in Theorem 2; the (n − 1)-
spheres are required to lie in ‘asymptotic horospheres,’ by which we
mean the planes {xn+1 = constant} in the upper half-space model.
We end with Theorems 4 and 5, about Sn+1 and Hn+1 respectively.
These last are proved simultaneously, using the ball model for Hn+1 and
stereographic projection for Sn+1. The rather complicated restrictions
in Theorems 4 and 5 amount to requiring parallel hyperplanes in the
conformal models used.

2. Algebraic tools. The method of investigation, suggested by
R. Schoen, consists of providing an open neighborhood in the ambient
space, with a chosen coordinate system for which Mn is the level set of
a particularly useful function. It becomes necessary to deal with some
very detailed algebraic questions. The main tool used is a lemma from
commutative algebra over the real numbers, found in an article of Lam
[3].

We describe Lemma 6.14 of [3] as it would read over the field of
real numbers. Suppose that U is a polynomial in n variables that
assumes both positive and negative values on Rn. Suppose that U is
also irreducible over R. Finally, suppose that W is a polynomial that
vanishes whenever U does. Then U must divide W . In the present
work, U will be a fixed polynomial v2

1 +· · ·+v2
n−1. (Remark: for this U

there is a short elementary proof of the lemma.) U achieves a negative
value at the origin and a positive value at the point (2, 0, 0, . . . , 0). U is
irreducible over R for n ≥ 2. The specific results we find will come from
applying the lemma to a polynomial called Q, and gaining information
from the condition that v2

1 + · · · + v2
n − 1 must divide Q. We will also

find occasion to use the fact that the homogeneous degree two part of
this U , that is, v2

1 + · · · + v2
n, is irreducible over R for n ≥ 2.

It is appropriate to describe the uses and limitations of computers
in an investigation of this level of complexity. In each of three main
settings, one establishes expressions for the n-variable polynomial Q.
The calculation of mean curvature in each setting becomes that of
perceiving useful patterns in Q, then selectively applying the algebraic
lemma. In the more mechanical stages that follow writing out Q,
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the author was able to use symbolic manipulation programs called
Macsyma and Mathematica to check his work. It never became possible
to feed in the problem and ask for an answer; the computer was used
instead to compare pairs of expressions by expanding both and printing
out any difference. In any event, after arriving at the definition of
Q, the author performed each calculation several times, giving an
understandable expression to be checked, then used the computer
programs to confirm that portion of the work. The reader interested
in details about these symbolic computations is urged to contact the
author.

3. Euclidean space. We are able to answer the main question
completely when dealing with submanifolds of Rn+1, n ≥ 3. We show
first (Theorem 1) that if Mn is an (open) submanifold of Rn+1, foliated
by (pieces of) spheres, then either M is a subset of a round Sn, or the
hyperplanes containing said spheres are parallel. Next (Theorem 2) we
show that in the latter case the spheres of the foliation are coaxial, i.e.,
Mn is a hypersurface of revolution.

We settle on some conventions and notation. Unless otherwise
specified, the word “plane” will refer to an n-dimensional plane in
Rn+1, while the word “sphere” will mean a round Sn−1 lying in a
plane of Rn+1. Notice that in the case n = 2, the word “sphere” would
refer to a circle. Given some smooth function r of the variable t, we
will use the notations ṙ and r̈ for the first and second derivatives of r
by t. Finally we will be using a subscript 0, so we will use the notation
below to avoid ambiguity.

p ∗ q =
n∑

k=1

pkqk.

Theorem 1. If Mn is a submanifold of constant mean curvature
in Rn+1 with n ≥ 3, M is nonplanar, and M is foliated by pieces of
spheres lying in a one-parameter family of planes, then either M is a
subset of a round Sn or the planes in the family are parallel.

Proof. We need to recall most of the definitions from [2]. Mn is an
(open) submanifold of Rn+1, such that a family of planes intersects
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M in subsets of round spheres. We perform a lengthy construction
to provide a coordinate system on an open neighborhood around Mn.
First we construct a smooth unit normal vector field N0 to the planes
of the family. Next we pick some integral curve γ(t) of the field N0,
that is, γ̇ = N0(γ(t)). We write the rest of the Frenet frame for γ,
beginning with γ̇ = N0, Ṅ0 = κ0N1, and Ṅ1 = −κ0N0 + κ1N2; we
continue with Ṅi = −κi−1Ni−1 + κiNi+1 for 1 ≤ i ≤ n− 1, and finally
Ṅn = −κn−1Nn−1.

Let us use the notation Πt for the plane containing the point γ(t).
Referring to the sphere in Πt of which Πt ∩ Mn is a subset, let r(t) be
the radius and c(t) be the center. Since γ(t) and c(t) are both in the
plane Πt and γ̇ = N0 is constructed perpendicular to Πt, it follows that
N0 is perpendicular to the vector c(t)− γ(t). From the construction of
the Frenet frame above, we also find that Ni lies within Πt for 1 ≤ i ≤ n
(see Figure 1).

In what follows, we compare positions in the plane Πt to the point
γ(t). We define functions a1, . . . , an to satisfy the equation

c(t) − γ(t) =
n∑

i=1

ai(t)Ni(t).

We also introduce quantities requiring the subscript 0, namely,
α0, . . . , αn, with

ċ(t) =
n∑

k=0

αk(t)Nk(t).

We introduce variables that will become coordinates in a local neigh-
borhood. These are v1, . . . , vn. Let U be an open subset of R × Rn.
We define the mapping X : U → Rn+1 by

X(t, v1, . . . , vn) = c(t) + r(t)
n∑

i=1

viNi.

