ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 28, Number 3, Fall 1998

BALL SEPARATION PROPERTIES
IN BANACH SPACES

DONGJIAN CHEN AND BOR-LUH LIN
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ABSTRACT. Various ball separation properties related to
Mazur intersection property in Banach spaces are studied.

Mazur [16] was the first to consider the following ball separation
property, called property (I), in Banach spaces.

(I) Every bounded closed convex set is an intersection of (closed)
balls.

For finite dimensional Banach space X, Phelps [17] showed that X
has the property (I) if and only if the set of extreme points of the
unit ball B(X*) of the dual space X* is norm dense in the unit sphere
S(X*) of X*.

Giles, Gregory and Sims [10] showed that a Banach space X has the
property (I) if and only if the set of weak® denting point of B(X*) is
norm dense in S(X*). They raised a question whether every Banach
space with the property (I) is an Asplund space. In 1995, Sevilla
and Moreno [20] exhibit a class of non-Asplund spaces admitting an
equivalent norm with property (I). It has been proved recently by
Jimenez and Moreno [14] that Kunen space is an Asplund space with
no equivalent norm with property (I).

Whitefield and Zizler [21] studied the following ball separation prop-
erty, called (CI).

(CI) Every compact convex set is an intersection of balls.

They proved that a Banach space X has the property (CI) if the
cone generated by the extreme points of B(X*) is 7x dense in X*
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where Tx is the topology of uniform convergence on compact subsets
of X. Sersouri [18] showed that this is also a necessary condition for
the space to have the property (CI).

In [19], Sersouri gave a characterization for a Banach space to have
the following property, called (I,).

(I,,) Every compact convex set with dimension less than or equal to
n is an intersection of balls.

Various stability properties of (I), (CI) and (I,,) are given in [8, 9,
13, 18, 19, 21, 22].

In Section 1 of the paper, we generalize the concept of weak* dent-
ing points that include both the weak* denting points and extreme
points of a weak* closed convex set in dual space. We obtain a local
characterization of weak™ denting point by showing that an element f
is a weak* denting point of B(X*) if and only if for every bounded
set A in X such that inf f(A) > 0, then there exists a ball B in X
such that B D A and BN H = & where H is the kernel of f in X. We
prove a result in Theorem 1.3 that yields the sufficient condition for the
above characterization of (I), (CI) and (I,). Theorem 1.3 also yields
a new proof that every weakly compact convex set in Banach spaces
is ball-generated. In Section 2 we introduce a geometric condition on
ball separation that yields a proof for the above characterization of (I)
and (CI). In Section 3 we give a ball separation characterization of
Hahn-Banach smoothness of Banach spaces. In Section 4 we study the
corresponding ball separation properties related to the weak™ point of
continuity (w* — pc) of B(X™*). In Section 5 we give a stability re-
sult on weak™ denting points, w* — pc, weak*-weak points of continuity
(w* — w pe) and extreme points by showing that, under the Hausdorff
metric, in the family of all equivalent norms on X, there exists a dense
Gs-set B such that, if f is a weak™ denting point, respectively w* — pc,
w* — w pc, extreme point, of B(X™*), then for every norm || -||p in B,
f is a weak® denting, respectively w* — pc, w* — w pc, extreme point,
of the ball in X* under || - ||p with the center at the origin and radius

£l 5-

For a Banach space X, let B(X) = {z : ¢ € X, |z]] £ 1} and
S(X)={z:zeX, ||z|| =1}. For aset K in X, let CoK be the closed
convex hull of K. If K is a subset in the dual space X*, let ¢6* K be

the weak™ closed convex hull of K and let fw* be the weak™* closure
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of K in X*. A weak* slice of K is a set S(K,z,0) = {f : f € K,
f(z) > supyck g(z) — 0} where z € X and 6 > 0. f is called a
weak* denting point, w* denting point, of K if, for every ¢ > 0,
there exists a weak* slice S(z, K,d) of K such that f € S(z, K,J)
and diam S(z, K,6) < e. f is called a weak*, respectively weak*-weak,
point of continuity if the identity mapping Id : (K, weak*) — (K, || ),
respectively (K, weak*) — (K, weak)) is continuous at f. The duality
mapping D of X is defined by D(z) = {f : f € S(X), f(z) = ||=[|},
x # 0 in X. All balls in this paper are closed balls, that is, sets of the
form B(z,r) = {y:y € X, ||z — y|| < r}. For balls in dual space X*,
we use the notation B*(f,r) ={g:g9 € X*, ||f—gl <r}.

The main tool in the paper is the following consequence of Phelps’
lemma [17].

Lemma. For a normed space X, let f and g be elements in S(X*),
andlet A={x € B(X): f(x) >¢/2} where0 < e < 1. If inf g(4) > 0,
then ||f —g]| < e.

Proof. Since inf g(A) > 0, it follows that g=1(0) N A = @. Hence
sup f(g1(0) N B(X)) < £/2. By Phelps’ lemma, either ||f — g|| < € or
Ilf + gl < e. However,

| f + gll = sup(f + g)(B(X)) = sup(f + g)(A)
2 sup f(A) = 1.

Hence ||f —g|| < e. o

1. Let X be a normed space. For any bounded subset A in X, define

[flla = sup{|f(z)]: z € A}, fe X"

Then || - ||4 is a semi-norm on X*.

For a subset K of X*, denote the diameter of K under the semi-norm
|- lla by diama K = sup{||f — glla: f,9 € K}.

Definition. Let A be a collection of bounded subsets in X. We
say f € S(X™) to be an A-denting point, respectively A-pc, of B(X™)



838 D. CHEN AND B.-L. LIN

if, for each A € A and £ > 0, there exists a weak* slice S of B(X*),
respectively weak*-neighborhood S, such that f € S and diam S < e.

Examples. If A consists of all bounded subsets of X, then it is easy
to see that an A-denting point of B(X*) is just a w*-denting point of
B(X™).

If A is formed by all compact subsets of X, then an A-denting of
B(X*) is just an extreme point of B(X™*). A proof of this can be found
in the proof of Lemma 2, in [21].

We say that A is a compatible collection of bounded subsets in X if
1. f A€ Aand C C A, then C € A.

2. ForeachAec A,z e X,A+zc Aand AU{z} € A.

3. For each A € A, the closed absolutely convex hull of A is in A.

Lemma 1.1. Let AC B(X),z€ S(X),d >0, ande > 0. If
diam 4 S(B(X™*),z,0) <e,

then

o 1+ (6200l + o — @20l =2 __
yeA 6/2

Proof. For any y € A,

‘ x4+ (0/2)y H < ‘

Iz + (672 ©
Then, for any fo € D((z + (5/2)y)/Ilz + (6/2)y])),

e - ()] ]

1) 1)
ol o] =

. x+4/2 . B
fole) =1 f°(||w+<6/2>y|| )Zl ’

Similarly, for any go € D((z — (6/2))y/llz — (6/2)yl)), go(z) = 1 —
go((z = 8/2)/|lz — (6/2)yll) — =) > 1~ 6. Thus fo, g0 € S(B(X*),,0
and so ||fo — golla < e.

~
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Hence

[z + (6/2)yll + [l — (6/2)y]| — 2

5/2 < fo(y) — g0(y)

<|Ifo —golla <e. 0

Lemma 1.2. Suppose A is a bounded subset of a normed space X
and x € S(X). If

1 —(1 -2
o 2+ Al + e = iyl =2 _
yEA l/n

then diama (S(B(X™*),z,e/n)) < 3e.