The inverse of this mapping defines a coordinate system on an open
subset W of Rn+1 that contains an open subset of Mn. We rename
Mn to refer to this possibly smaller open submanifold. Notice that
when v2

1 + · · ·+ v2
n = 1, the result of the mapping X is a point lying in

M , and the converse applies. To summarize,

Mn = {�x ∈ Rn+1 : v2
1 + · · · + v2

n = 1}.
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FIGURE 1.

Using notation defined earlier, we may refer to v2
1 + · · · + v2

n as v ∗ v.

We need to be able to recognize when either of the conclusions desired
in the theorem apply. The planes {Πt} would be parallel if Ṅ0 were 0,
which occurs when κ0 = 0. In that case, γ(t) would be a straight line
to which all the Πt were perpendicular. We have:

Lemma 1. The planes Πt defining the foliation of Mn by spheres
are parallel if and only if κ0 = 0.

The other possibility is more difficult to recognize. M is a subset of an
Sn if and only if each point of M is the same distance from a fixed point



SPHERE-FOLIATED SUBMANIFOLDS 989
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FIGURE 2.

m0 in Rn+1. This could happen in a few different ways. First, M would
be part of a sphere if c(t) = m0 for all t, with r(t) also being constant.
Notice that if c and r are constant it is not possible for κ0 to be the
constant 0. Second, we could have κ0 = 0 and r2 +(t−t0)2 = constant.

A third way for Mn to be a part of a sphere is for each Sn−1 in
the foliation to be the base of a cone, and the axis of this cone be
perpendicular to its base (see Figure 2). Since the axis of the cone is a
segment from m0 to c(t), and the base of the cone lies in the plane Πt,
we see that c(t) − m0 must be perpendicular to Πt. This shows that
c(t) − m0 must be parallel to N0, so there is a scalar q(t) with

c(t) − m0 = q(t)N0.

Differentiating, we find the requirement ċ = q̇N0 + qκ0N1. Recalling

ċ(t) =
n∑

k=0

αk(t)Nk(t),
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we see that, for Mn to be part of an Sn, it is necessary that α2 = α3 =
· · · = αn = 0, along with α0 = q̇ and α1 = qκ0. Since |q| is also the
distance between c(t) and m0, and r(t) is the radius of the base of the
cone, and any segment generating the conical surface is the same length
as the radius ρ of the Sn that contains Mn, we find that r2 + q2 = ρ2,
or r2 + q2 is constant. If the planes πt are not parallel, so that κ0 �= 0,
then q = α1/κ0. It follows that

r2 + α2
1/κ2

0

must be constant. Since α0 = q̇, we find also that

α0 =
d

dt

α1

κ0
.

On the other hand, given the three requirements above, we may define

m = c − α1

κ0
N0,

and calculate easily that ṁ = 0. We have

Lemma 2. Mn is a subset of a round Sn if one of the following
conditions holds:

1) c(t) and r(t) are both constant,

2) κ0 ≡ 0 and r varies appropriately with t, or

3) κ0 �= 0, α2 = α3 = · · · = αn = 0, r2 + α2
1/κ2

0 is constant, and
α0 = (d/dt)(α1/κ0).

3.1. Calculation of the mean curvature. We use the fact that
the submanifold Mn is the level set of a smooth scalar function. Let
us save some writing by defining

V = v ∗ v = v2
1 + · · · + v2

n,

so that M is the set

Mn = {�x ∈ Rn+1 : V (�x) = 1}.



SPHERE-FOLIATED SUBMANIFOLDS 991

Then we know that the mean curvature H of Mn is given, up to sign,
by

H =
−1
n

div
( ∇V

|∇V |
)

,

with ∇ denoting the induced connection on M . We wish to write H
in the coordinate system {t, v1, . . . , vn}. The subscript 0 will be used
for the coordinate t when applicable. When possible, subscripts with
values from 1 to n will be denoted by the letters i, j, k, l. Subscripts
with values from 0 to n will be denoted by the letters β, μ, ν.

We define the usual metric terms, g00 = 〈∂X/∂t, ∂X/∂t〉, g0i =
〈∂X/∂t, ∂X/∂vi〉, and gij = 〈∂X/∂vi, ∂X/∂vj〉 for 1 ≤ i, j ≤ n.
Further values are presented with the understanding that, should these
ever arise,

κ−1 = 0, κn = 0, v0 = 0, vn+1 = 0.

We are able to explicitly calculate the metric coefficients in this coor-
dinate system as follows:

gij = δijr
2,

g01 = rα1 + rṙv1 − r2κ1v2,

g0i = rαi + rṙvi + r2(κi−1vi−1 − κivi+1)
for 2 ≤ i ≤ n − 1,

g0n = rαn + rṙvn + r2κn−1vn−1,

and

g00 = (α0 − rκ0v1)2 +
1
r2

n∑
j=1

g2
0j .

Let G be the matrix gμν , and let g = det (G). Then cofactor
expansion along the row with index 0 shows that g = r2n(α0−rκ0v1)2,
so that √

g = rn|α0 − rκ0v1|.
As g ≡ 0 would imply that X need not be an immersion, but that M
actually lies within a single plane, we require that M be nonplanar and
arrange g �= 0 by restricting to a smaller open set. We introduce the
quantity

α ∗ v = α1v1 + · · · + αnvn
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and note that it does not involve the function α0. We find an identity
that will be ubiquitous in what follows,

(1)
n∑

i=1

g0ivi = r[(a ∗ v) + ṙ(v ∗ v)].

In our coordinate system, with V = v ∗ v = v2
1 + · · · + v2

n, we have

1
2
∇V =

n∑
i=1

n∑
j=1

gijvi
∂

∂vj
+

n∑
i=1

gi0vi
∂

∂t
,

and
1
4
|∇V |2 =

n∑
i=1

n∑
j=1

gijvivj .

We do not write explicit values for gμν . Instead, we evaluate the
evident sums, a task equivalent to carrying out an underlying matrix
computation. We define the variables w0, . . . , wn by

wμ =
n∑

k=1

gμkvk.

We rewrite quantities related to ∇V using the wμ, such as

(2)
1
2
∇V =

n∑
i=1

wi ∂

∂vi
+ w0 ∂

∂t
,

and

(3)
1
4
|∇V |2 =

n∑
i=1

wivi,

or

(4)
1
2
|∇V | =

√√√√ n∑
i=1

wivi.
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Simply placing (4) in the definition of divergence gives

div
( ∇V

|∇V |
)

=
1√
g

{
(∂/∂t)[

√
g(w0/

√∑n
k=1 wkvk)]

+(∂/∂vi)[
√

g(wi/
√∑n

k=1 wkvk)]

}
.

It follows from the definitions that

(5)
n∑

μ=0

g0μwμ =
n∑

μ=0

n∑
k=1

g0μgμkvk = δk
0vk = 0,

while

(6)
n∑

μ=0

giμwμ =
n∑

μ=0

n∑
k=1

giμgμkvk = δk
i vk = vi.

Repeated use of the identities (1), (5) and (6) leads to values for the
wμ, these being

(7) w0 =
−[(α ∗ v) + ṙ(v ∗ v)]

r(α0 − rκ0v1)2

and

(8) wi =
1
r2

(
r(α0 − rκ0v1)2 + [(α ∗ v) + ṙ(v ∗ v)]g0i

r(α0 − rκ0v1)2

)
.

Substituting (8) into (4) and using the identity (1) gives

(9)
1
4
|∇V |2 =

1
r2

(
r(α0 − rκ0v1)2(v ∗ v) + [(α ∗ v) + ṙ(v ∗ v)]2

(α0 − rκ0v1)2

)
.

Recall that we may restrict t and perhaps v1 so that α0 − rκ0v1 �= 0.
We define

A = rκ0v1 − α0(10)

B = (α ∗ v) + ṙ(v ∗ v)(11)

D = A2(v ∗ v) + B2(12)

T0 = −rnB(13)

Ti = rn−1A2vi + rn−2Bg0i.(14)



994 W.C. JAGY

Using the defined symbols above, we may now rewrite

(15)
√

gw0√∑n
i=1 wivi

=
T0√
D

(16)
√

gwj√∑n
i=1 wivi

=
Tj√
D

and

(17)
√

g = rn|A|.

Altogether, we find that

(18) div
( ∇V

|∇V |
)

=
±P

2rn|A|D3/2
,

if we define

(19) P =
(

2
∂T0

∂t
D − T0

∂D

∂t

)
+

n∑
i=1

(
2
∂Ti

∂vi
D − Ti

∂D

∂vi

)
.

We now choose the mean curvature of M to be

H =
−P

2rn|A|D3/2
.

For the example of the constant radius right spherical cylinder with
inward normal, this choice gives mean curvature (n − 1)/(nr).

If H is constant, equal to some number h, we may square both sides
of the equation H ≡ h, then move the denominator to arrive at

(20) P 2 = 4n2h2r2nA2D3.

This condition must apply on M . We proceed to define the polynomial

(21) Q = P 2 − 4n2h2r2nA2D3.
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The rest of the effort goes into restricting Q to M , which is to say
that we require

V − 1 = 0 =⇒ Q = 0.

Two processes alternate in the ensuing algebra. After all partial
derivatives have been evaluated, the expression v ∗ v may be replaced
by 1 whenever it appears. In order to use Lam’s lemma, we identify
the highest degree homogeneous terms in Q that remain at any given
time.

We examine the definitions of A, B, D, T0, Ti, P for terms of high
degree in v1, . . . , vn: the highest degree term in A2 is the quadratic
r2κ2

0v
2
1 . The expression D is also quadratic once v ∗ v is replaced by 1.

The quadratic terms in D are those in r2κ2
0v

2
1 +(α∗v)2. The expression

B is merely linear, as is T0. A rather longer calculation is required to
find that P (also restricted to M) is of degree four, and that the degree
four part of P is 2nrn+1κ2

0v
2
1(r2κ2

0v
2
1 + (α ∗ v)2) ≡ 2nrn+1κ2

0v
2
1D. A

detailed calculation of the highest-degree homogeneous part of P is
written out in the Appendix to [2]. The degree 8 part of Q is then

Q8 = 4n2r2n+2κ4
0v

4
1D

2
2 − 4n2h2r2nr2κ2

0v
2
1D

3
2 ,

where the symbol D2 refers to the quadratic terms in D, and we may
factor this as

Q8 = 4n2r2n+2κ2
0v

2
1D2

2(κ
2
0v

2
1 − h2D2).

Since V − 1 must divide Q, in particular V = v2
1 + · · · + v2

n must
divide Q8 with a homogeneous quotient. As V is irreducible, we know
that we have three choices: V divides 4n2r2n+2κ2

0v
2
1 or V divides D2

or V divides κ2
0v

2
1 − h2D2.

The first choice can only occur if κ0 = 0, which means that the planes
are parallel. The second choice implies that V divides the quadratic
part of D, again because V is irreducible over R. This is the same case
that occurred at the end of [2]. For n ≥ 3, we eventually find that
r2κ2

0 + v2
1 = 0, from which we again conclude that κ0 = 0. The third

case is new and gives the possibility that κ0 �= 0 but that Mn is part
of a round sphere. There are many cases to consider, and these are
discussed in the Appendix.
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4. Euclidean space, parallel planes. With the previous theorem
in hand, we need only complete the consideration of the case when the
planes Πt are parallel, that is, κ0 = 0.