Proof. Suppose there exist f,g € S(B(X*),z,e/n) such that ||f —
glla > 3e. Choose y € A such that (f — g)(y) > 3¢, then

1 1 1
o) e

1
>1-—4l- 4 ([ 9)W)

2% 3
S P
n n n

1
T+ —y|l+
n

Therefore

[z + (/n)yll + [z — (1/n)y| -2
1/n

> €. 0

Theorem 1.3. Let X be a normed space, and A be a compatible
collection of bounded subsets in X. If fo € S(X*), then the following
are equivalent.

(i) fo is an A-denting point of B(X™).

(ii) For all A € A, if inf fo(A) > 0, then there exists a ball B in X

such that A C B and inf fo(B) > 0.

(iii) For all A € A, if inf fo(A) > « for some real number o then
there exists a ball B in X such that A C B and inf fy(B) > «.
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Proof. (ii) < (iii). This is clear since the family A is compatible.
(ii) = (i). For any A € A and ¢ > 0, choose 2y € X such that

(1.1) llzo|| = sup{||z| : € A} +2¢ and fo(zo) > ||zol| —&.

Let K be the closed absolutely convex hull of AU {z¢} and K, = {x €
K : fo(x) > €}

Let n = €2/ fo(z0), then, by (iii), there exists a ball B = B(z,7) in X
such that
K.CB and inf fo(B)>e—n.

Since

fo(z) —r =inf fo(B(z,7)) >e—mn,

z r+e—
W) e
2]l =]

Thus fo € S(B(X™), 2/|[z|, 1 = (r +& —n)/|2[])-
Now, for every f € S(B(X™), z/||z]|, 1 — (r +e—=n)/||z]) N S(X*),

we have
f<i> Jrte-n
12l 2]

inf f(B(z,7)) = f(z) =7 >¢—n1.

NO(;ice e(zo/ fo(zo)) € Ke C B(z,7). Hence f(e(wo/fo(x0))) > € —n

hence

Hence

(12) F(@0) > fo(wo) = 2 fo() = folao) —e.

By (1.1) and (1.2), we have

(13) sup{llell: = € 4} < llfollc: 1fllxc < sup{lle] : = € A} +2e.
Now

inf f(K.) > inf f(B(z,7)) > 0.

So
inf fo(f~1(0)NK,) <e.



BALL SEPARATION PROPERTIES 841

Applying Phelps’ lemma in the normed space Y = span K with K as
the unit ball, we have

A4
(14) hhm-|ﬂmu TP

Hence, by (1.3) and (1.4), we have

1o = Fllxc < || o - W|”M“H*w

<2+ |[Ifllx = lfoll | < 4e.

wn'm“H

It is easy to show that S(B(X™*), z/||z|l, 1 — (r + & —n)/|lz|]) and
S(X*)NS(B(X™*), z/||z|l, 1 — (r+c—mn)/||z||]) have the same diameter,
therefore

diamAS<B(X*), Z o1 w) < 8e.

2]l 2]l

This proves that fy is an .A-denting point of B(X*).

(i) = (ii). Suppose fo € S(X*) is an A-denting point of B(X™*),
A € A and inf fo(A) > 0. Without loss of generality, we may assume
A C B(X). Otherwise, choose m > 1 such that (1/m)A C B(X). Then
(1/m)A € A. If we can find a ball B = B(z,r) such that (1/m)A C B
and inf fo(B) > 0, then A C mB = B(mz, mr) and inf fo(mB) > 0.

Now assume A C B(X) and inf fo(A) = § > 0. Let £ = §/3, choose
z1 € S(X), a > 0 such that fy € S(B(X*),z1,«) and

diam4 S(B(X™), 21, ) < €.

Then

fo(xl):l—,[')’>1—01
for some B > 0. Let 81 € (B,a) and M = AU{z;}. Then M € A. So
we can choose z3 € S(X), v > 0, k > 0 such that

1
T <& fo € S(B(X™),z2,7)

and

a—p

diamp;S(B(X™), z2,v) < min < ,B1 — 5)
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For each f ¢ S(B(X*),z1,51),

|fo = fllar > fo(z1) = f(z1) > 1 =B —=(1—-p1) =B — B.
So f ¢ S(B(X*),x2,7). Thus S(B(X*),z2,7) C S(B(X*),z1,051).

Let f;, € D(z2). For each f; € B(X*) and f1(z1) < 1—a, there exists
a A € (0,1) such that

9= Mo, +(L=Nfr € {f € B(X"): f(z2) =17}
Now || fz, — 9llar = (1 = N)||fz, — f1]|ns- Hence

1-\= ”fzz _g”M < (06—51)/(2147) _ a— [
feo = fillar = fey = frllar 2K\ fey — frllar®

Now

[fas = fillr = far (21) = fi(21) = a = b1

Hence 5 .
a — P01

1- A2 ——m—— = —.

~ 2k(a—pB1) 2k

Thus A > (2k — 1)/(2k). Since f1 = (g — Afz,)/(1 = X), we have

_g_>\fz2 _g(xZ)_)‘
Silws) = 5537 (w2) = =973
1—y—-2A v
D) T S1=2k

So we have proved
fo € S(B(X™*),z9,v) C S(B(X™),zs,2ky) C S(B(X*),z1,q).
Thus
diam4S(B(X™), z2,2ky) < diamaS(B(X*),z1,a) <e.
By Lemma 1.1,

k —k -2
up J2 Byl + o — bl =2 _
yeA kp}/
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Now we claim A C B(zz/(k7),1/(ky) —¢€). Suppose there exists y € A
such that ||z2/(kv) — y|| > 1/(kvy) —e. Then

lz2 + kyyll + w2 — kyyll =2 _ Jlza +kyyll =1 Jlea — kyyl — 1

k~y k~ k~y
1 1
N )
= fwz(y) —€
> fo(y) — Ifo — faalla —€
>0—2=c¢.

This contradicts Lemma 1.1. Thus A C B(z2/(kvy),1/(kvy) — 1). Also

. o 1 o 1
““ff°(B(H’H - 1)) - f°<a> - (H _5>

This completes the proof. a

Corollary 1.4. Let X be a Banach space, and let fy € S(X). Then
the following statements are equivalent:

(i) fo is a w*-denting point of B(X™).
(ii) For every bounded subset C' in X**, if inf fo(C) > 0, then there

is a ball B in X** with center in X such that B D C and BNH** = &,
where H** is the kernel of fo in X**.

(iil) For every bounded subset C' in X, if inf fo(C) > 0, then there is
a ball B in X such that B D C and BN H = &, where H is the kernel
of fo in X.

Proof. (i) < (iii). Use Theorem 1.3.
(ii) = (iii). Tt is trivial since C' satisfies the conditions in (ii).

(iii) = (ii). Assume inf fo(C) > § > 0 and C C B**(0,r) = {z** €
X** ¢ ||z < r}. Let A= {z € B(0,r), fo(x) > §}. Then A > C.
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Choose a ball B in X §uch that A ¢ B and BN H = &. Then
CcA” cBY and BY NnH*™ =o. O

Corollary 1.5. Let X be a Banach space, and let zy € S(X). Then
the following statements are equivalent:
(i) zo is a denting point of B(X).

(ii) For every bounded subset C in X*, if inf fo(C) > 0, then there
is a ball B in X* such that B D C and BN H* = &, where H* is the
kernel of xg in X*.

Proof. Notice that zy € S(X) is a denting point of B(X) if and only
if ¢ is a w*-denting point of B(X**). Then use the above corollary.
]

Corollary 1.6. Let X be a Banach space. Then the following
statements are equivalent:

(i) Every f € S(X) is a w*-denting point of B(X*).

(i) For every bounded subset C' in X** and any w*-closed hyperplane
H* in X**, if dist (C, H*) > 0, then there exists a ball B** in X** with
center in X such that C C B** and B** N H* = &.