Theorem 2. If Mn is a submanifold of constant mean curvature
in Rn+1 with n ≥ 3, M is nonplanar, and M is foliated by pieces of
spheres lying in parallel planes, then M is a subset of a hypersurface of
revolution.

Corollary 1. If Mn is a submanifold of constant mean curvature in
Rn+1 with n ≥ 3, M is connected, complete, and an open subset of M
is foliated by pieces of spheres, then M is one of the known examples:
plane, sphere, cylinder, catenoid or Delaunay type.

Proof. It is only necessary to examine the polynomial Q in the
situation when κ0 = 0, so that all the κβ = 0. We will summarize
the calculation of the highest degree terms in Q, which are of degree
six when κ0 = 0. First, from the expression for the degree four terms in
P , we see that P is of degree at most three when κ0 = 0. More work is
involved in showing that the cubic terms in P cancel completely when
the restriction V ≡ 1 is invoked. What remains is of degree two, and
the quadratic part of P is 2(n − 2)rn−1(α ∗ v)2.

On the other hand, there are still terms of degree six in the expression
4n2h2r2nA2D3. While A2 is now 1, there are still quadratic terms in
D, these being D2 = (α ∗ v)2. As a result, Q is now of degree six, P 2

does not contribute to the degree six terms, and

Q6 = −4n2h2r2n(α ∗ v)6.

If h = 0, M is actually minimal, and we know that M is a hypersurface
of revolution [2]. If h �= 0, then V −1 divides Q and V divides Q6. Since
V is irreducible, V divides (α∗v), which implies that α1 = · · · = αn = 0.
This last condition means that M is coaxial. This concludes the proof
of the theorem. The corollary follows from the maximum principle.

5. Other ambient spaces preliminaries. We prove three
theorems that are analogous to the case of parallel planes in Euclidean
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space. We will simply introduce a conformal factor F−2 into the metric
on Euclidean space and thereby use conformal models for hyperbolic
space and for the sphere. We eventually define a new value for Q and
proceed from there.

We will need some abbreviations: define s1 = −rκ1v2, si =
rκi−1vi−1 − rκivi+1 for 2 ≤ i ≤ n − 1, and sn = rκn−1vn−1. Then
define zi = αi + ṙvi + si for 1 ≤ i ≤ n. We record the usual kind of
cancellation, in this case

z ∗ v =
n∑

k=1

zkvk = B.

Suppose we use the superscript (euc) to describe the value of various
quantities on Euclidean space. The abbreviations just defined allow us
to write

geuc
ij = δijr

2 for 1 ≤ i, j ≤ n,

geuc
0i = rαi + rṙvi + rsi for 1 ≤ i ≤ n,

and

geuc
00 = A2 +

n∑
k=1

z2
k.

As before √
geuc = Rn|A|.

In our models, with any subscripts, the inner products become

gμν = F−2geuc
μν .

The determinant is now g = F−2n−2geuc = r2nA2F−2n−2, so that

√
g = F−n−1rn|A|.

Once again, we define summations u0, . . . , un by

uν =
n∑

k=1

gνkvk.
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As the terms gνk are equal to the original Euclidean terms multiplied
by F 2, this shows that

uν = F 2wν .

The effects on the terms related to derivatives of V are

(22)
1
2
∇V =

n∑
i=1

ui ∂

∂vi
+ u0 ∂

∂t
for 1 ≤ i ≤ n

and

(23)
1
2
|∇V | =

√√√√ n∑
i=1

uivi.

To save space, we use the summation convention and the abbreviations

∂0 =
∂

∂t

and
∂i =

∂

∂vi
for 1 ≤ i ≤ n.

This allows us to abbreviate the expression for mean curvature as

H =
( −1

n
√

g

)
∂ν

(
uν√q√

uivi

)
.

We may compare this to the expression found earlier. The main
ingredient is the appearance of the factor F in various places. For
example,

H =
(−Fn+1

nrn|A|
)

∂ν

(
rn|A|F 2wν

Fn+1F
√

wivi

)

or

H =
(−Fn+1

n
√

geuc

)
∂ν

(
F−nwν√geuc

√
wivi

)
.



SPHERE-FOLIATED SUBMANIFOLDS 999

From the product rule for derivatives,

H =
( −F

n
√

geuc

)
∂ν

(
wν√geuc

√
wivi

)
−

(
Fn+1wν

n
√

wivi

)
∂ν(F−n),

or

H = −F

{(
1

n
√

geuc

)
∂ν

(
wν√geuc

√
wivi

)}
+

(
wν

n
√

wivi

)
∂νF.

The long first term is precisely F times the Euclidean mean curvature
of the subset M ⊂ Rn+1. The second term may be rewritten by using
the expressions Tν , which satisfy

rn|A|wν

√
wivi

=
Tν√
D

.

Using these facts, we write

H = −F

{
P

2nrn|A|D3/2

}
+

(
Tν

rn|A|√D

)
∂νF.

Combining over a common denominator,

H =
2nDTν(∂νF ) − FP

2nrn|A|D3/2
.

There are some common factors in this last expression for H. It is
useful to provide even more abbreviations, denoted T ν , C, E and W .
First, let

T 0 = −rB and T i = A2vi + Bzi,

so that
T ν = r1−nTν .

Next, let

C =
P

2rn−1
,

and

E =
n∑

ν=0

(∂νF )T ν =
∂F

∂t
T 0 +

n∑
i=1

∂F

∂vi
T i.
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With these abbreviations, we may write H as

H =
nDE − FC

nr|A|D3/2
.

One more abbreviation will be

W = nDE − FC,

so that
H =

W

nr|A|D3/2
.

Once again, if we require constant curvature h, we are setting

H = h whenever v ∗ v = 1.

We are led once more to define the polynomial Q

Q = W 2 − n2h2r2A2D3,

and require that Q be 0 when V − 1 = 0.

6. Asymptotic horospheres in Hn+1. We refer to horospheres
that have a common point at infinity as “asymptotic” horospheres. In
the ball model for Hn+1, these would appear as spheres all tangent
to a common point in the unit sphere, the unit sphere corresponding
to the set of points at infinity of Hn+1. We will instead use the
upper half space model on Rn+1, with the coordinate we will call x0

satisfying x0 > 0. Then we rotate the asymptotic family of horospheres
within Hn+1 so that they appear in the model as the parallel planes
x0 = constant. Horospheres may also appear, in this model, as spheres
tangent to the plane x0 = 0. It will be possible to include surfaces
in our result, allowing n ≥ 2. Indeed, it is a shame that this result
applies for n = 2, because it appears to make unlikely the possibility
of a ‘Riemann staircase’ in hyperbolic space.

Theorem 3. If Mn is a submanifold of constant mean curvature
in Hn+1 with n ≥ 2, and M is foliated by pieces of spheres lying in
asymptotic horospheres, then M is a subset of a plane, hypersphere,
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horosphere, equidistant hypersurface, or other hypersurface of revolu-
tion around a geodesic. If complete, M is itself one of the submanifolds
mentioned.

Proof. The conformal factor for the metric is 1/(x2
0). To fit in with

previous definitions, we may simply require that

t = x0.

This gives the value of the function F as

F = t.

Meanwhile, we have

κβ = 0, α0 = 1, α̇0 = 0,

A = −1, si = 0,

and
zi = αi + ṙvi.

All the partial derivatives we need, except for derivatives of F , have
been performed already. We may therefore set V = 1 and κ0 = 0
throughout. For example, we have B = ṙ + (α ∗ v) and

D = (α ∗ v)2 + 2ṙ(α ∗ v) + ṙ2 + 1.

The only nonzero partial derivative of F is ∂F/∂t = 1. This gives

E = T 0 = −rB = −r(ṙ + (α ∗ v)).

The factor C of P is considerably shorter than expected, with

C = (n − 2)(α ∗ v)2 + 2ṙ(n − 1)(α ∗ v)
− r(ȧ ∗ v) + (n − 1)(1 + ṙ2) − rr̈ + (α ∗ α).

The polynomial Q turns out to be of degree 6. For this theorem, it is
necessary to examine the homogeneous parts of Q from degree 6 all the
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way down to degree 2. We relegate the description of the remainder of
the proof to the Appendix.

7. In Sn+1 or in Hn+1. We are able to apply our apparatus to
a pair of related situations. In Sn+1, a geodesic plane is an Sn of
maximum diameter, an equator or ‘great sphere.’ A family of spheres
in Sn+1 may be said to be tangent at a common point if the spheres
of the family all pass through that point and share a common tangent
plane there. Suppose we refer to the common point of tangency as the
‘North Pole,’ and apply stereographic projection from the North Pole.
The plane that is the target of the projection will be the equatorial
plane that passes through the center of the Sn+1 and is orthogonal to
a line through the center and the North Pole. Under this stereographic
projection, the spheres with a common point of tangency at the North
Pole become a family of parallel Euclidean planes in Rn+1.

In the ball model for Hn+1, parallel Euclidean planes correspond
to a situation we will call a “distance-related and parallel family of
equidistant hypersurfaces.” The description of such a family within
Hn+1 is as follows: a single ‘equidistant hypersurface’ is a connected
submanifold, and is the set of all points a fixed distance from a geodesic
plane Π0 and on one side of it. Having fixed Π0, draw a geodesic γ that
is perpendicular to Π0. Parametrize γ by arclength s, and let the plane
perpendicular to γ at the point γ(s) be called Πs. Let Σt denote the
equidistant hypersurface that is a constant distance s from Πs and lies
on the opposite side of Πs from Π0.

It is not immediately obvious that the situation described in hyper-
bolic space actually corresponds to parallel Euclidean planes in the ball
model. The concept is really two-dimensional, with the higher dimen-
sional cases achieved by rotation (see Figure 3). In the Poincare disk
model, let the y axis be Π0, let the x axis be γ, and let Πt be the
circular arc (orthogonal to the unit circle) that intersects the x axis
orthogonally at x = t. The distance between some point (x, 0) and the
origin (0, 0) is given by log((1 +x)/(1−x)). The equidistant line Σt of
interest is modeled by the Euclidean line segment x = a that meets Πt

at two points of the unit circle. Inversion in the unit circle shows that
a = 2t/(t2 + 1). The distance between (0, 0) and (t, 0) is then shown
algebraically to be the same as the distance between (t, 0) and (a, 0).
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FIGURE 3.

As in the previous section, these results extend to n ≥ 2, so that
surfaces are included.

Theorem 4. If Mn is a submanifold of constant mean curvature in
Sn+1 with n ≥ 2, and M is foliated by pieces of (n−1)-spheres lying in
n-spheres that share a common point of tangency, then M is a subset of
an equator, n-sphere, or some other hypersurface of revolution around
a geodesic. If complete, M is itself one of the submanifolds mentioned.

Theorem 5. If Mn is a submanifold of constant mean curvature in
Hn+1 with n ≥ 2, and M is foliated by pieces of (n − 1)-spheres lying
in a distance-related and parallel family of equidistant hypersurfaces,
then M is a subset of a geodesic plane, geodesic n-sphere, equidistant
hypersurface, horosphere, or some other hypersurface of revolution
around a geodesic. If complete, M is itself one of the submanifolds
mentioned.
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Proof. We write the conformal factor simultaneously as

4
(1 + ε|X|2)2 ,

where X refers to position in Rn+1, while ε is 1 for the sphere and
−1 for hyperbolic space. It is necessary to distinguish the origin 0 in
Rn+1. Without loss of generality, we may demand that γ be a line
through the origin, so that γ(t) = tN0 for a fixed vector N0. We also
have the remaining N1, . . . , Nn fixed. The center of the (Euclidean)
sphere in the plane Πt is

c(t) = tN0 +
n∑

i=1

aiNi,

while

ċ(t) = N0 +
n∑

i=1

ȧiNi,

so that
α0 = 1

and
αi = ȧi for 1 ≤ i ≤ n.