(iii) For every bounded subset C' in X and any closed hyperplane H in
X, if dist (C, H) > 0, then there exists a ball B in X such that C C B
and BNH =02.

Corollary 1.7. Let X be a Banach space. Then the following
statements are equivalent:

(i) Every z € S(X) is a denting point of B(X).
(ii) For every bounded subset C' in X* and any w*-closed hyperplane

H* in X*, if dist (C, H*) > 0 then there exists a ball B* in X* such
that C C B* and B*NH* = @.

Corollary 1.8. A Banach space X has the property (I) if and only
if, for any two disjoint bounded weak* -closed convex subsets A1 and As
m X** there exist balls BT*, B5* in X** with centers in X such that
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A, C Bf*, Ay C B3* and Bf* N B3* = @.

Proof. <. Trivial.

=. If X has the property (I), then, by [10], the set of weak* denting
points of B(X™*) is dense on S(X*). If A;, Ay are disjoint weak* closed
convex bounded sets, then A;, A; can be separated by weak* closed
hyperplane. Apply Corollary 1.4 to find balls Bf* and B3*. mi

Corollary 1.9 [19]. For every Banach space and every natural
number n, the following properties are equivalent:

(1) Every compact convex subset C with dimension (C) < n, is an
intersection of balls.

(2) For every f € X*, every (n + 1) points x1,... ,T(mn41) € X, and
every € > 0, there exists g € Ext (X*) = {Ah: A > 0,h € Ext B(X*)}
such that sup; |(f — g9)(x;)] < e.

Proof. <. Suppose that C is compact convex in X with dimension
C <n. If x ¢ C, then choose f € X* such that f(z) < § < inf f(C).
It is easy to see that there exist (n+ 1) points x1,... ,Z(,41) such that

C coofzy,...,zmen} Clye X f(y) >0}

By (2), there exists g € Ext (X*) such that sup; |(f — ¢g)(z; — z)| <
0 — f(x). Then

inf g(€o{z1,... ,Z(ny1)}) > 9(z).
By Theorem 1.3, there exists a ball B in X such that
Co{Z1,..+ ,Z(ny1)} C B and infg(B) > g(x).

Therefore C C B and x ¢ B.

=. For every f € X*, every (n + 1) points z1,...,%n41) C X,
and every ¢ > 0, let A be the closed absolutely convex hull of
{Z1,... ,T(ns1)}- If f(A) = {0}, then choose g = 0. If f(A) # {0}, let
C={zxeA: f(x) >e/4}. Then C is compact convex and dimension
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C < n. So there exists a ball B = B(z,r) in X, where r > 0, such that
C € Band 0 ¢ B. Let g € Ext D(z/||2]|), then

inf g(C) > inf g(B) = g(z) — 7 =||z|| —r > 0.

It follows that g=1(0) N C = @. Hence

sup f(g~'(0) N A) <

= ™

Applying the lemma to the normed space spanned by A and with A as
the unit ball, we have

HL I
Iflla llgllalla = 2[1f[la
Therefore
€
-] <.
lglla™lls ~ 2
Hence
sup mi<f— ||f|Ag>‘ <eE. o
i 9]l 4

Let A be a family of bounded sets in X. We use 74 to denote the
topology on X* generated by {||-||a : A € A}. Using a similar argument
the following result can be proved.

Theorem 1.10. Suppose A is a compatible family of bounded sets
i X. Let

(1) The cone of A-denting points of is T4-dense in X*.
(2) Every closed convex set A € A is the intersection of balls.

Then (1) = (2). Furthermore, if every w*-slice of B(X™*) contains a
A-denting point,then (1) < (2).

Corollary 1.11 [21], [18]. Let X be a Banach space. Then the
following are equivalent:

(1) Every compact convex set is an intersection of balls.
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(2) The cone Ext (X*) is dense in X* for the topology of uniform
convergence on compact sets of X.

Proof. Set A to be the family of all compact subsets in X and notice
that the A-denting point actually is a extreme point of B(X™*). Then
the conclusion follows from Theorem 1.10. ]

Corollary 1.12 [19]. For every Banach space, the following proper-
ties are equivalent:

(1) Every finite dimensional compact convez set of X is an intersec-
tion of balls.

(2) The cone Ext X* is w*-dense in X*.

Proof. Let A be the family of all finite dimensional bounded subsets
of X and apply Theorem 1.10. o

Recall that a set A in a Banach space is said to be ball-generated
[12] if there is a family {F; : i € I} such that each F; is a finite union
of balls and A = N F;.

Theorem 1.13. Let X be a normed space. If the linear span of the
A-denting points of B(X™*) is T4-dense in X*, then every weakly closed
set in A is ball-generated.

Proof. Let A be a nonempty weakly closed set in A, and let zo ¢ A.
Then there exist € > 0 and z7,z3,... ,z), € X* such that A =U}_, A;
where

A, ={z € A:z}(z) >z} (xg) + &}

Since the linear span of the A-denting points in 74 dense, we can choose
zi,i=1,2,...n, such that z} = Z;’Zl Aijai; where zf;, j = 1,2,...,
m;, 1 =1,2,...,n, are A-denting points. Furthermore, since the set of
A-denting points of B(X*) is symmetric, we may assume that X\;; > 0,

i=1L2,...,my,i1=1,2,...,n. Let

* * c
Ajj = {CL' € A; : zjj(w) > ajj(zo) + W}’
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j=1L12,...,my, 2 =12,...,n. It follows that A = U; jA;;. Since
z}; is an A-denting point of B(X*), by Theorem 1.3, there is a ball

B;; such that A;; C B;; and zo ¢ B;;. Therefore A C U; ;B;; and
xo ¢ Ui, jBij. This shows that A is ball-generated. O

Corollary 1.14 [5]. Every weakly compact subset of a Banach space
X 1is ball-generated.

Proof. Suppose K C X is weakly compact and x ¢ K. Let A be
the absolutely closed convex hull of K U {z} and (Y, A), Y = span 4,
be the normed space with A as its unit ball. Then (Y, A) is reflexive.
Now B(Y*) = [B(Y)]°, the polar of B(Y) in (Y, A)*, so B(Y*) as a
subset of (Y, A)* is the closure of its denting points, i.e., w*-denting
since (Y, A) is reflexive, under the norm of (Y, A)*.

Let A = {C : there existsa A € R: C C AA}. Then the topology
T4 is just the norm topology of (Y, A)*. By Theorem 1.3, K is ball-
generated in Y. So there exists a ball B = z 4+ rB(Y), r > 0 such
that

KcB and z¢z+rB(Y).

Hence
KCz+rB(X) and z¢z+rB(X).

Therefore K is ball-generated. ]

Corollary 1.15 [10]. Let X be a Banach space; then:

(i) if the w* denting points of B(X*) are norm dense in S(X*), then
X has property (I).

(ii) If the denting points of B(X) are norm dense in S(X), then X*
has property weak* (I), i.e., every weak* closed conver bounded set in
X* is an intersection of balls.

Proof. For any bounded closed convex subset C C X and = ¢ C, since
the w* denting points of B(X*) are dense in S(X*), we can choose a
denting point f of B(X™*) such that inf f(C') > f(z). Therefore there
is a ball B in X such that C C B and BN f~1(f(z)) = @, where

f~1(f(z)) ={y € X : f(y) = f(z)}. In particular, z ¢ B.



BALL SEPARATION PROPERTIES 849

The proof of (ii) is similar to the proof of (i). O

Remark. We can define A-exposed point by simply requiring the
slices in the definition of A-denting points to be parallel, and then we
can get a characterization of A-exposed points by requiring the centers
of balls in Theorem 1.3 to be in the same direction.