Other quantities simplify as follows:

κβ = 0, α̇0 = 0, A = −1, si = 0,

and
zi = αi + ṙvi.

The mapping
X : Rn+1 −→ Rn+1

is therefore given by

X = c + r

n∑
i=1

viNi = tN0 +
n∑

i=1

(ai + rviNi).
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The expression F expands into

F =
1 + ε(r2V + 2a ∗ v + rα ∗ v + a ∗ a + t)

2
.

The partial derivatives of F are

∂F

∂vi
= ε(r2vi + rai)

and
∂F

∂t
= ε(rṙ + ṙa ∗ v + rα ∗ v + a ∗ α + t)

= ε(rB + ṙa ∗ v + a ∗ α + t).

The summation E becomes

E = ε{r2 + ra ∗ v + rB(a ∗ α + α ∗ v − t)},

which expands out to

E = ε{r(α ∗ v)2 − trα ∗ v + r(a ∗ α)(α ∗ v)
+ ra ∗ v + rṙα ∗ v + r2 − trṙ + rṙa ∗ α}.

The remainder of the proof is short enough to reproduce here. When
all is finished here, Q is seen to be of degree 8. The highest degree part
of Q is just

Q8 = n2r2(α ∗ v)8.

Since V divides Q8, this shows that all the αi = 0 for i ≥ 1, which means
that the ai are constant. With this fact in hand, the degrees of all the
expressions we need drop dramatically, and Q becomes quadratic, with

Q2 = r2(a ∗ v)2(1 + ṙ2 + rr̈)2.

The first possibility is that V divides a∗v. This would imply that all
the ai are 0 for i ≥ 1, which is to say that

c = tN0.

The curve c(t) is a straight line that passes through the origin. In either
model, this means that c(t) is actually a geodesic in the original space.
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This means, in turn, that M is a hypersurface of revolution around a
geodesic.

The second possibility is that the ai are constant, and we have the
ordinary differential equation

1 + ṙ2 + rr̈ = 0.

Here the curve c(t) is a straight line that need not pass through the
origin in Rn+1. The general solution to the differential equation above
is

r2 + (t − t0)2 = constant.

Therefore, as a subset of Rn+1, M is part of a round sphere. A sphere
is significant in either model: pulling back the stereographic projection
to Sn+1, M can be part of a sphere (constant geodesic distance from
a point) or, indeed, an equator (totally geodesic). Pulling back to
Hn+1, M can be part of a plane, sphere, equidistant hypersurface, or
horosphere.

In either case, the usual maximum principle argument applies, so M
is one of the objects described if it is complete.

Appendix

A. P |M should be viewed as an equivalence class of polynomials
modulo v ∗ v = 1. Recall these definitions. Generally,

p ∗ q =
n∑

k=1

pkqk.

In particular, let

q ∗ g0 =
n∑

k=1

qkg0k,

and recall the variables si:

s1 = −rκ1v2, si = rκi−1vi−1 − rκivi+1, sn = rκn−1vn−1.

We may write P as a sum of products of previously defined polyno-
mials:

P ≡ 2rn−2A{nrAD + rṙAB − rBκ0g01 + rA2α0

+ 2rB2α0 + Aα ∗ g0 + r2ȦB − r2AḂ}.
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Gathering terms of like degree, we have

P ≡ 2rn−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nr2κ2
0v

2
1 [r2κ2

0v
2
1 + (α ∗ v)2]

+rκ0v1

⎡
⎢⎢⎢⎢⎣

(1 − 4n)r2α0κ
2
0v

2
1 + (2n + 2)rṙκ0v1(α ∗ v)

+ (2 − 2n)α0(α ∗ v)2 + r2κ̇0v1(α ∗ v)

− r2κ0v1(α̇ ∗ v) + r2κ0κ1v2(α ∗ v)

+ rκ0v1(α ∗ s)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(6n − 3)r2α2
0κ

2
0v

2
1 − 4nrṙα0κ0v1(α ∗ v)

+ (n + 1)r2ṙ2κ2
0v

2
1 − 2rα0κ0v1(α ∗ s)

+ (n − 2)α2
0(α ∗ v)2 − r2α0κ̇0v1(α ∗ v)

+ r3ṙκ2
0κ1v1v2 − r2α0κ0κ1v2(α ∗ v)

+ r3ṙκ0κ̇0v
2
1 − r2α̇0κ0v1(α ∗ v)

− r3r̈κ2
0v

2
1 − r2α1κ

2
0v1(α ∗ v)

+ r2κ2
0(α ∗ α)v2

1 + 2r2α0κ0v1(α̇ ∗ v)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(3 − 4n)rα3
0κ0v1 − 2nrṙ2α0κ0v1

+ 2r2r̈α0κ0v1 − r2ṙα1κ
2
0v1

− 2rα0(α ∗ α)κ0v1 − r2ṙα̇0κ0v1

+ (2n − 2)ṙα2
0(α ∗ v) − r2ṙα0κ0κ1v2

+ α2
0(α ∗ s) − r2ṙα0κ̇0v1

+ rα0α̇0(α ∗ v) − rα2
0(α̇ ∗ v)

+ rα0α1κ0(α ∗ v)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+α0

[
(n − 1)α3

0 + (n − 1)ṙ2α0 + rṙα1κ0

+ α0(α ∗ α) + rṙα̇0 − rr̈α0

]
.