2. In Theorem 2.1 we give a necessary and sufficient conditions for a
bounded set A in X** to have a ball B** in X** with center in X such
that A C B** and 0 ¢ B**. The characterization of (I) [10] and (CI)
[18] follow as corollaries of Theorem 2.1. Theorem 2.1 is also used to
study ball topology on Banach spaces [4] and B-convex sets of Banach
spaces [3].

Theorem 2.1. Let X be a Banach space, and let A be a bounded
subset in X**. Then there exists a ball B** in X** with center in X
such that A C B** and 0 ¢ B** if and only if

" B(A) £ B(X"),
where

Bi(A) ={f € B(X™) : 2™ (f) <0 for some z** € A}.

Proof. =. Let zp € X, and let
B** = B (x9,r) & {2 € X** : |l2* — ol < 1}
be a ball in X** such that
ACB*™ and 0¢ B*™.

Choose fo € S(X*) such that fo(zo) = ||zo|. Let

V:{feB(X*)3f<”z—2H> >ﬁ}

Then V is a w*-neighborhood of fy. We claim that V NcoBy(4) = @.
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Suppose there exists
F=Y NfieV,
i=1
where
fi€ Bi(4), Ai>0, i=12,...,n and » X\=1
i=1

Now
ZM(&) :f<x_o> ST
"\ aol| lzoll) ™ o]

Hence there exists iy such that

Io r
()
“\lzoll ) ™ lloll

Since for every z** € B**,
fio(mo — &™) < [J&™ —@ol| <,

hence
fio (w**) > fio (370) —r>0.

On the other hand, since f;, € By(A), there exists
r;r € AC B*™ suchthat fi (z;") =0,
which is a contradiction. Therefore fo ¢ c6® B;(A) and so

v B1(A) # B(X™).

<. If ¥ Bi(A) # B(X*), then there exists 2o € S(X) and slice
S(B(X™), zo,46) of B(X™*) such that

—  w*

S(B(X*),$0,4(5)HB1(A) = .
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For each
f € S8(B(X"),20,9),
we have
(1—98)f(zo) > (1 —6)% >1—24.
Now
B*((1-46)f,0) C B(X™).
Also

infzog(B*(1 —6)f,0) = (1 —0)f(zo) — > 1— 30.

Thus
B*((1=46)f,0) C S(B(X™), zo,49).

Hence for every z** € A,
inf2**(B*(1 - 4)f,6) > 0.

On the other hand,

inf £**(B*(1 = 6)f,8) = (1 = 8)z™(f) — é[|=""|
< (1 =68)z™(f) — 4d(0, A).
Therefore,
(1 =08)z**(f) —dd(0,4) > 0
and
(2.1) e (f) 2 MO
Now, if

f e S(B(X™),x,0),
then by (2.1)

8d(0, A)
1-0 -

(2.2) nf(wo) — f(z™) <n-—
If f € B(X*)\S(B(X*),o,6), then

f(nwo — ™) = nf(wo) — f(z™)

(23) ; n(l—20)+ |z <n(l-96)+M

851
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where M = sup,..¢ 4 ||z**]|.

By (2.2) and (2.3), we have

0d(0, A
Inzo — ™| < max{n— 1( ’6),71(1 —0) —i—M}.
So, for n large enough, we have
d(0, A
[nze — ™| < n — M, for all ** € A.
1-94
Hence,
0d(0, A)
A B** - )
C (nxo,n 71—(5 ),
and of course,
0 ¢ B** <nm0,n - 5(1(0,;4))

This completes the proof. a

Corollary 2.2 [10]. A Banach space X has the property (I) if and
only if the w*-denting points of B(X™*) are dense in S(X™*).

Proof. =. For any € > 0, ¢ > 0and f € S(X*), let § = min{e,e'}.
Consider

A= {a: € B(X): f(z) > g}

Since X has the property (I), there exists a ball B in X such that A C B
and 0 ¢ B. By Theorem 2.1, there exists a w*-slice S(B(X™*),z0,7)
such that

S(B(X*),zo,m) N0 Bi(A) = @.

Then, for every g € S(B(X*),z0,n) and = € A, g(z) > 0. By the
lemma,

5
(24) lg— 7l <3 <e.

(2.5) diam S(B(X™),zo,n) <6 < e.
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By (2.4) and (2.5), it follows that D = {g € B(X™*) : there exists
a w*-slice S of B(X*) such that g € S and diam S < ¢} is dense in
S(X*). By the Baire category theorem, the set of w*-denting points of
B(X™), which is N.5oD} is dense in S(X™*).

<. Let A be a bounded closed convex subset of A and zy ¢ A.
Without loss of generality, suppose zy = 0. Since the w*-denting points
of B(X*) are dense in S(X*), we can choose the w*-denting point fo
of B(X™) such that

inf fo(A4) > f(0) = 0.

Let V be a norm neighborhood of fy in B(X*) such that, for every
fev,
inf f(A) > 0.

Now choose a slice S(B(X*), zo, 6) which contains fy and which is
contained in V. It is clear that S(B(X*),z¢,0) N Bi(A) = @. Since
S(B(X*),x0,9) is a w*-slice, it follows that

S(B(X*),x0,8) Nco® By (A) = @.

By Theorem 2.1, we conclude that there exists a ball B in X such that
A C B and 0 ¢ B. This shows that X has the property (I). O

Corollary 2.3 [18]. Let X be a Banach space. Then X has the
property (CI) if and only if the cone K generated by the set of all
extreme points of B(X*) is dense in X* under in the topology of
uniform convergence on compact subsets in X.

Proof. Let A be any compact convex subset of X and zy ¢ A.
Without loss of generality, suppose zg = 0. Then we can choose the
extreme point fo of B(X™*) such that

inf fo(A) > 0.

Since fy is an extreme point of B(X*), an argument of Lemma 2
in [21] proved that all slices S(B(X*),z,d), # € X which contain f
form a base of f in (B(X*),7x), where 7x is the topology of uniform
convergence on compact subsets in X.
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Choose a slice S(B(X™*), o, §) containing fo such that
inf f(A) >0, forall feS(B(X"),o,9).

Then
S(B(X™),xg,0)Nco” B1(4) =@

and so .
0¥ Bi(A) # B(X™).

Applying Theorem 2.1, we conclude that there is a ball B in X such
that A C B and 0 ¢ B. This shows that X has the property (CI).

Conversely, suppose that X has the property (CI). Given f € X,
e > 0 and compact set A in X. If ||f|la < e, then take any
g € ext B(X*) and A € R sufficiently small; we have ||f — Ag|la < €.
Assume [|f||la > €. Let K be the closed absolutely convex hull of
A, and let Ko = { € K : f(z) > €/2}. Then Ky is compact
convex and 0 ¢ K. Since X has the property (CI), there exists a
ball B in X such that B D K; and 0 ¢ B. By Theorem 2.1, we
conclude that c6® By (Ky) # B(X*). Choose 2o € S(X*) and § > 0
such that S(B(X),x0,6) NG" B (Ko) = @. Let g € ext D(z) =
ext {h € S(X*) : h(zg) = ||zo]| = 1}. Then g € ext B(X*) and, since
g ¢ €o0*By(K)), it follows that inf g(Ky) > 0. Applying the lemma to
the space spanned by Ky with K as a unit ball, we conclude that

f g £
H 171l |g|KHK ST7lx

Since ||+ [k = || - |la, we have [|f — Ag|la < & where A = ||f[|la/l|g]| -
This completes the proof. a

3. A ball separation characterization of Hahn-Banach smoothness
of Banach spaces is given in this section.

Recall that a Banach space is Hahn-Banach smooth if, for every z* €
X*, there is a unique Hahn-Banach extension in X***. Equivalently,
every point z* € S(X*) is a w* — w pc of B(X*).

Theorem 3.1. Let X be a Banach space and let fo € S(X*). Then
the following statements are equivalent:
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(i) fo is a weak*-weak point of continuity of B(X™).

(ii) For any z3* € X**, ifzy* ¢ £, *(0) = {z** € X** : fo(z**) = 0},
then there exists a ball B** in X™* with center in X such that xy* € B**
and B** N f;71(0) = @.

Proof. (i) = (ii). Let H = f,*(0) in X** and z}* ¢ H. Consider
the subspace M = span {{z{*} U X} C X**, and hyperplane H;, =
span{H N X,z*} of M. Let f € M* such that ker f in M = H, and
flx = fo; then we claim |f]| > [foll = L. 1t £ = lfoll = 1, then
there exists z*** € S(X***) such that z***|py = f by the extension
theorem. Then z***(z{*) = f(z{*) = 0, hence z*** # fp in X***
and z***|x = fo. This contradicts the hypothesis that f, has unique
Hahn-Banach extension in X***.

Now ||f]l > Ilfoll = 1 and ||f|x]|| = ||fol| = 1; hence, there exists
z € X such that f(af* —z) > ||x§* — z||. Thus, for each y € H N X,

ly ==l = foly — ) = fy —z) = f(—2) = f(z5" — ) > [lag" — 2.

Let B** = {z** € X** : ||z** —z| < |lz§* —z||}. Then B*N(HNX) =
@. Hence either inf fo(B**NX) > 0 or sup fo(B**NX) < 0. Therefore
inf fo(B**) > 0 or sup fo(B**) < 0, and so H N B** = &.

(ii) = (i). Suppose fp is not a w* — w pc of B(X™*), then the Hahn-
Banach extension of fo in X*** is not unique. Let z*** € S(X***)
such that 2***|x = fo and &*** # fo in X***. Let ker(z***) = {z** €
X** g (x**) = 0}, ker fo = {z** € X** : fo(z**) = 0}. Then
ker x*** # ker fy. Choose z** € ker(z***)\ ker(fy), then there exists
a ball B** = {y** € X** : |ly** — z|| < r}, where z € X such that
z** € B** and B** Nker(fy) = @. Hence either inf fo(B**) > 0 or
sup fo(B**) < 0. Without loss of generality, suppose inf fy(B**) > 0.
Then

folx) = sup {fo(z—y™) + fo(y™)}

y** EB**

> sup {fo(lz—y")}=r.
y**EB**



856 D. CHEN AND B.-L. LIN

Thus
m***(m**) — l‘***(x** _ LL‘) + x***(x)
> =z = zf| + fo(z)
> —r+ fo(z) > —r+r=0.
This contradicts «** € ker(z***). o

Theorem 3.2. Let X be a Banach space. Then the following are
equivalent:

(i) X is a Hahn-Banach smooth.

(ii) For every w*-closed hyperplane H in X** and for any z** €
X**\H, there exists a ball B** in X** with center in X such that
x** € B*, and B*NH = @.

4. In this section we consider ball separation properties of X that
are related to the weak* points of continuity (w*-pc) of B(X™).

Definition 4.1. A Banach space X is said to have the property (II)
if, for every bounded closed convex subset B in X, B = N;c; K;, where
for every i € I, K; = co{U'_, B;} for some balls By, Ba,... ,B, in X.

Let Df = {f € S(X*). There exists a w*-neighborhood V of f in
B(X*) such that diamV < e}.

Obviously, NesoD? is the set of all w*-pc of B(X™).

Lemma 4.2. Let X be a Banach space. Then, for every fo € S(X*)
and for any w*-neighborhood V of fo in B(X™*), there exists a w*-
neighborhood W of fo in B(X*) such that W = {f € B(X™*) : f(y;) >
n; >0,i=1,2,...,n}, for some y1,y2,... ,yn in X and W C V.

Proof. Suppose V. = {f € B(X*) : f(z;) > mi,z; € B(X*),
i =1,2,...,n}. We may suppose n; > —1, 7 =1,2,... ,n. Choose
n; such that fo(z;) > ni > n;. Then choose zy such that ||zo| = 1,
fo(zo) > max{1 — (n} —n;),i=1,2,... ,n}. Consider the w*-open set
OfB(X*)v W= {f € B(X*) : f(yz) > fO(xO) +77; >0,0=12,... an}a
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where y; = xo + x;. Since fo(yi) = folxo + i) > folzo) + 1}, we
have fo € W. For every f € W, f(zo) + f(z:) = f(y:) > fo
i=1,2,...,n. Hence f(z;) > fo(zo)+n,—1>1—(n;—m)+n,—1=n;,
1=1,2,...,n. Therefore, W C V. ]

We are ready now to prove the result corresponding to Theorem 1.3
for A-pc.

Theorem 4.3. Let X be a Banach space, and let A be a compatible
family of bounded sets in X. Then for any fo € S(X*) the following
statements are equivalent:

(i) fo is a A-pc of B(X™).

(ii) For every A € A, if inf fo(A) > 0, then there exist finitely
many balls Bi,Bs,...,B, in X such that A C co{Ul_,B;} and
inf fo(co{uU,B;}) > 0.

(iii) For every A € A, if inf fo(A) > a for some real number a,
then there exist finitely many balls By, Bsy,...,B, in X such that
AC %{U?ZlBi} and inf fo(ﬁ{U?lei}) > .

Proof. (ii) < (iii). This is clear by the properties of A.
(ii) = (i). For any A € A and € > 0, choose g € X such that
(4.1) |lzo|| = sup{||a|| : @ € A} +2¢ and fo(zo) > ||zo] —&.

Without loss of generality, we may assume that ||g|] < 1. Let K be the
closed absolutely convex hull of AU{z(} and K, = {z € K : fo(z) > €}.
Let n = €2/fo(z0), then, by (iii) there exist finitely many balls
B; = B(z1,71), ... ,Bn = B(2p,7;) in X such that

K. cco(U;B;) and inf fo(co(U;B;)) > e —n.

Choose zyp € S(X) such that fo(z9) > 1 —e. Consider V = {f €
B(X*): f(zi)>ri+e—mn, i=1,...,nand f(z)>1—¢e}. Now

fo(zi) — ri =inf fo(B(zi, ;) >e—mn, for all 4.

Hence
fo(zi) >ri+e—n, for all ¢
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and so fy € V.
Now for each f € V, we have

ﬁ(zl) 2 f(z)>ri+e—n, for all 3.
Hence
i o (Beer)) 2 f() =i > e
Notice that
€

fo?zo) €K.C E(UB(zi,ri))
So (£/I1£1)(e(xo/ fo(wo))) > & —n. Thus

(4.2) (@) > fo(xo) — —fo( ) > fo(xo) — .

IIfH

By (4.1) and (4.2), we have

mmwwaeﬂghﬁ\, Vollxe < sup{Jlall : a € A} + 2.
K
Now
f f — 0.
mHN() mHN() emn>
Hence

inf fo(f~1(0)NK) <

Applying the lemma in the normed space spanned by K with K as the
unit ball, we have

F/A H H fo f H

9
- - p I,
H|f0||K 171 e~ WToll ™ A1 Nl = Mol
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By (4.1) and (4.3) and the fact that f(z9) > 1 — €, which implies that
1—|Ifll < &, we have

|mﬂmzwb”ﬁ“ﬂ‘+w
171 7|

< 2e + [[[fllx = [ foll x|

F I
§%+WWNK”MR+MNKHWNJ

|mmH
1l |

§%+%HmmGﬁ—Q

Sdet (L-[fl) <de+ < 6e

Therefore,
diamaV < 12e.

This proves that fo is an A-pc of B(X™).