B. We complete the discussion of the main theorem in Euclidean
space, planes permitted nonparallel. The case to be discussed is that
when

V |((h2r2 − 1)κ2
0v

2
1 + h2(α ∗ v)2).

We will show that this implies either that the planes are really parallel
(κ0 = 0) or that Mn is part of a round sphere. First, if h =
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0, M is minimal, and this case was treated in [2]. Note that in
((h2r2−1)κ2

0v
2
1 +h2(α∗v)2), the coefficient of v2

1 is (h2r2−1)κ2
0+h2α2

1,
while the coefficient of any other vi is α2

i . This gives the equation

(24) h2r2κ2
0 − κ2

0 + h2α2
1 = α2

2 = α2
2 = · · · = α2

n.

The coefficient of the product vivj is αiαj , which shows that all
products

αiαj = 0.

At most one of the αi can be nonzero. In Rn+1, we were restricting to
n ≥ 3; it follows that, say, either α2 = 0 or α3 = 0. Equation (24) tells
us that

(25) α2 = α3 = · · · = αn = 0,

and

h2r2κ2
0κ

2
0 + h2α2

1 = κ2
0.

Should it be the case that κ0 = 0, we are done, being back in the case
of parallel planes again. If κ0 �= 0, we divide through, arriving at

(26) r2 +
α2

1

κ2
0

=
1
h2

= constant.

The effect of (25) on P is dramatic. Terms such as α ∗ v or α̇ ∗ v
reduce to a coefficient times v1. There are some terms containing a v2,
either explicit or in the sum α ∗ s. The latter term becomes −rα1κ1v2.
It is also true that A and D retain only terms with v1. All in all, Q
now involves only v1 and v2. This has an important consequence; it is
not necessary here to consider the homogeneous terms in any particular
order. Any nonzero multiple of V −1 must have a term with a factor of
v2
3 . Since Q has no v3 terms anywhere, we know that Q = 0(V −1) = 0.

This will allow us to jump from considering degree seven terms to
degrees zero and one; all must be zero. We display the revised value of
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P below:

P ≡ 2nrn+1κ2
0v

4
1 [r2κ2

0 + α2
1]

+ 2rnκ0v
3
1

[
(1 − 4n)r2α0κ

2
0 + (2n + 2)rṙκ0α1

+ (2 − 2n)α0α
2
1 + r2κ̇0α1 − r2κ0α̇1

]

+ 2rn−1v1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(6n − 3)r2α2
0κ

2
0v1 − 4nrṙα0α1κ0v1

+ (n + 1)r2ṙ2κ2
0v1 + (n − 2)α2

0α
2
1v1

− r2α0α1κ̇0v1 + r3ṙκ2
0κ1v2

+ r2α0α1κ0κ1v2 + r3ṙκ0κ̇0v1

− r2α̇0α1κ0v1 − r3r̈κ2
0v1

+ 2r2α0α̇1κ0v1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 2rn−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(3 − 4n)rα3
0κ0v1 − 2nrṙ2α0κ0v1

+ 2r2r̈α0κ0v1 − r2ṙα1κ
2
0v1

− rα0α
2
1κ0v1 − r2ṙα̇0κ0v1

+ (2n − 2)ṙα2
0α1v1 − r2ṙα0κ0κ1v2

− rα2
0α1κ1v2 − r2ṙα0κ̇0v1

+ rα0α̇0α1v1 − rα2
0α̇1v1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 2rn−1α0

[
(n − 1)α3

0 + (n − 1)ṙ2α0 + rṙα1κ0

+ α0α
2
1 + rṙα̇0 − rr̈α0

]
.

With (25) and (26), (and κ0 �= 0), we have two of the three conditions
needed to prove that M is itself a subset of an n-dimensional sphere.
It remains to show that α0 = (d/dt)(α1/κ0).

If we differentiate (26), we arrive at

(27) α2
1κ̇0 = rṙκ3

0 + α1α̇1κ0.

From here, we conclude by examining several cases. In all that
follows, we assume κ0 �= 0.

Case I. If α1 = 0, the highest degree term in Q is

Q7 = 8nr2n+5α0κ
7
0v

7
1 .

This must be equal to zero, so κ0 �= 0 implies that α0 = 0. Thus all
the α’s are zero, meaning that c(t) is a fixed point in Rn+1. It follows
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from (26) that r is constant as well. Therefore, M is part of a round
sphere.

We define three more abbreviations:

Y = r2κ2
0 + α2

1,

Z = r2κ2
0 − (n − 2)α2

1,

U = α0α1 + rṙκ0.

Case II. α1 �= 0. This time we multiply Q by α1. A long calculation
reveals that the highest degree terms factor as

(α1Q)7 = 8nr2n+1κ3
0v

7
1Y UZ.

Since Y cannot be 0 unless κ0 = 0, we know that either U or Z is equal
to 0.

a) α1 �= 0, but U = 0. Then 0 = κ2
0U = α0α1κ

2
0 + rṙκ3

0. Combining
this with (27) gives α0α1κ

2
0 + α2

1κ̇0 − α1α̇1κ0 = 0, or

α0 =
α̇1κ0 − α1κ̇0

κ2
0

.

This is the quotient rule form of

α0 =
d

dt

(
α1

κ0

)
,

so this case is finished: M is part of a sphere.

b) α1 �= 0, but Z = 0, and we use the fact that Ż = 0. Applying (27)
to the linear combination [(κ0/2)Ż − κ̇0Z] gives

(n − 1)rṙκ3
0 = 0.

Therefore,
ṙ = 0.