(i) = (ii). Suppose A € A and inf fy(A) = 2a > 0. Without loss of
generality, assume A C B(X). Now, using Lemma 4.2, we can choose

V={geB(X*):9(x;) > >0, z; € X,i=1,2,... ,k},
a w*-neighborhood of fy in B(X*) and diam4V < «. Then fo(z;) > n;,
i = 1,2,...,k. Choose & such that fo(z;) > & > n > 0,1 =
1,2,... ,k. Choose m > 0 such that & — 1/m > n;, i = 1,2,... k.
And, finally, choose zg € X such that ||zo|| < &/2 and fo(xo) > 0. Let

K =co{B(mxz1,m& ) U---U B(mag, m&) U{zo}}.

Then, for each i =1,2,... ,k,

inf fo(B(mz;,m&;)) = fo(mz;) —mé& = m(f(x;) — &) > 0.
Therefore

inf fo(K)
= min{inf{ fo(B(mz;,m&;)) : i = 1,2,... ,k}, fo(xo)} > 0.

It remains to prove A C K.



860 D. CHEN AND B.-L. LIN

Suppose not. Choose z € A\K. By the separation theorem,
there exists g € S(X*) such that inf g(K) > g(z) > —1. Hence
g(ma;) — m¢&; = inf g(B(mz;,mé;)) > infg(K) > —1,i=1,2,... ,k.
Then g(z;) > & — (1/m) > n;, ¢ = 1,2,...,k. That means g € V.
Thus ||g — folla < a. Now inf f(A) = 2a, hence

g(z) = fo(x) = (fo—9)(z) > 2a — ||fo — glla > 20 —a = a.

But zyp € K, so inf g(K) < g(zo) < ||zo]| < (a/2). This contradicts
with inf g(K) > g(z) > a. Therefore A C K and completes the proof.
]

Corollary 4.4. Let X be a Banach space, and let fo € S(X*). Then
the following statements are equivalent:

(i) fo is a w*-pc of B(X™).

(ii) For every bounded subset C in X, if inf fo(C) > 0, then there
exist finitely many balls By, Ba, ... , By, in X such that C C co{U}_,B;}
and (co{Ul_,B;}) N H = @, where H = {z € X : fo(z) = 0}.

(iii) For every bounded subset C' C X**, if inf fo(C) > 0, then there
exist finitely many balls By, Bs, ... , B, in X** with centers in X such

that . .
CC%{UBZ'} and <E{UBZ'}>QH**—®,
i=1 =1

where H** = {x € X** : fo(x) = 0}.

Proof. (ii) < (i). By Theorem 4.3.
(i) < (iil). The proof is similar to the proof of Corollary 1.4. o

Corollary 4.5. Let X be a Banach space. Then the following
statements are equivalent:

(i) every element of S(X*) is a w*-pc of B(X™*);

(ii) for every bounded subset C of X and every closed hyperplane
H in X, if dist(C,H) > 0, then there exist finitely many balls
By, Bs,. .., By, such that C C co{U!,B;} and to{U}-,B;} N H = &;

(iii) for every bounded subset C' of X** and every closed hyperplane
H** in X**, if dist (C, H**) > 0, then there exist finitely many balls



BALL SEPARATION PROPERTIES 861

B}*,B3*,... ,Br*, with centers in X such that C C to{Ul_{B}*} and

n ’

co{UlB*}NH* =@.

Theorem 4.6. A Banach space X has the property (II) if and only
if the set of w*-pc of B(X™*) is norm dense in S(X*).

Proof. <. For any bounded closed convex subset C in X and
any x ¢ C, since w*-pc of B(X*) are dense in S(X*), there is
a w*-pc f of B(X*) such that inf f(C) > f(z). Without loss of
generality, suppose f(z) = 0. Then by Corollary 4.4, there exist
finitely many balls By, Bs,..., By, such that C C to{U™,B;} and
(co{U™_,B;}) N £ 1(0) = @. In particular, x ¢ co{U"  B;}.

=. It is clear that D} = {f € S(X) : there exists a w*-neighborhood
V of f in B(X™*) such that diamV < €} is an open subset of S(X*).
It suffices to prove D is dense in S(X*), then by Baire’s theorem,
Ne>oDZ = Ni/nDj, is a Gs dense set of S(X™).

Now, for any ¢ > 0 and any § > 0, take 6’ = min{e/4,§/3}. For each
fo € S(X*), consider the bounded closed convex subset

Bs = {ac S B(X) : fo(:l?) > (5,} .

Then there exist finitely many balls B(z1,71), B(z2,72), ... , B(zk, %)

such that By C ¢o{B(z1,71)U--- U B(zk,rr)} ' 4 and 0 ¢ A. By
the separation theorem, there exists f € S(X*) such that

(4.4) inf f(A) > £(0) = 0.

Since inf f(Bs/) > inf f(A) > 0, by the lemma, ||f — fo|| < 26" < 4. Let

V:{geB(X*);g<H%> >i,i:1,2,...,k}.

il /= il
Since
f(z;) —ri =inf f(B(z4,7:)) > inf f(A) >0, i=1,2,... k.

So for i = 1,2,...,k, f(z;) > riy and f(z;/||@i]]) > 7/||x;||. Hence
fev.
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For any g € V, g(z;/||x:l|) > 7i/||x:||. Hence g(x;) — r; > 0, and so

inf g(B(xi,:)) = g(xi) —rillgll > 0.

Therefore, inf g(Bj) > inf g(A) = min{inf g(B(x;, 7)) : i =1,2,... ,k}
> 0. By the lemma ||g — fo|| < 2¢’. By (4.2), ||f — foll < 26’. Hence
diamV < 40’ = e. Thus f € Df. This completes the proof that D} is
dense in S(X™*). o

The proof of the following result is similar to the one given in [2].

Theorem 4.7. Let X be an Asplund space with the property (II).
Then, for each closed subspace Y in X, there exists a subspace Z in X
containing Y with the same density as Y and Z has the property (II).

Proof. Since X is an Asplund space, every nonempty bounded subset
of X* is w*-dentable. By a theorem of [15] there are continuous
functions f, : (X,|| ) = (X*| |I), »n € N, such that fo(z) =
lim,, o0 fr(x) exists in (X*,|| ||) and fo(x) € D(z), x € X. Define
f(z) = {fi(z), f2(x),...}, z € X. Then, by [7], f is norm-norm lower
semi-continuous and, for every subspace Z in X,

(4.5) Z*r ={x"|z: 2" € f(x),x € Z}

Let Y # {0} be a subspace of X, and let o = density Y. Let
Zy =Y, then density (f(Zy)) < «. Since X has property (II),
S(X*) = A where A is the set of all w*-pc of B(X*). Choose Ay C A,
Ay D S([f(Zy)]) and card Ag < a. Next, choose a subspace Z; D Zj,
density Z1 = «, [|z*|| = ||z*|Z4] for all z* € [Ap], the span of Ay
and every z* € Ag is a Z;-pc of B(X*), that is, for all € > 0, there
is a w*-neighborhood of B(X*) containing z* which is determined by
some elements in Z; and has its diameter less than ¢. Continuing by
induction, there exist subspaces Z,, in X and subsets A4, C A such that

(i) density Z, < a and |A4,| < a;
(il) Znt1 D Zn, and Any1 D S([An));

(iii) An D S([£(Zn)));
)

(iv) [|lz*|| = ||=*|Zn+1]], for all z € [A,];
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v) every z* € A, is a Z,,1-pc of B(X™).
+

Set Z = UPZ,, E = [UrA,] and T : E — Z* by T'(z*) = z*|Z,
z* € E. Then Z and Y have the same density, £ D [US°f(Z,)],
S(E) = UPA,. T is an isometry and every element in T'(U3°A,,)
is a w*-pc of B(Z*). Since f is norm-norm lower semi-continuous,
f(USOZn) 2 f(UgoAn) = f(Z). Hence E D f(Z), by (45), Z* =
[T(f(Z))] = T(E). It follows that T(UA,) is a dense subset of S(Z*)
and Sp, the set of w*-pc points of B(Z*), is dense in S(Z*). Therefore,
Z has the property (II). i

A Banach space X is said to have the weak*(II) property if every
bounded weak* closed convex set A in X* can be represented by
A = Niex K; where K; is the closed convex hull of finitely many balls
in X* for each ¢ € I. As in the proof of Theorem 4.6, it can be proved
that X has the property weak*(II) if and only if the set of points of
continuity of B(X) is norm dense in S(X).