A number of other useful equations occur in the case Z = 0. As

r2κ2
0 = (n − 2)α2

1,
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the fact that r is constant forces a constant ratio between α1 and κ0.
In turn, this means that

(28)
d

dt

(
α1

κ0

)
= 0.

Equation (26) may always be abbreviated Y h2 = κ2
0. Another

consequence of Z = 0 is Y = (n − 1)α2
1 or

(29) Y =
(

n − 1
n − 2

)
r2κ2

0.

Combining (29) and (26) leads to

h2r2 =
(

n − 2
n − 1

)
,

so that

(30) 4n2h2r2n = 4n2

(
n − 2
n − 1

)
r2n−2.

As mentioned before, we are free to consider homogeneous parts of
Q in any convenient order, now that Q has no terms with a factor of
v3. The fact that ṙ = 0 makes the degree zero part of Q comparatively
simple to calculate. In order to use (30), it is convenient to multiply
by (n − 1) first. The result is

(n − 1)Q0 = 4r2n−2α4
0

⎡
⎢⎣

(−n2 + 3n − 1)α4
0

+ (2n2 − 4n + 2)α2
0α

2
1

+ (n − 1)α4
1

⎤
⎥⎦,

and this must be equal to zero. If we consider the case α0 = 0,
combining this with (28) gives

α0 = 0 =
d

dt

(
α1

κ0

)
,

so that case is concluded. Otherwise, we consider the case

(31) (−n2 + 3n − 1)α4
0 + (2n2 − 4n + 2)α2

0α
2
1 + (n − 1)α4

1 = 0.
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We have restricted to a situation where κ0 �= 0, α0 �= 0, α1 �= 0.
Therefore, all three keep a definite sign. It follows that α0/α1 is
constant. Differentiating this leads to

(32) α̇1α0 = α̇0α1.

With this in hand, we search Q for linear terms that are multiples of v1

but not of v2. From previous comments, even these are forced to total
zero. Once again, in order to use (30), it is convenient to multiply by
(n − 1) first. The result is

(n − 1)Qv1 = 8r2n−1α3
0κ0v1

⎡
⎢⎣

(3n2 − 10n + 3)α4
0

+ (−5n2 + 9n − 4)α2
0α

2
1

+ (−n + 1)α4
1

⎤
⎥⎦.

This gives

(33) (3n2 − 10n + 3)α4
0 + (−5n2 + 9n − 4)α2

0α
2
1 + (−n + 1)α4

1 = 0.

We will show by contradiction that the case under consideration,
Z = 0, but α0 �= 0, is not really possible. If we add together equations
(31) and (33), then divide by α2

0, we find that

(2n2 − 7n + 2)α2
0 + (−3n2 + 5n − 2)α2

1 = 0.

Therefore, the ratio α2
0/α2

1 must be a rational number. In contrast,
divide (31) by α4

1; the result is a quadratic equation in the same ratio
α2

0/α2
1. For this quadratic equation, the discriminant is

4n2(n − 2)(n − 1).

The square root of this cannot be rational, because

n − 2 <
√

(n − 2)(n − 1) < n − 3
2
,

so that
√

(n − 2)(n − 1) is not an integer and must be irrational.
Therefore, the ratio α2

0/α2
1 must also be irrational, a contradiction.
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C. We complete the consideration of asymptotic horospheres in
Hn+1. So far, we wrote

A = −1, F = t,

E = −r(ṙ + (α ∗ v)),
D = (α ∗ v)2 + 2ṙ(α ∗ v) + ṙ2 + 1,

and
C = (n − 2)(α ∗ v)2 + 2ṙ(n − 1)(α ∗ v)

− r(α̇ ∗ v) + (n − 1)(1 + ṙ2) − rr̈ + (α ∗ α).

The condition of constant mean curvature H = h is the vanishing, when
V − 1 = 0, of the polynomial

Q = W 2 − n2h2r2A2D3.

As A = −1 here, we have

Q = W 2 − n2h2r2D3.

The numerator in the mean curvature is

W = nDE − FC.

As F = t is degree zero and C is quadratic, W is cubic, with

W3 = −nr(α ∗ v)3.

Then Q is seen to be of degree six, with

Q6 = n2r2(1 − h2)(α ∗ v)6.

There are two possibilities. First, αi could be zero for all i ≥ 1. That
means that the two spheres are coaxial. The relationship of the model
to Hn+1 implies that M must be a hypersurface of revolution, although
it is true that the planes t = constant represent horospheres rather than
planes in the model. Note that we can allow n ≥ 2 in this theorem.

The second possibility is h2 = 1. The degree of Q drops to 5. A
modest calculation shows that now

Q5 = 2nrt(n − 2)(α ∗ v)5.



1014 W.C. JAGY

This shows, for n ≥ 3, that α = 0 anyway. We restrict to α �= 0 and
n = 2, meaning a surface foliated by circles in asymptotic horospheres
of H3.

We continue with h2 = 1 and n = 2. Quartic terms remain, giving

Q4 = 4r(α ∗ v)3{(2tṙ − r)(α ∗ v) − rt(α̇ ∗ v)}.

Unless α = 0, we find that the complicated factor is 0, or

{(2tṙ − r)α − rtα̇} ∗ v = 0.

By varying the vector v on an open set, we show that the vector
quantity

(2tṙ − r)α − rtα̇ = 0,

or
α̇ = {(2tṙ − r)/(rt)}α.

After much cancellation, Q is seen to have become cubic, with

Q3 = 4r(α ∗ v)3{t(α ∗ α) + tṙ2 + t − trr̈ − rṙ}.

Once again, we take the second factor as being 0. The final piece is the
quadratic Q, with

Q2 = −3r2(α ∗ v)2.

Since V must divide this, we cannot escape the fact that α = 0.
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