Theorem 4.8. If a Banach space X has the weak* (II) property
and Y C X 1is a infinite dimensional subspace of X, then there exists
a subspace Z of X such that density Z = density Y and Z has the
weak* (1) property.

Proof. Suppose density Y = a. Let Z; =Y. Choose Dy C S(Z1)
dense in S(Z1) and |D| = a. Let A be a subset of the set of points
of continuity of B(X) that is dense in S(X). Choose A; C A such
that A; D D; and |A;| = a. Since A; D Dy, Ay D Dy = S(Z;). Let
Zy = [Z1 U A;]. Continuing by induction, we can find sequences {Z,}
with the following properties:

(i)Z1CZyC--

(ii) density (Z, )—an:123---'

(iii) A, C A, A, C Zpy1, and A, D S(2,),n=1,2,--
Let Z = [UZ,], then density (Z) = a and AnDS(UZn). So

UA, D 8(UZ,) = S([UZ]) = S(2).

Now A,, C Z,+1, hence UA,, C Z. Since A,, C A C S(Z),UA,, C S(Z),
so UA,, = S(Z). Therefore UA,, is a dense subset of points of continuity
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of S(Z). O

Theorem 4.9. Let X be a Banach space. If each separable subspace
of X has the weak* (II) property, then so does X .

Proof. Suppose X does not have the weak*(II) property. As in the
proof of Theorem 4.6, there exists €y > 0 such that D, = {z : z €
S(X), there exists a weak neighborhood V of z in B(X) such that
diam V' < &g} is not dense in S(X). Hence, there exists g € S(X) and
0 > 0 such that

(4.6) B(z0,0) N D, = 2.

Choose separable subspace Z; C X and z¢ € Z;. Let Bz, (z,r) = {y:
y € Z1,|ly — z|| < r} for & € Z;. Let A; be a countable dense subset
of Bz, (x9,0) N S(Z1). Then A3 N D,, = & by (4.6). Hence for each
x € Ay, by the definition of D, = € B(X)\B(x,so)w.

By following Kaplansky’s theorem:

For any subset A of a Banach space, if x € Zw, then there exists
a countable subset B C A such that # € B". There exists a
countable subset B, C B(X)\B(xg,e) such that z € B, . Let
Zs = [Z1 UUgeca, B, then Zs is separable.

Continuing by induction, we get:
(i) Subspaces: Z3 C Zo C +--.
(ii) Ay, dense in Bz, (z9,0) NS(Z,) and A, is countable.
(iii) For z € A,,, there is B, C B(Zyn41)\B(zo,¢) such that z € B, .

Let Z = [UZ,]. Then Z is separable and U A, is dense in

(4.7) ( D An> ND.,(Z) = 2.

Hence, for each y € Bz(z0,0) N S(Z) and any w-neighborhood V' of
y, there exists z € US2 A, and z € V. By (4.7), diamV > .
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Hence y ¢ D.,(Z). Therefore, D.,(Z) is not dense in S(Z). That
is a contradiction. o

Theorem 4.10. If every separable subspace of a Banach space X
has the property (II), then X also has (II).

Proof. Suppose the Banach space X does not have the property (II);
then there exists a bounded closed convex subset K in X and a point
zo not in K such that, for any finitely many balls By, Bs, ..., B,, if
K C co(U}'B,), then zy € co(UTB,,). Take a separable subspace Y;
such that x¢ € Y;. Let A; be a countable dense subset of Y7, and let

Fi={F:zy ¢ F, F=c5(UB,)},

where B; = B(z;,r;) ={z € X : ||z —z;|| <7} and z; € 4,71 € Q
where @ is the set of all rational numbers. Then F; is a countable set.
For each F € F, since g ¢ F, K — F # @. Choose zp € K — F. Let
Yo = [Y1 U{zFp : F € F1}]; then Y, is separable. Choose A2 D A; to
be a countable dense subset in Y5, and define

Fo = {F Lz & F,F:m(UBn)},
where B; = B(z;,r;) ={z € X : ||z — x;|| <7} and z; € Aq,1; € Q.

Continuing by induction, there exist separable subspaces Y,, C X,
countable sets A,, and F,, such that

(l) o € Yn;

(2) An C An+1;

(3) A, is dense subset in Yy,;

(4) F, is countable.

Now let Y = [UY,], Ko = KNY. For any finitely many balls
B; =By (yi,ri)={yeY :|ly—vyl <r}inY,ifco(U,B;) D Ky, we
claim that zp € co(U,B;). If not, then there exists y§ € S(Y™*) such
that d = yg(zo) —sup ygs(coU™ ; B;) > 0. Now A = U®A,, is dense in
Y. For each i = 1,2,... ,n, choose z; € A such that ||z; — y;|| < d/4,
and choose g; € @ such that r; + (d/4) < ¢; < r; +d/2. Then

3d
By (yi,7i) C By (2, 4i) C By <yi,7“i + Z)
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Since sup y§(By (yi, i) < y§(zo) — d, it is easy to see

SupyS(BY(xiaqi)) <y8(x0)72, 121527 , 1.
Hence
sup y €O 0 By (%i,4:)| < yo(wo) — g
’ - 4

i=1

Choose m large enough, such that z; € A,,, i = 1,2,...,n. By the
definition of F,,,

F :C_U B(l‘i,qi) € Fm.
i=1

Now zp € K — F and zp € V41 NY. Thus zp € KNY = Ky and
TR ¢ co U?:l By(xi,qi). Then zp € Ky — €O U?:l By(a:i,qi). This
contradicts Ky C €0 U}~y By (zi,q;). Therefore =y € 6 U}_; B;. This
shows that Y does not have the property (II). o

5. Let X be a Banach space, and let B be the family of unit
balls determined by the set of equivalent norms on X. Let h be the
Hausdorff metric on B, that is, h(By, Bs) = inf{e > 0: By C Bz +¢Ba,
By C By +¢eB;} for By, By in B. It is well known that (B,h) is a
complete metric space. If X has the property (I) then it is proved in
[9] that there exists a dense G5 set By in B such that, for every norm
Il - |z in By, (X,]| - ||g) has the property (I). In this section we show
that, for every Banach space X, there exists a dense G5 set By in B
such that for any compatible family of bounded sets A in X, if f is an
A-denting point of B(X™*), then, for every B € By, f is an A-denting
point of the ball in (X, || - ||p)* with center at origin and radius ||f|| 5.

We first state two simple lemmas.

Lemma 5.1. Let 6 >0, r > 0, By, B € B. If h(Bo, B) < 8, z € X,
feX* thenz+rBy C z+ (r/(1—9))B, and

20
<l

. T .
1nff<z+ mB) >inf f(z +rBo) — T
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Proof. If h(By,B) < 6, then (1 —§)By C B C (1 + §)By. Hence
z4+1rBy Cz+(r/(1—46))B and

inff(z + ILJB> > inff(z + 1i—(5(1 + (5)B0>
= f(z) -

r

1-9
=inf f(z +rBy) —

(1 +6)[ £l

20
1-6

rl|flls. B

Lemma 5.2. Suppose By € B,r>0,e >0,z€ X,x € By, f € X*,
and let B = By +¢e¢B(X) € B. Then (r/e)B+z— (r/¢)x D z+rB(X)

and

i (25 +2 = ) =i f(e 4 rB(X) = 2 @) + 1)

Proof.
£B+z—£x3g(az—l-sB(X))—&—z—gx:z—i—rB(X),
and
. r r . ,
1nff<gB+z — ga:) = g(mff(Bo) + einf f(B(X)))
+ /() - Lf(@)
= £ llg, + rinf F(B(X))

+1() ~ Zf(@)

=inf f(2 +rB(X))

- (f@ +lflls)- o

Let X be a normed space, and let n,k € N. Define W, ;, = {(f, 4) :
f € B(X*), A C X**, and there exists z1,...,2 in X, r{,...,r in
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[0, k] such that

ACT

-

(zi + i B(X™))

i=1

and

L
inf f(co U zi + ;B X**)))>3in},

By, k,m = {B € B: there exists v € (0,1) such that for all (f,A) € Wy, &
there exists z1,...,2 € X, r1,...,7 € [0,m — 7] with A C co U¢_,
(z; +r;) and inf f(eo(Uf_,(2z; +:B))) > v}, and

oo oo 0o
=N U Buin
n=1k=1m=1

Also define W, , = {(f,4) : f € B(X*), A C X** such that there
exists z € X and r < k with A C z+rB(X**) and inf f(2+rB(X)) >

1/(3n)}.
B! = {B € B: there exists v € (0,1) such that for all (f,A) €

nkm

n ko there exist 2 € X and 7 € [0,m — 9] with A C 2 + rB** and
inf f(z +rB) >~} and

=N N U BLkm

n=1k=1m=1

Theorem 5.3. B,, Bj, are dense G5 subsets of B.

Proof. We shall prove that By is a dense G5 subset of B, the proof
for Bj, is similar.

Claim 1. Bpkm is open. Let By € By g m. Then there exists
v € (0,1) such that for every (f, A) € Wy, there exist z1,...,2 € X
and ry,...,r; € [0,m — 7] satisfying

ACE(U z;i +r;Bg") >,



BALL SEPARATION PROPERTIES 869

and
)

inff<m< UG+ ri30)>> > .

i=1
Let M = sup{||z| : z € Bp}. Choose § > 0 such that

2§ y m-—r vy
20 am< ) <m-1.
[ —gmMsg amd Ty smeg
By Lemma 5.1, for all B € B, h(By,B) <dandi=1,...,l, we have
T
i + B i+ —=B,
Zi+r 0CZ+1—6
and
. i . 26
inf f zi+1—(5B Zlnff(zi+r,-Bo)—1—_67',-||f||30
20 _r_7
>y 1 5mM>'y 5 =%
Thus
¢ ¢ ,
A co 1 zB** [€9) 1 : B** 3
Cc<H(z +r 0)>CCO<ZEJ1<z—i—1_(s >>
and

Observe that

IN

1-6
This shows that By, i i is open.

Claim 2. By gm is (2k/m) dense. Let By € B. Choose s > 0
large enough such that ¢ = 12nsk/(12nsm — 1) < 2k/m. Denote
B = By +¢B(X). Let (f, A) € Wy, then there exists 21,...,21 € X
and rq,...,r; < k such that

Ac %( O(z,- + riB(X**))>

i=1
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and ,

. — s,k 1

1nff<coi_LJ1(zi +rB(X ))> > g
Choose v € (0,1/(12ns)) and = € By such that (k/e)(f(z) + ||flB,) <
1/(6n). By Lemma 5.2,

EB+zi “les z; + r;B(X),
€ €

and
. i T . Ti
it (%545 = ) =int fGs+ nB) = (@) + 1)
1 k
>~ g(f(x) +11fllz,)
> 1 L >
3 6n
Therefore,
Ac c—< UG+ riB(X**))>
i=1
Co
- Cco _lB** (2 - (3 9
(U (2 +a-ta))
and
¢ T 1
f _ZB (. 7 =
in f<co<i_LJ1<€ +z x>>>>6n
Also
i k 12nsm — 1 1
€ T ¢ 12ns 12ns

Thus B € By, k,m and Claim 2 is proved.
By the Baire category theorem, the set

oo

BO = ﬂ m Bn,k,m:

n=1k=1m=1

is a dense Gs-subset of B. o
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Theorem 5.4. If f € X* is an A-denting point of B(X*), re-
spectively A-point of continuity, then, for each By € By, respectively
By € Bj, [ is an A-denting point, respectively A-point of continuity,
of the ball in (X, || - ||,)* with center at origin and radius || f|| B, -

Proof. Suppose that f € S(X*) is an A-denting point of B(X*).
Fix By € By. For each A € A, with inf f(A) > 0, by Theorem 1.3,

(f, A) €W, 4, for some ng, ko. Now
oo o0 o0
BoeBy=() () U Bhsm:
n=1k=1m=1
So By € B, 1,.m, for some mg. By the definition of B,  ,,, there is a

ball B = z + rBy such that
ACB and inff(B)>0.

By Theorem 1.3 again, this shows that f is an A-denting of the ball in
(X, By)* with center at the origin and radius ||f||5,-

The proof for A-pc is similar. o

Corollary 5.5. If f € X* is a w*-denting point, respectively extreme
point, of B(X*), then for each By € By, f is a w*-denting point,
respectively extreme point, of the ball in (X,|| - ||B,). With the center
at origin and radius || f|| B, -

Corollary 5.6. If f € X* is a w*-point of continuity of B(X™*),
then for each By € By, [ is a w*-point of continuity of the ball in
(X, |- |By)* with center at the origin and radius || f|| B, -

Corollary 5.7. If (X, B(X))* has the property that every point of
S(X™) is a weak* denting point of B(X™*), respectively is strictly convez,
then for each By € B, (X, Bg)* has the property that every point of
S(X*) is a weak* denting point of B(X*), respectively is strictly convex.

Similarly, by using Theorem 3.1, one can prove:
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Theorem 5.8. If f € X* is a weak*-weak point of continuity
of (X,B(X))*, then for each By € By, f is a weak*-weak point of
continuity of a ball in (X,||-||B,)* with center at the origin and radius
IflB,- As a consequence, if X is Hahn-Banach smooth, then (X, ||-|| 5,)
is Hahn-Banach smooth for every By € Bj.

Corollary 5.9. If (X, B(X)) has the property (I), respectively (II),
then for each By € By, respectively By € By), (X, Bo) has the property
(I), respectively (IT).

A Banach space X is called nicely smooth if, for all x** # y** in X**,
there exists a ball B** in X** with center in X such that z** € B**
and y** ¢ B**.

Corollary 5.10. If (X,B(X)) is nicely smooth, then for each
By € By, (X, By) is nicely smooth.

Remarks. (a) It was proved in [9] that if (X, B(X)) has the property
(I), then there exists a dense G5 subset By of B such that for each
By € By, ((X, Bo)) has the property (I). Corollary 5.5 includes this
result.

(b) If we check the proof carefully we can see that, for each By € B,
respectively By € By, By inherits the following separation properties
of B(X): if one bounded set of X** and one point in X** or a w*-
closed hyperplane of X** can be separated by a ball, respectively by
a finite union of balls, of (X, B(X))** with center at X, they can also
be separated by a ball, respectively a finite union of balls, of (X, By)**
with centers in X.

(c) It is clear that we can establish the dual analogous assertions. In
fact, if X is a dual space, let B be all equivalent dual norms of X; then
Theorem 5.3 still holds true.
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